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Abstract: The common bean (Phaseolus vulgaris L.) is one of the most important food legume crops
worldwide that is affected by phytopathogenic fungi such as Rhizoctonia solani. Biological control
represents an effective alternative method for the use of conventional synthetic chemical pesticides
for crop protection. Trichoderma spp. have been successfully used in agriculture both to control
fungal diseases and to promote plant growth. The response of the plant to the invasion of fungi
activates defensive resistance responses by inducing the expression of genes and producing secondary
metabolites. The purpose of this work was to analyze the changes in the bean metabolome that occur
during its interaction with pathogenic (R. solani) and antagonistic (T. velutinum) fungi. In this work,
216 compounds were characterized by liquid chromatography mass spectrometry (LC-MS) analysis
but only 36 were noted as significantly different in the interaction in comparison to control plants
and they were tentatively characterized. These compounds were classified as: two amino acids, three
peptides, one carbohydrate, one glycoside, one fatty acid, two lipids, 17 flavonoids, four phenols and
four terpenes. This work is the first attempt to determine how the presence of T. velutinum and/or
R. solani affect the defense response of bean plants using untargeted metabolomics analysis.
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1. Introduction

The common bean (Phaseolus vulgaris L.) is one of the most important food legume crops
worldwide. Bean cultivation can be affected by biotic and abiotic stresses, such as phytopathogen
attack, drought, and cold [1]. Bean immunity, similarly to other plants, consists of the development
of physical and biochemical barriers, plus the induction of defense responses. A passive resistance
protection system, involving structural barriers and metabolites, prevents or attenuates invasion
by potential attackers [2,3]. In addition, plants employ a number of chemical defenses consisting
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on secondary metabolites that act as signaling molecules, antimicrobials (i.e., phytoanticipins and
phytoalexins), herbivore feeding deterrents and cell wall strengthening precursors [4]. However,
certain plant pathogens can manipulate or overcome these chemical defenses, thereby establishing
successful infections that would have a negative impact on plant growth and subsequent crop yield.
To overcome this, the agricultural industry has relied on the use of agrochemicals such as pesticides
and fungicides [3]. However, continuous application of such chemicals has shown negative impacts on
the environment, creating a need for new environmentally-friendly strategies that fight against these
diseases and pests by boosting the plants immune system [4].

Rhizoctonia solani JG Kühn [Teleomorph: Thanatephorus cucumeris (AB Frank) Donk] is a
necrotrophic fungal pathogen, causing root and hypocotyl diseases. Rhizoctonia root rot of bean
is common worldwide and it is one of the most devastating diseases of bean in large and small scale
plantings [5].

Biological control represents an alternative to synthetic pesticides against phytopathogenic agents.
Plant beneficial fungi of the genus Trichoderma (Teleomorph: Hypocrea) have been successfully used
worldwide both to control fungal diseases and to promote plant growth. Trichoderma spp. represent a
fundamental component of the rhizosphere microbiome because these fungi help plants to overcome
numerous environmental constraints by stimulating defense responses and improving fitness and
development [6]. These abilities have supported the application of Trichoderma strains as biocontrol
agents (BCA) or plant biostimulants in agriculture and forestry.

Trichoderma beneficial strains trigger the activation of plant cascade signals including the secretion
of antimicrobial reactive oxygen species (ROS), the production of secondary metabolites such as
phytoalexins and pathogenesis-related proteins, and the deposition of callose [7]. Trichoderma has
evolved to interact with plants in such a way that it is not perceived as an enemy [6].

After the invasion by a pathogen or a biocontrol agent, the plant responds by inducing the
expression of defense genes [8] and producing some bioactive secondary metabolites, [9] ranging from
phytoalexins (phenols, isoflavones, terpenes) to substances that can block the invasion and spread of
the pathogen, such as lignin and callose [10]. Biosynthesis of phytoalexins by plants in the Fabaceae
family is a subject of interest because they are produced in higher or lower amounts depending on
whether the plant is interacting with a pathogen or with a biocontrol agent.

