
 International Journal of 

Molecular Sciences

Review

Adiponectin as Link Factor between Adipose Tissue
and Cancer

Erika Di Zazzo 1,2 , Rita Polito 3,4, Silvia Bartollino 1 , Ersilia Nigro 3,5 , Carola Porcile 1,
Andrea Bianco 5 , Aurora Daniele 3,4,* and Bruno Moncharmont 1,*

1 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy;
erika.dizazzo@unimol.it (E.D.Z.); silvia.bartollino@unimol.it (S.B.); carola.porcile@unimol.it (C.P.)

2 Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80131, Italy
3 Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della

Campania “Luigi Vanvitelli”, Caserta 81100, Italy; rita.polito@unicampania.it (R.P.);
nigro@ceinge.unina.it (E.N.)

4 CEINGE-Biotecnologie Avanzate Scarl, Napoli 80145, Italy
5 Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania “Luigi

Vanvitelli”, Napoli 80131, Italy; andrea.bianco@unimol.it
* Correspondence: aurora.daniele@unicampania.it (A.D.); moncharmont@unimol.it (B.M.)

Received: 30 November 2018; Accepted: 11 February 2019; Published: 15 February 2019
����������
�������

Abstract: Adipose tissue is a key regulator of energy balance playing an active role in lipid storage as
well as in synthesizing several hormones directly involved in the pathogenesis of obesity. Obesity
represents a peculiar risk factor for a growing list of cancers and is frequently associated to poor
clinical outcome. The mechanism linking obesity and cancer is not completely understood, but,
amongst the major players, there are both chronic low-grade inflammation and deregulation of
adipokines secretion. In obesity, the adipose tissue is pervaded by an abnormal number of immune
cells that create an inflammatory environment supporting tumor cell proliferation and invasion.
Adiponectin (APN), the most abundant adipokine, shows anti-inflammatory, anti-proliferative and
pro-apoptotic properties. Circulating levels of APN are drastically decreased in obesity, suggesting
that APN may represent the link factor between obesity and cancer risk. The present review describes
the recent advances on the involvement of APN and its receptors in the etiology of different types
of cancer.

Keywords: Adiponectin; cancer; Adiponectin receptors; obesity; inflammatory response; inflammation;
nutritional status

1. Introduction

Obesity, characterized by an excessive and chronic fat accumulation harmful to health, is defined
by the World Health Organization (WHO) as a body mass index (BMI) of 30 or more and represents a
worldwide emergent public health problem [1]. Several epidemiological studies revealed an alarming
increase in the number of obese individuals in recent decades, reaching epidemic distribution in many
areas of the World [2]. Currently, more than 1.5 billion adults are overweight and about 600 million
people are classified as obese worldwide and these rates are estimated to increase in the future [3].
Obesity is a major risk factor for the development of metabolic and cardiovascular diseases as well as
for several malignancies, frequently associated to a poor clinical outcome [4–6]. Cancer is the second
leading cause of death worldwide; consequently, new efforts are needed to understand how obesity
induce the cancer onset and affects its outcomes. The hypothesis that adipose tissue is involved in
tumorigenesis is now called “adiponcosis” [7]. Molecular mechanisms linking obesity and cancer
are complex and still not fully clarified. A low-grade chronic inflammation, deregulation of growth
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signaling pathways, chronic hyperinsulinemia and obesity-associated hypoxia are widely accepted to
be pivotal factors in cancer pathogenesis [8]. Adipose tissue, originally defined as a passive fat depot,
is a heterogeneous tissue, strongly committed to energy substrate homeostasis but endowed with
complex secretory functions related to the nutritional status, thereby recognized as an active endocrine
organ [9]. It produces and secretes different bioactive molecules, called adipokines. In obesity,
the alteration of endocrine functions of adipose tissue negatively affects the secretion of different
adipocytokines. Among them, Adiponectin (APN), the most adipocyte secretory protein, shows a
reduced expression levels in obesity [10]. The reduction of APN expression levels observed in obese
patients, has been related to an increase of tumor onset risk. Several studies demonstrated that APN,
beyond its actions in metabolic responses such as energy metabolism regulation and insulin-sensitivity,
has pleiotropic effects in cancer. Although literature data on the role of APN in carcinogenesis is
conflicting, the most accredited hypothesis is that APN has a protective role, such as anti-inflammatory,
anti-proliferative and pro-apoptotic effects, avoiding the development and progression of several
malignancies, such as breast, colon, prostate, liver and endometrial cancers [11–14].

