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Abstract: Hyaline cartilage is a tissue of very low regenerative capacity because of its histology
and limited nutrient supply. Cell-based therapies have been spotlighted in the regeneration of
damaged cartilage. Dental pulp stem cells (DPSCs) are multipotent and are easily accessible for
therapeutic purposes. In human gastrointestinal tracts, Enterococcus faecium is a naturally occurring
commensal species of lactic acid bacteria. In this work, the human DPSCs were differentiated into
chondrocytes using a chondrogenic differentiation medium with or without L-15 extract. We observed
that chondrogenic differentiation improved in an E. faecium L-15 extract (L-15)-treated DPSC group
via evaluation of chondrogenic-marker mRNA expression levels. In particular, we found that
L-15 treatment promoted early-stage DPSC differentiation. Cells treated with L-15 were inhibited
at later stages and were less likely to transform into hypertrophic chondrocytes. In L-15-treated
groups, the total amount of cartilage extracellular matrix increased during the differentiation process.
These results suggest that L-15 promotes chondrogenic differentiation, and that L-15 may be used
for cartilage repair or cartilage health supplements. To our knowledge, this is the first report
demonstrating the beneficial effect of L-15 treatment on chondrogenic differentiation.

Keywords: dental pulp stem cells (DPSCs); lactic acid bacteria; Enterococcus faecium;
chondrogenic differentiation

1. Introduction

Hyaline cartilage is composed of chondrocytes and extracellular matrix, including collagen,
proteoglycans, and hyaluronic acid. The tissue is commonly damaged by aging, trauma, inflammation,
and degenerative disease [1]. Because of its avascular and aneural character (which makes it
difficult to regenerate when damaged), cell-based therapy is an optimal treatment. This is seen
when autologous chondrocytes are implanted in a damaged area [1,2]. In clinical cases, autologous
chondrocyte implantation (ACI) is unlikely to cause immune rejection and is effective in treating
cartilage defects [3,4]. However, the number of chondrocytes in the body is low, and there are limited
chondrocytes available for use [5]. Due to the substantial limitations of ACI, mesenchymal stem cells
(MSCs) are getting spotlight as a cell source for cartilage repair [1,6,7].

Stem cells are suitable for tissue regeneration because they can self-renew and differentiate into
various types of cells [6]. Dental pulp stem cells (DPSCs) are neural crest-derived mesenchymal stem
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cells that can be obtained from the pulp tissue of the tooth [8]. Unlike isolating bone marrow-derived
mesenchymal stem cells, DPSCs can be obtained by non-invasive methods because the stem cells are
present in extracted teeth [9]. As multipotent stem cells, DPSCs are capable of differentiating into
adipogenic, osteogenic, chondrogenic, and myogenic cells, and they have high proliferation rates [10].
Moreover, DPSCs have the potential for use in cell-based therapies for type 1 diabetes, neurological
diseases, and immunodeficiency diseases [11–13].

Probiotics comprise a variety of microbial species found in the mammalian gastrointestinal
tract. Lactic acid bacteria (LAB) are mainly used as probiotic strains. They have positive effects on
human health, including protection of the host from infection through immunomodulatory effects
on homeostasis, and include Lactobacilli, Streptococci, Bifidobacteria, and Enterococci species [14].
Among these LAB varieties, Enterococcus faecium has been shown to improve intestinal health
and reduce serum cholesterol levels [15,16]. It is a mass-produced microorganism for commercial
application in nutraceutical and food supplement markets. Various research groups have conducted
studies on the effects of LAB on adipogenic and osteogenic differentiation [17,18]. Recently, it was
reported that E. faecium has antioxidant and anti-inflammatory effects, both in vitro and in vivo [19,20].
E. faecium has not been reported to have side effects, so it may be useful for the treatment and
prevention of cartilage defects. Moreover, to our knowledge, there are no reports on the effects of
LAB on cartilage differentiation. In this study, we investigated the impact of E. faecium L-15 extract on
chondrogenic differentiation.