Polyphenols, including phytoalexins, are widely distributed in plants and may be classified into
three groups: (i) simple phenols, (ii) phenolic acids (hydroxycinnamic- and benzoic-acid derivatives),
and (iii) flavonoids (e.g., flavones, flavanones, flavanonols, flavanols, isoflavones and lignans) [11].
Flavonoids and their derivatives comprise a large group of secondary metabolites whose production is
specifically induced by symbionts and pathogens [12]. One of the roles of flavonoids inside the root
could be the regulation of the defense response and it has been proposed that mycorrhiza invasion
triggers a temporary defense response in the root, which involves induction of phytoalexins [13].
Isoflavonoids are a subclass of the flavonoids and they are thought to represent the majority of the
phytoalexins produced by legume plants [12].

Other phytoalexins include toxins of terpenic nature, which act as repellents against many plant
feeding-insects and -mammals, thus playing important plant defensive roles [14]. These compounds
(i.e., triterpenes and saponins) have also been found in legumes and their activity as antimicrobial
defense compounds has been reported [15].

In this work, we aimed to evaluate the changes in the bean metabolome that occur during
the interaction with pathogenic (R. solani) and antagonistic (T. velutinum) fungi. The production of
polyphenols and other metabolites by bean plants was analyzed by LC-MS analysis and differences in
single or combined plant interacting metabolomes were investigated.
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2. Results

2.1. Analysis of Phaseolus vulgaris Plant Metabolome in Presence of T. velutinum and R. solani

T. velutinum T028 was selected based on its positive effect on bean plants growth. Previously,
plants inoculated with this strain had shown a significant increase in dry weight of both the aerial
part and root system, even when R. solani was present in the soil [8]. Thus, based on these results,
that isolate was used in this study to further investigate its beneficial effect on plant metabolome.

HPLC analysis of bean leaf extracts revealed differences in the accumulation pattern of
compounds, according to the interaction performed in vitro (see Figure 1). A total of 216 compounds
were extracted from bean leaves and analyzed by LC-MS-qTOF in the samples. The use of optimal
gradient elution programs and MS conditions on a negative ionization mode resulted in an ESI-TIC
(Total Ion Current) chromatogram for each bean leaf sample (Figure 2). The compounds were
tentatively identified by analyzing their mass spectra, determined via TOF-MS, and taking into
account the data reported in the literature.
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Figure 1. Scheme of the treatments performed in this work: CC, water control plants without fungal
treatments; CT028, seeds coated with T. velutinum grown in uninfected soil; CR, untreated seed grown
in R. solani (R43)-infected soil; and RT028, seeds coated with T. velutinum (T028) grown in R. solani
(R43)-infected soil.

Metabolomic analysis of bean samples revealed up to 36 specific compounds associated with
the Fabaceae family that accumulated differentially in the leaves of plants inoculated with the fungal
isolates when compared to the controls (Table 1). The compounds from uninoculated bean plants
(CC) were used as controls for the comparisons with two-way (CT028-CC and CR-CC) and three-way
interactions (RT028-CC) (Figure 1). The compounds were considered as differentially produced when
a 2-fold increase (UP) or decrease (DOWN) was observed compared to uninoculated plants (CC).
Semi-quantification of each compound was performed by determining the area of their peaks on the
chromatogram of each bean leaf extract and normalizing the data by calculating the relative ratio of
abundance of metabolites in respect to all other peaks [16].
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Table 1. Phytochemical compounds determined in bean leaves by LC-MS analysis, including experimental mass, m/z, score, retention time (RT), formula, their
putative identity and related references. Data refer only to compounds that accumulated differentially in leaves of plants inoculated with the fungal isolates compared
to controls.