The aim of this review is to appraise the role of APN and its molecular pathways in “big killer”
cancers, such as breast, colon, thyroid and lung cancer.

2. Adiponectin Structure and Function

First described in 1995, APN, also named adipocyte complement-related protein (Acrp30,
ADIPOQ, apM1, GBP28), represents the most relevant insulin-sensitizing adipokine, primarily
controlling glucose uptake as well as stimulating fatty acids oxidation [15]. APN is encoded by
the ADIPOQ gene, which spans approximately 15.8 kb and is structured in three exons on chromosome
3q27; this region has been linked to a susceptibility locus for metabolic syndrome, type 2 diabetes
and cardiovascular disease [16]. APN is mainly produced from adipose tissue but it is released
at much lower concentration from other tissues [14]. Full-length APN is a 30-kDa protein with
a primary sequence of 244 amino acids, composed of four domains: a signal sequence (aa 1–18),
a non-conserved N-terminal domain (aa 19–41), followed by a 22 collagen-like repeat domain (aa
42–107) and a C-terminal globular domain (aa 108–244). By the cleavage of full-length APN, the
globular APN (gAPN), containing only the C-terminal domain is obtained. APN can exist as different
oligomers: trimers (approx. 90 kDa basic unit; Low Molecular Weight, LMW), hexamers (approx.
180 kDa, Medium Molecular Weight, MMW) and multimers (approx. 360–400 kDa, High Molecular
Weight, HMW) [14].

The APN correct folding starts with trimers formation that, through the collagenous domains,
assemble into hexamers (MMW); subsequently, these primordial complexes associate into multimers,
(HMW), the most biologically active form [14]. APN biological activity depends strictly on its structure
assembly, determined by post-translational modifications [17]. In particular, post-translational
modifications of the oligomeric forms, involving hydroxylation and glycosylation of four conserved
lysine residues at positions 68, 71, 80 and 104 on the collagenous domain, determine the formation
of the high-molecular weight (HMW) complex APN [18]. Impairment of APN oligomers formation
has an impact on insulin concentration, liver gluconeogenesis and can induce severe cardio-metabolic
dysfunctions [17,18]. Furthermore, Arg112Cys and Ile164Thr mutations in the APN protein,
preventing the trimer assembly, cause an impaired cellular secretion and are clinically associated
with hypoadiponectinemia [19]. In physiological conditions, APN is an abundant protein in systemic
circulation, representing about 0.01% of the total serum protein, with a concentration range of
5–50 µg/mL [14,20]. The APN serum concentration is inversely related to BMI and to insulin
resistance [10,21]. However, in pathological conditions characterized by a chronic inflammation,
such as type 2 diabetes, obesity and atherosclerosis, a lowering in APN serum concentrations is
observed [10,20,22]. APN mediates most of its biological effects by binding to its classical receptors,
AdipoR1 and AdipoR2, belonging to seven-transmembrane domains receptor family. Both receptors
have been detected in almost normal and cancer tissues. AdipoR1 shows higher affinity for the globular
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protein than the full-length APN molecule, while AdipoR2 has a similar affinity for both forms. In obese
individuals, a reduction in AdipoR1 and AdipoR2 expression levels seems to lead to a decreased
sensitivity to APN [23]. Additionally, hexameric and multimeric APN bind the third non- classical
receptor recognized, the glycosylphosphatidyl inositol (GPI)-anchored T-cadherin receptor [24].

3. Adiponectin Signaling Pathways

Several lines of evidence suggest that APN upon binding to its receptors, induces the recruitment
of the adaptor protein APPL1, thereby activating a plethora of downstream signaling pathways
controlling cell survival, cell growth and apoptosis. APN effects are mostly mediated via AMPK,
mTOR, PI3K/AKT, MAPK, STAT3 and NF-kB [12]. APN induces the activation of AMPK, a central
sensor and regulator of cellular energy, that in turn stimulates the expression of p21 and p53 and
phosphorylates p53 to initiate cell cycle arrest, senescence and apoptosis. Additionally, studies point
toward the inhibitory effects of APN on the PI3K/AKT/mTOR pathways, which leads to a cascade
of events resulting in a blockade of cell survival, growth and proliferation. APN signaling also
activates the MAPK cascade, which involves cJNK, p38 and ERK1/2. The cJNK and p38 action on
proliferation and apoptosis depend on the cell type, whereas ERK1/2 have frequently a mitogenic
effect. APN inhibits STAT3 activation that increases tumor cell proliferation, survival, angiogenesis
and invasion, as well as inhibiting anti-tumor immunity. APN, through the suppression of inhibitor of
NF-kB phosphorylation, suppresses the pro-inflammatory and anti-apoptotic NF-kB pathway [14].