2. Results

2.1. Human DPSC Characterization and Isolation

Although various cell types were initially observed, homogeneous populations of fibroblast-like
cells were observed after passage 3 (Figure 1a,b). To investigate the properties of human DPSCs
(hDPSCs), cells were analyzed by fluorescence-activated cell sorting (FACS). Dental pulp tissues were
obtained from two different donors and FACS analysis was conducted with each sample. At passage 4,
the hDPSCs expressed high levels of MSC markers (i.e., CD10 (92.48%), CD29 (100%), CD44 (100%),
CD73 (100%), CD90 (100%) and CD105 (88.13%)), but low levels of hematopoietic and endothelial stem
cell markers (i.e., CD14 (20.11%), CD31 (0.53%), CD34 (1.24%), and CD45 (0.82%)) (Figure 1c,d and
Table S1). At passage 8, the hDPSCs showed similar surface marker expression to that at passage 4
(Figure S1 and Table S2). Therefore, passage 4–8 cells were used for chondrogenic differentiation.
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(hDPSCs). (b) In vitro cultured hDPSCs at passage 3. The scale bar is 100 μm. (c) Characterization of 
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Figure 1. (a) The morphology of primary supernumerary tooth-derived human dental pulp stem cells
(hDPSCs). (b) In vitro cultured hDPSCs at passage 3. The scale bar is 100 µm. (c) Characterization of
hDPSCs at passage 4 by fluorescence-activated cell sorting (FACS) analysis. Mesenchymal stem cell
markers (92.48% CD10; 100% CD29; 100% CD44; 100% CD73; 100% CD90; 88.13% CD105) were highly
expressed in hDPSCs compared to (d) only a small degree of hematopoietic and endothelial marker
expression (20.11% CD14; 0.53% CD31; 1.24% CD34; 0.82% CD45).
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2.2. Effect of E. faecium L-15 Extract (L-15) on hDPSC Viability

The effect of L-15 extract on cell viability was assessed by the Water-soluble tetrazolium salt
(WST) assay. L-15 extract was prepared at 10, 25, 50, 100, 200, and 300 µg/mL. As shown in Figure 2,
hDPSC viability was significantly decreased by treatments of 100 µg/mL or more. This suggested
that an L-15 extract concentration of 50 µg/mL was safe, and this concentration was used for
subsequent experiments.
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Figure 2. Water-soluble tetrazolium salt (WST) assays were used to detect hDPSC viability on exposure
to L-15 extract (n = 3). Error bars represent mean± S.D. *** p < 0.01, one-way ANOVA followed by
Dunnett’s post hoc test was used.

2.3. L-15 Extract Promotes Early-Stage Chondrogenic Differentiation

The hDPSCs were differentiated into chondrocytes using chondrogenic differentiation medium
with or without L-15 extract. Total mRNA was extracted from the control group (L-15 extract-free) and
the L-15 extract-treated group (LET) at days 3, 5, 7, 10, and 14 to observe gene expression changes
(Figure 3). Using quantitative real-time PCR, we examined the expression of early-stage chondrogenic
markers (i.e., SRY (sex-determining region Y), box 9 (SOX9), aggrecan (ACAN), and collagen type 2
alpha 1 (COL2A1)) and late-stage chondrogenic markers (i.e., collagen type 10 alpha 1 (COL10A1),
runt-related transcription factor 2 (RUNX2), and matrix metallopeptidase 13 (MMP13)). The expression
of SOX9 increased until day 10, then decreased at day 14 in the control group. The expression of
COL2A1 and ACAN increased until day 14 in the control group. Expression levels of SOX9, COL2A1,
and ACAN were significantly higher in the LET group than the control group for 14 days. Specifically,
SOX9 and COL2A1 showed significantly higher expression than the control group at days 5, 7, 10, and
14. ACAN showed significantly higher expression than the control group at days 5, 7, and 10. SOX9,
ACAN, and COL2A1 exhibited the highest differences between the two groups on day 5. The control
group expression of COL10A1, RUNX2, and MMP13 increased during the differentiation process.
In the LET group, COL10A1, RUNX2, and MMP13 showed significantly higher expression than the
control group on day 5. MMP13 (a late-stage chondrogenic marker and also an extracellular matrix
degradation marker) was elevated in the LET group versus the control group at day 5, but significantly
decreased in the LET group by day 7.
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Figure 3. Total RNA was prepared from culture days 3, 5, 7, 10, and 14. The expression of early-stage
chondrogenic marker genes (SOX9, COL2A1, and ACAN) and late-stage chondrogenic marker genes
(COL10A1, RUNX2, and MMP13) was analyzed by qRT-PCR. GAPDH was used for normalization
(n = 3). Error bars represent mean± S.D. * p < 0.05, two-way ANOVA was used.