Peak Experimental Mass m/z Score Diff (ppm) RT (min) Formula Putative Identification Reference

Amino acids

8 204.0898 203.0826 [M − H]−

407.1733 [2M − H]− 49.94 −0.09 8.52 C11H12N2O2 L-Tryptophan PubChem ID number—6305
[17]

15 246.1004 245.09315 [M − H]− 99.91 0.05 14.20 C13H14N2O3 N-acetyltryptophan PubChem ID number—2002
[17]

Peptides

7 230.1629 229.1557 [M − H]− 87.05 0.28 8.42 C11H22N2O3 Valyl-Leucine PubChem ID number—107487

11 372.2371 371.2298 [M − H]−

743.4673 [2M − H]− 99.84 0.41 10.00 C17H32N4O5 Ile Gln Ile NA

29 402.1863 401.1788 [M − H]− 98.04 0.70 19.94 C15H26N6O7 Gln Gln Gln NA

Carbohydrates

2 342.1159 341.1087 [M − H]− 99.71 0.83 1.43 C12H22O11 Sucrose PubChem ID number—5988
[17]

Glycosides

4 338.0848 337.0775 [M − H]− 85.70 0.87 4.96 C12H18O11 L-Ascorbic acid-2-glucoside PubChem ID number—54693473

Fatty acids

35 278.22338 277.2169 [M − H]−

555.4410 [2M − H]− 84.78 2.26 30.59 C18H30O2 γ-Linolenic acid PubChem ID number—5280933
[17–19]

Lipids
Fatty acyls—Octadecanoids

34 294.2195 293.2122 [M − H]− 99.67 0.76 26.29 C18H30O3 13(S)-HOTrE PubChem ID number—47205624

Glycerophosphates

36 578.4296 577.4226 [M − H]− 90.87 0.43 30.59 C31H63O7P PA(O-16:0/12:0) PubChem number—52929565

Fatty acyls glycoside

30 334.1990 333.1916 [M − H]− 89.56 0.38 19.94 C16H30O7
3-O-α-L-rhamnopyranosyl-3-

hydroxydecanoic acid
PubChem ID number—56936287

[20,21]



Int. J. Mol. Sci. 2019, 20, 549 5 of 18

Table 1. Cont.

Peak Experimental Mass m/z Score Diff (ppm) RT (min) Formula Putative Identification Reference

Flavonoids
Flavone

22 374.0998 373.0926 [M − H]− 99.35 0.86 16.90 C19H18O8
3′,5-Dihydroxy-3,4′,6,7-

tetramethoxyflavone [21]

27 390.0951 389.0874 [M − H]− 82.88 1.10 18.32 C19H18O9
5,2′,4′-Trihydroxy-3,7,8,5′-

tetramethoxyflavone PubChem ID number—85296959

Flavonol

12 596.1739 595.1666 [M − H]− 99.67 0.33 10.27 C26H28O16 Quercetin 3-vicianoside PubChem Id number—44259139
[11]

26 454.2409 453.2338 [M − H]− 99.76 0.29 18.05 C20H38O11 n-Octyl-β-D-maltopyranoside NA

Flavonol

21 414.2248 413.2177 [M − H]− 82.59 0.37 16.25 C29H50O Sitosterol PubChem ID number—86821
[17,21]

Flavonone

3 580.1847 579.1773 [M − H]− 99.42 0.72 1.47 C27H32O14 Naringin PubChem ID number—442428
[17]

Flavonoids glycoconjugate

1 400.1006 399.0930 [M − H]− 49.90 0.30 1.31 C17H20O11

5-Hydroxy-6,8-dimethoxy-2-
oxo-2H-chromen-7-yl
β-D-glucopyranoside

NA

10 612.1686 611.1613 [M − H]− 99.03 0.75 9.37 C27H32O16
3,4′,5,7-Tetrahydroxyflavanone
3,7-Di-O-β-D-glucopyranoside

CAS Number—80212-10-8
[21]