4. Adipose Tissue, Adiponectin and Low Chronic Inflammation

In adipose tissue there is a perfect balance between adipocytes and immune cells that is lost in
obesity, leading to a local chronic low inflammation associated with increased cancer risk. Immune cells
infiltrating the adipose tissue of obese patients regulate the local immune responses, by increasing the
levels of pro-inflammatory cytokines and adipokines thus supporting tumor development. Clusters
of enlarged adipocytes become distant from the blood vessels, leading to a local area of hypoxia
that underlies the inflammatory response [25,26]. Several immune cell types are involved in the
development of adipose tissue inflammation: neutrophils and mast cells have been implicated in
promoting inflammation and insulin resistance in obesity, whereas eosinophils and myeloid-derived
suppressor cells have been suggested to play a protective role. In addition, a prominent role of B-
and T-lymphocytes and natural-killer cells in adipose tissue inflammation recently emerged [27]. The
cross-talk between adipocytes and cancer cells is mediated by cytokines (specifically IL-1, IL-6 and
TNF-α), adipokines, including APN and other molecules, released by adipose tissue, able to control
proliferation and invasion of different cancer cell types [28]. APN suppresses immune cell proliferation
and, in particular, proliferation and polarization of type 1 macrophages (pro-inflammatory phenotype)
while inducing proliferation and polarization of type 2 macrophages (anti-inflammatory phenotype).
APN additionally reduces B-cells lymphopoiesis and T-cells responsiveness. Finally, APN acting on
inflammatory response suppresses the expression of several pro-inflammatory mediators, such as
TNF-α [29].

5. Adiponectin in Cancer

Although literature data on the role of APN in carcinogenesis are conflicting, it is recognized that
APN is able to reduce development and progression of several malignancies, such as breast, colon,
lung, thyroid and other cancers, through different molecular mechanisms, which are described below
(see Figure 1).
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5.1. Adiponectin in Breast Cancer

Breast cancer (BC) is a well-known obesity-related cancer [30]. Adipose tissue may increase BC risk
via a dual mechanism: (i) aromatization of adrenal androgens to estrogens in the adipocyte increases
estrogen circulating levels and consequently promoting proliferation of mammary epithelial cells; (ii)
deregulation of adipokine’s expression and secretion, thus reducing the APN anti-proliferative effect on
breast cells [31]. Recent evidence demonstrates that low APN serum levels are associated with increased
BC risk but the precise APN mechanism of action is not completely understood [32]. Depending
on tumor phenotype (ERα-positive or negative) and through the cooperation with circulating or
locally-produced growth factors, APN affects BC cell growth, aggressiveness and behavior [33]. In the
ERα-negative human BC cell line MDA-MB-231, APN elicits an anti-proliferative effect by modulating
the expression of genes controlling cell cycle progression, such as p53, Bax, Bcl-2, c-myc and cyclin D1.
In these cells APN inhibits PI3K/AKT pathway and activates AMPK, that in turn phosphorylates Sp1
protein. Phosphorylated Sp1 binds cyclin D1 promoter, causing the displacement of RNA Polymerase II
and the recruitment of a co-repressor complex containing SMRT, NCoR and HDAC1, with a consequent
repression of cyclin D1 expression and BC growth blockage [33]. In MDA-MB-231 cells and in nude
mice APN also negatively controls Wnt/beta-catenin signaling, by positively regulating the expression
of the Wnt inhibitory factor-1 (WIF1), a Wnt antagonist, at gene and protein levels [34].