2.4. L-15 Extract Promotes ECM Formation during Chondrogenic Differentiation

The expression level of GAG, a marker specific to the extracellular matrix of chondrocytes,
was quantitatively analyzed. GAG accumulation in the control and LET groups tended to increase
over 10 days. GAG accumulation was significantly and consistently higher in the LET group than
the control group, but the difference between the two groups decreased over time (Figure 4). Alcian
blue staining was performed to assess accumulation of proteoglycan (e.g., GAG and hyaluronic acid)
levels in chondrogenic-differentiated cells. Stained samples were quantified by spectrophotometry
(Figure 5a). Similar to the results with GAG assay, the alcian blue staining intensity increased steadily
in both groups over 14 days and was significantly higher in the LET group versus the control group
(Figure 5b).
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Figure 4. Total glycosaminoglycan (GAG) determinations were performed using the BlyscanTM

glycosaminoglycan assay (Biocolor, Carrickfergus, UK) in human DPSCs cultured in the presence or
absence of 50 µg/mL L-15 extract (n = 3). The amounts of GAG were normalized by the amount of
DNA contained in each sample. Error bars represent mean± S.D. A, B, C, D, and E values of different
superscripts indicate significant difference between LET groups and a, b, c, d, and e values of different
superscripts indicate significant difference between control groups (* p < 0.05); two-way ANOVA
was used.
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Figure 5. (a) Alcian blue staining of the control and L-15 extract-treated groups. (b) Quantitative
measurements of alcian blue staining (n = 3). Error bars represent mean± S.D. A, B, C, and D values
of different superscripts indicate significant difference between LET groups and a, b, c, and d values
of different superscripts indicate significant difference between control groups (* p < 0.05); two-way
ANOVA was used.

3. Discussion

Hyaline cartilage defects do not directly impact human survival, but they severely affect quality
of life. As the elderly population is increasing in many countries, the number of patients with cartilage
defects will continue to rise [1]. However, the current treatments for cartilage defects are limited.
To provide symptomatic relief, new fundamental therapies are needed [21]. Stem cell-based therapies
for cartilage regeneration have been widely studied in recent years [5,22,23]. In this study, we showed
that early-stage chondrogenic markers (SOX9, COL2A1, and ACAN) and late-stage chondrogenic
markers (COL10A1, RUNX2, and MMP13) are expressed during chondrogenic differentiation of
human DPSCs. When hDPSCs were cultured in chondrogenic differentiation medium with L-15
extract, the expression of early-stage chondrogenic markers tended to be higher in the LET group
than in the control group. The initial expression of the late-stage chondrogenic markers COL10A1 and
RUNX2 was significantly higher in the LET group than in the control group. However, this increased
expression gradually decreased to a level similar to the control group.

Hypertrophy is induced in the late stages of in vitro chondrogenic differentiation and is one of the
problems that still has to be overcome in cell-based therapy for cartilage repair [24]. Once a chondrocyte
enters the hypertrophic state, it is difficult for it to return to normal chondrocyte because hypertrophic
chondrocytes secrete MMPs and do not maintain chondrocyte homeostasis [25]. MMP13, a late-stage
chondrogenic marker, is the main enzyme responsible for cartilage degradation [26]. Compared to
other MMP family members, MMP13 is specific to the extracellular matrix degradation of connective
tissue, cartilage collagen, and proteoglycans [26]. A variety of clinical studies have reported that
patients with cartilage destruction have high MMP13 expression [27,28]. Many research groups have
also found that MMP13-overexpressing transgenic mice display a cartilage-destruction phenotype,
which suggests that increased MMP13 is associated with cartilage degradation [29,30]. Interestingly,
the expression of MMP13 was increased by treatment of L-15 extract during the early stages. On the
other hand, the expression of MMP13 in the LET group decreased significantly during the later stages.
Although the expression of late-stage chondrogenic markers was upregulated during the early stages,
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it was not hypertrophic state since the early-stage chondrogenic markers maintained higher expression
levels during the period of differentiation, and the expression of MMP13 had significantly lower levels
during the later stages in the LET group than in the control group [31]. Cartilage ECM provides
structural and biochemical support to chondrocytes and consists of collagen, aggrecan, and networks
of proteoglycans which are composed of GAGs and hyaluronic acid [32]. Recently, several studies have
reported that the efficiency of chondrogenic differentiation is enhanced by using collagen membranes
or a hyaluronic acid and cartilage ECM [33,34]. In this study, we found that GAG increased during
the later stages of chondrogenic differentiation. The LET group accumulated more GAG than the
control group. The quantification of proteoglycans (e.g., GAG and hyaluronic acid) using alcian
blue staining similarly verified chondrocyte differentiation. In summary, this study examined the
effect of an L-15 extract on chondrogenic cell differentiation. We found that the L-15 extract initially
promoted chondrogenic differentiation and subsequently inhibited the expression of the extracellular
matrix degradation enzyme. The L-15 extract promoted chondrogenic differentiation by increasing
certain extracellular matrix components (e.g., GAG). E. faecium is a type of LAB present in the human
gastrointestinal tract and commonly used to produce fermented meat or dairy products [35,36]. Several
groups have used LAB to induce adipogenic or osteogenic differentiation [37,38]. However, this is the
first study to apply LAB to induce chondrogenic differentiation and demonstrate the beneficial effect
of E. faecium L-15 in chondrogenic differentiation.