14 552.1841 551.1762 [M − H]− 97.55 1.60 11.13 C26H32O13 (Z)-Resveratrol 3,4′-diglucoside PubChem ID number—22298557
[20]

16 642.1193 641.1119 [M − H]− 99.69 0.09 14.34 C30H26O16
Quercetagetin

7-(6′′-(E)-caffeoylglucoside) PubChem Id number—44259848

18 654.1769 653.1697 [M − H]− 99.89 −0.20 16.11 C29H34O17 Isopyrenin 7-O-glucoside CAS Number—61252-86-6
[21]

19 540.1838 539.1766 [M − H]− 99.49 0.89 16.11 C25H32O13

12-Hydroxy,
O-[3,4,5-trihydroxybenzoyl-(06)-β-

D-glucopyranoside]
[20]

20 678.2894 677.2822 [M − H]− 85.36 0.98 16.24 C32H39O16 Luteone 4,7-O-diglucoside [22,23]

24 470.2359 469.2287 [M − H]− 98.56 0.25 17.61 C20H38O12

(R)-1-O-[β-D-Glucopyranosyl-(1-6)-
β-D-glucopyranoside]-

1,3-octanediol
HMDB Id number—32799
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Table 1. Cont.

Peak Experimental Mass m/z Score Diff (ppm) RT (min) Formula Putative Identification Reference

Flavonoids
Isoflavanoid

28 338.1522
337.1451[M − H]−

319.1298 [M − H2O]−

168.0663 [M − 2H]−
78.85 0.31 8.38 C21H22O4 2′-O-Methylphaseollinisoflavan CAS Number—49594-01-6

[19,23,24]

Isoflavanone

25 424.2304 423.2234 [M − H]− 98.58 0.58 17.62 C25H28O6
2′,4′,5,7-Tetrahydroxy-3′,8-

diprenylisoflavanone
CAS Number—64280-18-8

[24]

Isoflavans

6 324.1419 323.1346 [M − H]−

647.2765 [2M − H]− 99.89 0.29 8.13 C20H20O4 Phaseollinisoflavan PubChem ID number—4484952
[25]

Phenols
Tyrosols

5 316.1153 315.1082 [M − H]− 97.00 1.57 7.29 C14H20O8 Hydroxytyrosol 1-O-glucoside PubChem ID number—13845930

Phenylpropanoids

13 386.1201 385.1127 [M − H]− 94.90 3.17 10.71 C17H22O10 1-O-Sinapoylglucose PubChem ID number—5280406

Xanthonoid

31 392.1102 391.1032 [M − H]− 97.71 1.07 21.10 C19H20O9 Garcimangosone D PubChem ID number—11003703
[20]

33 628.3063 627.2991 [M − H]− 99.44 0.83 25.77 C38H44O8 Gambogic acid PubChem ID number—5281632

Terpenes
Terpenoid

9 444.1995 443.1923 [M − H]− 99.84 0.06 8.88 C21H32O10
Dihydrophaseic acid
4-O-β-D-glucoside

ChEBI Id number—23758
[26]

Triterpenoid

32 896.5127 895.5050 [M − H]− 98.64 0.47 24.97 C47H76O16 Akeboside Ste PubChem ID number—46173935

Terpene glycosides

17 416.2046 415.1971 [M − H]− 99.53 0.52 14.78 C20H32O9
Ethyl 7-epi-12-hydroxyjasmonate

glucoside
HMDB Id number—36340

[17]

Terpene

23 268.1308 267.1235 [M − H]−

535.2548 [2M − H]− 49.76 1.09 17.52 C14H20O5 Teucrein ChemSpider ID number—28944862

RT: retention time; NA: not available; CAS: https://www.cas.org/cas-home (access on 15 April 2018); ChemSpider: http://www.chemspider.com (access on 20 June 2018); HMDB:
http://www.hmdb.ca (access on 30 May 2018); PubChem: https://pubchem.ncbi.nlm.nih.gov (access on 18 July 2018).

https://www.cas.org/cas-home
http://www.chemspider.com
http://www.hmdb.ca
https://pubchem.ncbi.nlm.nih.gov
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In the three-way interaction, plant-T. velutinum -R. solani (RT028), 26 compounds were produced 25 
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Figure 2. ESI-TIC chromatogram of leaf extracts obtained from control plants (CC), separated by
LC-MS. See Table 1 for identification of the detected compounds.