On the other hand, conflicting results have been reported on the effects induced by APN in
ERα-positive BC cells. In MCF-7 BC cell line (ERα-positive), APN is able to activate ERα that in
turn stimulates cell growth [33]. Moreover, ADP400, a synthetic peptide modulating cellular APN
receptor responses, induces mitogenic effects in MCF-7 cells, probably antagonizing endogenous APN
actions or acting as an inverse agonist [35]. Emerging evidence shows the existence of a cross-talk
between APN/AdipoR1, IGF-IR and ERα in BC [36]. Notoriously, insulin stimulates proliferation
of BC cells through the IGF-1 receptors by activating PI3K [37–39]. In BC an increase in circulating
insulin and estrogen concentration are observed together with a reduction in APN expression level [33].
Furthermore, low APN levels increase the risk of postmenopausal BC and of ER-positive breast tumors
through a combined mitogenic effect of hyperinsulinemia and increased IGFs and estrogen levels.
It has been demonstrated that incubation of MCF-7 cells with low APN concentrations enhances the
association of IGF-1R with AdipoR1, APPL1, ERα, IGF-IR and c-Src; leading, via c-Src, to MAPK
activation. The activated MAPK phosphorylates both Sp1 and ERα, allowing their recruitment on
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cyclin D1 promoter together with an enhanced association of RNA Polymerase II and pCAF. This leads
to an increased cyclin D1 expression, inducing BC growth. Such effect is abrogated in the presence
of specific RNA silencers targeting ERα or IGF-1R [36,40]. On the other hand, in ERα-negative
MDA-MB-231 cells, APN is unable to induce MAPK phosphorylation. Additional data demonstrates
that APN is able to regulate BC cell migration and invasion [41,42]. Indeed, a positive correlation
between lympho-vascular and vascular invasion and AdipoR2 but not AdipoR1, expression has been
reported [43]. Additionally, the expression of both APN and AdipoRs was significantly higher in
invasive BC than noninvasive cases [42].

5.2. Adiponectin in Lung Cancer

Lung cancer is a highly-prevalent malignant carcinoma, representing one of the principal causes
of morbidity and death worldwide [44].

To date, the molecular association between obesity and lung cancer remains still unclear and
somewhat contradictory [45,46]. In fact, a meta-analysis suggested that overweight and obesity are
protective factors against lung cancer, whereas other evidence indicates that obesity, in particular at
visceral level, represents an important risk factor for lung cancer [45]. A variation of APN expression
level was measured in patients affected by lung cancer, even though with contrasting results [47]. Some
studies reported that there is no significant association between APN levels and lung cancer [48,49].
Other studies described a lowering in APN concentrations during lung cancer progression [50].
A further study revealed that APN deficiency significantly inhibited tumor vascularization and
increased apoptosis and hypoxia, while APN-null mice showed a higher number of pulmonary
metastases [51]. Additionally, two APN-gene promoter polymorphisms, Rs266730 and Rs2241766,
have been associated with lung cancer risk and poor prognosis after surgery [52].

The APN inhibitory effects on lung cancer cell proliferation and invasion accompanied by an
apoptosis rate increase has been mainly linked to the activation of pAMPK/mTOR pathways [53].
Moreover, APN, may exert an anti-proliferative effects through CREB down-regulation [54]. Indeed, in
this recent paper, the authors reported that physiological concentrations of APN significantly reduced
cell proliferation of human lung adenocarcinoma cell line A549, mainly by altering cell cycle kinetics
and through the inhibition of CREB [54].

Beyond the inhibition of cell proliferation, a role of APN in regulating inflammation, cell
growth and oxidative stress could also be observed in lung cancer cell lines. For instance, APN was
effective in reducing the activation of inflammatory pathways, especially through the NF-κB-AdipoR1
pathway. Additionally, APN increased the levels of the anti-inflammatory IL-10 without influencing
the expression of pro-inflammatory IL-6, IL-8 and MCP-1 in both IL-1β and TNF-α-treated A549
cells [53]. However, a pro-inflammatory role for APN has also been proposed; in fact, a report showed
that APN promoted lung inflammation, via up-regulating cPLA2 and COX-2 expression together with
intracellular ROS production [55].

Taken together, the current evidence indicates that APN and its receptors may act as molecular
mediators in lung cancer at multiple levels although their role is controversial and far from being
fully defined.