4. Materials and Methods

4.1. Preparation of the E. faecium Extract

The E. faecium L-15 strain (KCTC13498BP) was used for this study and was obtained from
NeoRegen Biotech (Suwon, Gyeonggi-do, Korea). This strain was originally isolated from a traditional
Korean rice-fermented food containing flatfish. The L-15 strain was cultured in tryptic soy broth
(TSB; Hardy Diagnostics, Santa Maria, CA, USA) and incubated for 18 h at 35 ◦C. The cultured
L-15 strain was harvested, washed three times in phosphate-buffered saline (PBS), and resuspended
in double-deionized water (ddH2O). The washed E. faecium was sonicated (Sonics, Stratford, CT,
USA) on ice for 30 min. To remove the cellular debris, it was centrifuged at 12,000× g for 10 min.
The supernatant was passed through a 0.45 µm filter and frozen at −80 ◦C overnight. It was then
freeze-dried and reconstituted with PBS before use.

4.2. Isolation and Expansion of Human Dental Pulp Stem Cells (hDPSCs)

The study was conducted in accordance with the Declaration of Helsinki, and the protocol has
been approved by the Institutional Review Board (IRB, number S-D20180004, 30 March 2018) at Seoul
National University School of Dentistry. Informed consent was obtained from parents of all subjects
prior to sample collection. Human maxillary central supernumerary teeth (n = 2) were extracted from
children at the Dental Hospital of Seoul National University in accordance with the guidelines provided
by the IRB. The hDPSC primary culture process followed our laboratory protocol. The extracted teeth
were briefly cut around the cemento–enamel junction using a cutting disk. The pulp tissue was exposed
and gently separated from the crown. The pulp tissue was minced into 1 mm2 pieces with a scalpel
blade and transferred into 12-well culture dishes. The cells were then grown in Minimum essential
medium eagle – α modification (α-MEM; Corning, Rochester, NY, USA) supplemented with 10% fetal
bovine serum (FBS; PAN-Biotech, Bayern, Germany) and incubated in a 37 ◦C incubator with 5%
CO2. The culture medium was replaced every three days. The cells from the different donors were
cultured separately.

4.3. Characterization of hDPSCs by Fluorescence-Activated Cell Sorting (FACS)

At passage 4, the hDPSCs were detached and resuspended in ice-cold PBS containing 5% FBS. The
cells were incubated on ice for 30 min with monoclonal antibodies against CD10-fluorescein isothiocyanate
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(FITC), CD29-Alexa 488, CD44-FITC, CD73-FITC, CD90-FITC, CD105-FITC, CD14-allophycocyanin (APC),
CD34-Alexa 647, CD45-APC, and CD31-APC. All antibodies were purchased from Biolegend (San Diego,
CA, USA). Analyses were performed using a FACSVerse (Becton Dickinson, Franklin Lakes, NJ, USA).

4.4. Chondrogenic Differentiation of hDPSCs

A pellet culture system was used for chondrogenic differentiation. The hDPSCs were trypsinized
and resuspended in chondrogenic medium consisting of high-glucose DMEM supplemented with
50 µg/mL ascorbic acid 2-phosphate (Sigma–Aldrich, St. Louis, MO, USA), 40 µg/mL l-proline
(Sigma–Aldrich), 1 µM dexamethasone (Sigma–Aldrich), 10% ITS+ Pre-mix Tissue Culture Supplement
(Becton Dickinson), and 10 µg/mL transforming growth factor beta 1 (TGF-β1; Peprotech, Rocky Hill,
NJ, USA). To make a pellet, aliquots of hDPSCs (5 × 105 cells) were centrifuged at 500× g for 5 min in
15-mL conical tubes. Pellets were incubated in 5% humidified CO2 at 37 ◦C. The medium was changed
every 2 to 3 days, and pellets were harvested at 3, 5, 7, 10, and 14 days of culture.