Several compounds were produced at significantly different levels in fungal-inoculated conditions
compared to the control plants. The Venn diagrams reported in Figure 3 show the distribution of
differential metabolites (UP or DOWN) accumulated in the plant metabolome during the interactions
with Trichoderma alone (CT028), with the pathogen alone (CR) or with both fungi (RT028), compared to
control, water-treated, plants (CC). Interestingly, some compounds were up- or down-produced in
all the interactions examined (1 and 7, respectively, for UP and DOWN metabolites) but most of the
differentially produced metabolites were found to be specifically influenced by the presence of one or
both fungi.
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Figure 3. Venn diagram with the compounds with an Up-production and Down-production. See
Table 2 for the putatively identified compounds in the interactions.

In all interactions including T. velutinum, bean leaves UP-produced 10 metabolites and
DOWN-produced 15. Among these, four were exclusively UP-produced and two DOWN-produced,
in interaction with the beneficial fungus (CT028) in all cases versus the control condition (CC) (Figure 3).

In the interaction with R. solani (CR), 19 compounds were differentially produced. These include
three UP- and 16 DOWN-produced metabolites when compared to control plants (Figure 3).

In the three-way interaction, plant-T. velutinum -R. solani (RT028), 26 compounds were produced
at significantly different levels compared to control plants. However, most of these metabolites were
in common with the two-way interactions where only the beneficial or pathogen fungi was present
(Figure 3).
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Table 2. Homologies of putatively identified compounds in the bean metabolome and changes in their accumulation pattern occurring when different interaction
conditions (three-way, two-way and no interaction) were compared.

Id Formula Putative Identification CT028 vs. CC a CR vs. CC a RT028 vs. CC a

Amino acids

8 C11H12N2O2 L-Tryptophan Up Down –
15 C13H14N2O3 N-acetyltryptophan – Down Up

Peptides

7 C11H22N2O3 Valyl-Leucine Up Down Up
11 C17H32N4O5 Ile Gln Ile – Down Down
29 C15H26N6O7 Gln Gln Gln Down – Down

Carbohydrates

2 C12H22O11 Sucrose Up Up –

Glycosides

4 C12H18O11 L-Ascorbic acid-2-glucoside – Up –

Fatty acids

35 C18H30O2 γ-Linolenic acid – Down Down

Lipids

30 C16H30O7 3-O-α-L-rhamnopyranosyl-3-hydroxydecanoic acid Down – Down
34 C18H30O3 13(S)-HOTrE – Down –
36 C31H63O7P PA(O-16:0/12:0) – Down Down

Flavonoids

1 C17H20O11 5-Hydroxy-6,8-dimethoxy-2-oxo-2H-chromen-7-yl β-D-glucopyranoside Down Down Down
3 C27H32O14 Naringin Up – –
6 C20H20O4 Phaseollinisoflavan – – Down
10 C27H32O16 3,4′,5,7-Tetrahydroxyflavanone 3,7-Di-O-β-D-glucopyranoside Up – Up
12 C26H28O16 Quercetin 3-vicianoside – – Up
14 C26H32O13 (Z)-Resveratrol 3,4′-diglucoside – – Up
16 C30H26O16 Quercetagetin 7-(6′′-(E)-caffeoylglucoside) – Down –
18 C29H34O17 Isopyrenin 7-O-glucoside Down Down Down
19 C25H32O13 12-Hydroxy, O-[3,4,5-trihydroxybenzoyl-(06)-β-D-glucopyranoside] Down Down Down
20 C32H39O16 Luteone 4,7-O-diglucoside Up Down Up
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Table 2. Cont.