5.3. Adiponectin in Colon Cancer

Colorectal cancer (CRC) is one of the most common obesity-related cancer [56]. To date, several
epidemiological and in vivo studies have investigated the role of APN in CRC [57]. Low APN
serum concentration has been strongly associated to an increased risk of colorectal adenoma or
early CRC [58–61]. In addition, patients affected by colon carcinoma or advanced adenoma showed
markedly low APN serum level but no difference in serum APN concentration was observed between
patients with advanced adenoma and patients with CRC [62].

AdipoR1 and AdipoR2 are expressed in CRC and are associated with lymph node involvement.
Furthermore, AdipoR1 expression is correlated to tumor size during the early stages of CRC [61,63].
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On the contrary, T-cadherin gene is not expressed in this cancer type since its promoter is frequently
methylated [64,65].

Choe et al. using The Cancer Genome Atlas for CRC, investigated the association between the
adipokine gene family (ADIPOQ, ADIPOR1, ADIPOR2, LEP, LEPR, RETN, RETNLB, RBP4, SFRP5,
NAMPT, SPP1) mRNA expression levels and the survival rate of CRC patients, observing that a high
expression level of the ADIPOR1 and SPP1 genes had unfavorable outcomes on CRC patients. Also,
the SPP1 mRNA expression level was significantly associated to the T- and N-stage, overall stage and
mortality [66].

Evidence demonstrated that APN may affect CRC cell proliferation, adhesion, invasion as well as
inflammation. Most of the studies demonstrated that APN could reduce cell proliferation rate [67,68].
Specifically, APN directly inhibited CRC cell proliferation via AdipoR1- and AdipoR2-mediated AMPK
activation [30,67]. Activated AMPK, in turn, regulated many molecular mechanisms responsible for
the APN inhibition of cell proliferation. Indeed, AMPK upregulated T-cadherin mRNA expression in a
dose-dependent manner in HCT116 cells [69–71].

In vitro assay and immunohistochemical staining suggested that APN could prevent CRC
carcinogenesis and proliferation by downregulating COX-2 expression [61,72]. APN treatment reduced
the survival rate of both CaCo-2 and HCT116 cell lines in a time- and dose-dependent manner by
inducing the phosphorylation of ERK1/2 and the cleavage of Caspase-3 thus activating programmed
cell death [73].

In a mouse model, Saxena et al. proposed the use of APN as a therapeutic compound to decrease
the severity of the symptoms caused by chronic inflammation-induced by CRC [74]. Additionally,
a very recent study in a CRC patient cohort strongly suggested that the mRNA expression levels of
APN and its receptors could be used as biomarkers for the prediction of CRC survival prediction [66].
On the other hand, Ogunwobi et al. reported a pro-proliferative and pro-inflammatory APN action on
CRC cells [75]. This discrepancy might be explained looking at recent-published data showing that the
effect of APN on cancer cell proliferation is glucose-dependent, whereby APN supports CRC survival
in a low glucose medium but inhibits proliferation under a high glucose conditions [76].

Taken together these results suggest that, although APN could be an attractive target for
obesity-associated colon cancer, further investigations are needed to completely elucidate the potential
actions of APN in these cancers.

5.4. Adiponectin in Thyroid Cancer

The incidence of thyroid cancer (TC) underwent such a remarkable worldwide increase that it
becomes the second most commonly diagnosed cancer in young women; nevertheless, the mechanisms
underlying the development and progression of TC are poorly understood. Epidemiologic studies
reported that an increase in BMI and obesity with low levels of circulating APN, are positively
associated to TC risk [77]. On the contrary, Abooshahab et al. found no differences in APN levels
between TC patients and healthy controls [78]. TC tissues and cells lines express both AdipoR1 and
AdipoR2 [79]. A weak expression of AdipoR1 and a moderate expression of AdipoR2 were observed
in both K1 and B-CPAP TC cell lines where APN stimulates AMPK phosphorylation. BHP7 and SW579
cell lines express both AdipoR1 and AdipoR2 but are not responsive to APN [79]. APN increases the
synthesis of thyroid hormones, especially free thyroxine (fT4), through the interaction between the
C-terminal globular domain of APN and the gC1q receptor [80].