4.5. Cell Viability Assay

Cell viability was determined using the EZ-Cytox kit (Daeil Lab Service, Seoul, Korea), based
on the water-soluble tetrazolium salt (WST) method. The hDPSCs were seeded in 96-well plates at a
density of 1 × 104 cells per well with various concentrations of E. faecium L-15 extract (0, 10, 25, 50, 100,
and 200 µg/mL) for 72 h. Then, WST solution was added to each well. The mixture was incubated for
30 min at 37 ◦C. The absorbance of each well was measured at 450 nm with the Emax Plus Microplate
reader (Molecular Devices, Sunnyvale, CA, USA).

4.6. Real-Time Quantitative Polymerase Chain Reaction (PCR)

Three independent replicates were conducted with two different batches of cells (A and B) at
passage 6 and 7 (A passage 6, A passage 7, and B passage 6). Total RNA was extracted from pellets
using the PureLinkTM RNA Mini kit (Life Technologies, Camarillo, CA, USA). The synthesis of cDNA
was performed using M-MLV reverse transcriptase (Cosmogenetech, Seoul, Korea) according to
the manufacturer’s instructions. Real-time PCR was performed using SYBR Pre-mix Ex TaqTM II
(Takara, Tokyo, Japan) and the 7500 Real-Time PCR System (Applied Biosystems, Carlsbad, CA, USA).
The primers used are listed in Supplementary Data (Table S3). The PCR reaction was performed for
30 s at 95 ◦C, followed by 40 amplification cycles of 5 s at 95 ◦C and 34 s at 60 ◦C. The comparative
CT method was used to measure the level of expression. Glyceraldehyde 3-phophate dehydrogenase
(GAPDH) was used as a housekeeping gene for normalization.

4.7. Quantitative Analysis of Glycosaminoglycan (GAG)

Four pellets from each group were used for GAG quantification. The amount of sulfated GAG was
quantified using the BlyscanTM glycosaminoglycan assay (Biocolor, Carrickfergus, UK) according to the
manufacturer’s instructions. Briefly, pellets were digested for 12 h in papain extraction reagent at 65 ◦C.
The lysate was mixed with Blyscan dye reagent and then with dissociation reagent. The absorbance
at 525 nm was measured using the Emax Plus microplate reader (Molecular Devices). The relative
cell number was determined by quantifying the total DNA using a Quant-iTTM PicoGreenTM dsDNA
assay kit (Thermo Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. GAG
content was normalized by DNA content.

4.8. Quantification of Proteoglycan Content

The hDPSCs were differentiated into chondrocytes using chondrogenic differentiation medium
and E. faecium L-15 extract for two weeks. Pellets were fixed with 4% paraformaldehyde for 30 min.
Pellets were washed with phosphate-buffered saline (PBS) and incubated with alcian blue staining
solution (Merck, Darmstadt, Germany) in the dark for 1 h at room temperature. Pellets were rinsed
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three times with ddH2O to neutralize the acidity. For quantitative analyses, alcian blue-stained cells
were dissolved in 6 M guanidine hydrochloride (Sigma–Aldrich) for 6 h. The absorbance of the
solubilized solution was measured at 650 nm.

4.9. Statistical Analysis

Results are presented as mean ± SD. Data were analyzed using one-way analysis of variance
(ANOVA) followed by Dunnett’s test and two-way ANOVA with GraphPad Prism V5.0 software
(GraphPad Software, La Jolla, CA, USA). p < 0.05 was defined as statistical significance.

5. Conclusions

We cultured the hDPSCs using chondrogenic differentiation medium in combination with L-15
extract and observed the effect of L-15 extract on chondrogenic differentiation. The expression of
SOX9, COL2A1, ACAN, COL10A1, RUNX2, and MMP13, markers of chondrogenic differentiation,
was analyzed and the amount of GAG or proteoglycan, an extracellular matrix of chondrocytes,
was enumerated. The LET group showed that the markers of chondrogenic differentiation were
over-expressed compared to the control group. In particular, these markers were over-expressed in the
early stage. The amounts of GAG and proteoglycan were also found to be highly expressed in the LET
group at all dates. This study suggests that L-15 extract promotes chondrogenic differentiation.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
624/s1.
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