Id Formula Putative Identification CT028 vs. CC a CR vs. CC a RT028 vs. CC a

Flavonoids

21 C29H50O Sitosterol – – Up
22 C19H18O8 3′,5-Dihydroxy-3,4′,6,7-tetramethoxyflavone Down Down Down
24 C20H38O12 (R)-1-O-[β-D-Glucopyranosyl-(1-6)-β-D-glucopyranoside]-1,3-octanediol Down – Down
25 C25H28O6 2′,4′,5,7-Tetrahydroxy-3’,8-diprenylisoflavanone Down – Down
26 C20H38O11 n-Octyl-β-D-maltopyranoside Down – –
27 C19H18O9 5,2′,4′-Trihydroxy-3,7,8,5′-tetramethoxyflavone Down Down Down
28 C21H22O4 2′-O-Methylphaseollinisoflavan Down – Down

Phenols

5 C14H20O8 Hydroxytyrosol 1-O-glucoside Down – –
13 C17H22O10 1-O-Sinapoylglucose Up – Up
31 C19H20O9 Garcimangosone D Down Down Down
33 C38H44O8 Gambogic acid Down – Down

Terpenes

9 C21H32O10 Dihydrophaseic acid 4-O-β-D-glucoside Up – –
17 C20H32O9 Ethyl 7-epi-12-hydroxyjasmonate glucoside Up Up Up
23 C14H20O5 Teucrein Up – –
32 C47H76O16 Akeboside Ste Down Down Down

a CC: Plant alone; CR: Plant + R. solani; CT028: Plant + T. velutinum T028; RT028: Plant + T. velutinum T028 + R. solani.
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2.2. Characterization of Compounds in Bean Leaf Metabolome

Table 2 includes the metabolites discriminating plant metabolomes obtained during single and
combined interactions. These compounds were identified by LC-MS-qTOF analysis (operating in
negative ion mode), by comparing the data with previously described compounds, which are present
in both public and in-house databases (METLINE, PubChem, ChemSpider, HMDB, CAS, literature)
including natural compounds and plant secondary metabolites. Putative metabolite identifications
were performed using the “MassHunter Mass Profiler Software” (Agilent Technologies, Santa Clara,
CA, USA) and selecting matches with high scores. The selected compounds were grouped in the
categories listed below.

2.3. Amino Acids and Peptides

Statistical analysis revealed the different accumulation in the plant metabolome of several
compounds that were tentatively identified as two amino acids and three peptides (Table 1).
In particular, compound #8 [m/z 203.0826; retention time (RT) = 8.52 min] and compound #15
[(m/z 245.09315, RT 14.20 min], corresponding to the molecular formulas C11H12N2O2 and C13H14N2O3,
respectively, were putatively identified as L-tryptophan and N-acetyltryptophan. Both metabolites
were DOWN-produced in bean leaves when R. solani was present (CR) compared to the control (CC)
(Table 2). However, the presence of T. velutinum increased their production both in two- and three-way
interactions (CT028 and RT028) (Table 2).

Furthermore, three peptides (Table 1) were detected: Valyl-leucine [#7, m/z 229.1557, RT 8.42 min,
(C11H22N2O3)] accumulated remarkably in presence of T. velutinum (CT028 and RT028) rather than
in control plants but at a lower level in the sole presence of R. solani (CR) (Table 2); Ile-Gln-Ile [#11,
m/z 371.2298, RT 10.00 min, (C17H32N4O5)], whose production was reduced by the presence of R. solani
(CR and RT028); Gln-Gln-Gln [#29, m/z 401.1788, RT 19.94 min, (C15H26N6O7)] whose production
decreased in presence of T. velutinum (CT028 and RT028) (Table 2).