Several molecular pathways link obesity to TC. An in vivo study performed in a TC mouse model
reported that a high-fat diet (HFD) could increase cell proliferation via two main molecular pathways: i.
increasing the protein levels of cyclin D1 and retinoblastoma protein (pRb) phosphorylation; ii. through
chronic activation of the JAK2/STAT3 signaling pathway and induction of STAT3 gene expression [81].
In HFD mice, the JAK2-STAT3 signaling pathway was also associated with a higher occurrence of
anaplastic foci. Interestingly, an activation of the STAT3 pathway by APN has been discovered in
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fibroblasts, hepatocytes and adipocytes but, to our knowledge, there is no proof of STAT3 involvement
by APN in thyroid cells [82,83].

Altogether this evidence suggests that APN might have an important role in the development
and progression of TC, even if additional studies are necessary to fully clarify the usefulness of APN
as a plausible marker or therapeutic target for TC.

5.5. Adiponectin in Other Cancers

Recently, in a systematic review and meta-analysis, weight loss and a physically active lifestyle
were associated to a lower risk of meningiomas; in the same study, the authors also observed a
correlation between obesity and glioma risk [84]. Interestingly, our research group showed that APN
negatively modulated cell proliferation of human glioblastomas U87-MG and U251 cell lines, by
inducing growth arrest with a G1-phase delay and a slow but persistent activation of a specific subset
of ERK1/2 proteins. Moreover, we observed that APN negatively regulated Insulin-like Growth
Factor 1 IGF-1 action abolishing the IGF-1-induced proliferation of U251 cells [85]. Prostate cancer is
one of the most commonly diagnosed cancers in men [86]. The role of APN in this type of cancer is
contradictory. In a large retrospective study, low APN expression levels were related to the onset of
prostate cancer. Furthermore, the APN expression level was associated to the stage and the grade of
the disease. However, other studies have found no association between APN expression level and
prostate cancer [12,14].

6. Conclusions

Obesity is a highly prevalent public health problem that has been associated with increased cancers
risk in multiple organs. Several mechanisms have been proposed to explain the link between obesity
and cancer and, among them, deregulation of adipocyte-secreted factors is critical. An involvement
of APN, the most represented circulating adipokine, in the etiology of different cancer types has
been proposed (see Figure 2). APN shows multifaceted functions in tumorigenesis. Nevertheless,
the anti-proliferative and tumor-suppressor role of APN remains elusive and data collected so
far are controversial. In vitro studies suggested that in a number of cancers APN may promote
neoplastic growth, while in others it may suppress it. Consequently, APN likely could act both as
a tumor-suppressor or as a tumor-promoting factor. The discrepancy is coherent with the evidence
that APN exerts different functions depending on environmental factors, such as tissue/organ type
and inflammatory state. Moreover, the available cultured-cell models probably are not suitable to
reproduce the complex tumor microenvironment existing in vivo. Another level of complexity that
could influence experimental results derives from the existence of different APN oligomers. Indeed,
the major number of studies do not indicate which APN isoform is involved; probably this is due
to the difficulty of discerning them. Moreover, alterations not only in circulating levels of total
and isoform-specific APN but also in APN tumor microenvironment concentrations, remain to be
explored in human specimens. Additional clues may facilitate the development of new strategies for
the successful treatment of many obesity- related malignancies, such as by increasing APN serum
concentration or antagonizing its receptors, and/or by targeting APN signaling pathways.
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AdipoR Adiponectin receptor
AMPK 5’-adenosine monophosphate-activated protein kinase
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BMI Body Mass Index
COX-2 Cyclooxygenase
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cPLA2 Cytosolic phospholipase A2
CREB cAMP response element-binding protein
ER Estrogen receptor
ERK1/2 Extracellular signal-regulated protein kinases 1 and 2
fT4 Free thyroxine
HFD High-fat diet
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IL-10 Interleukin-10
IL-6 Interleukin-6
IL-8 Interleukin-8
JAK2 Janus kinase 2
MAPK Mitogen-activated protein kinase
MCP-1 Monocyte chemoattractant protein 1
mTOR Mammalian target of rapamycin
NF-κB Nuclear factor-κB
PI3K Phosphatidylinositol-4,5-bisphosphate 3-kinase
PPAR Peroxisome proliferator-activated receptors
PP2A Protein phosphatase 2 A
pRb Phosphorylated retinoblastoma protein
ROS Reactive oxygen species
STAT3 Signal transducer and activator of transcription 3
TC Thyroid cancer
TNF-α Tumor necrosis factor-α
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