2.4. Carbohydrates and Glycosides

The production of sucrose (Table 1) [#2, m/z of 341.1087, RT 1.43 min, (C12H22O11)] was detected
in two-way interactions (CT028 and CR) but not when both fungi were together (RT028) (Table 2).

L-ascorbic acid-2-glucoside (Table 1) was also found, [#4, m/z 337.0775, RT 4.96 min, (C12H18O11)],
showing UP-production only in the presence of the pathogen, compared to the plant alone (Table 2).

2.5. Fatty Acids and Lipids

Three compounds belonging to this group were found in bean metabolome (Table 1).
These include γ-Linolenic acid [#35, C18H30O2], 13(S)-HOTrE [#34, C18H30O3], and PA(O-16:0/12:0)
[#36, C31H63O7P]. Significantly lower amounts of all of them were produced compared to control plants
(DOWN-produced) when the pathogen R. solani was present (CR and RT028) (Table 2). Moreover,
3-O-α-L-rhamnopyranosyl-3-hydroxydecanoic acid was also putatively identified [#30, C16H30O7],
showing a significantly decreased amount (DOWN-produced) in plants inoculated with Trichoderma
(both in CT028 and RT028), compared to control plants (CC) (Table 2).

2.6. Phenols

A huge number of phenolic compounds were detected (Table 1). These include:
(i) Flavones. Compounds #22 and #27, with m/z 373.0926 and 389.0874, corresponding to the

formula C19H18O8 and C19H18O9, were homologues to 3′,5-dihydroxy-3,4′,6,7-tetramethoxyflavone
[#22] and 5,2′,4′-trihydroxy-3,7,8,5′-tetramethoxyflavone [#27], respectively. Both compounds were
UP-produced in plants inoculated with both fungi, either alone or combined (CT028, CR and RT028)
(Table 2).
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(ii) Flavonols. Quercetin 3-vicianoside [#12], n-octyl-β-D-maltopyranoside [#26] and sitosterol
[#21] accumulated differently according to the interaction examined. Compounds #12 and #21 were
more abundant in presence of T. velutinum (both in CT028 and in RT028) (Table 2). Conversely,
compound #26 decreased in presence of this fungus (CT028).

(iii) Flavonones. Compound #3 showed remarkable homologies with naringin [m/z 579.1773,
C27H32O14], a flavonone produced particularly in the sole presence of T. velutinum (CT028) (Table 2).

(iv) Flavonoid glycoconjugates. Numerous putative flavonoids conjugated with different
polysaccharides were found in the bean metabolome during the interaction with T. velutinum and
R. solani. These include glucopyranosides [#1, #10, #19, #24] and glucosides [#14, #16, #18, #20]
(Table 2). The relative abundance of such compounds varied between treatments: Compounds #1
[5-Hydroxy-6,8-dimethoxy-2-oxo-2H-chromen-7-yl β-D-glucopyranoside], #16 [quercetagetin 7-(6′′-(E)-
caffeoylglucoside]), #18 [isopyrenin 7-O-glucoside], and #19 [12-hydroxy,O-[3,4,5-trihydroxybenzoyl-
(06)-β-D-glucopyranoside] reduced their production in presence of one or both fungi. On the
other hand, compounds #10 [3,4′,5,7-tetrahydroxyflavanone 3,7-Di-O-β-D-glucopyranoside], #14
[(Z)-resveratrol 3,4′-diglucoside], #20 [luteone 4,7-O-diglucoside], and #24 [(R)-1-O-[β-D-glucopyranosyl-
(1-6)-β-D-glucopyranoside]-1,3-octanediol] showed an increased production in the metabolome of
beans treated with Trichoderma alone or in combination with the pathogen.

(v) Other polyphenols. Among the differentially accumulated metabolites, homologies were
also found with isoflavanoids [#28: 2′-O-methylphaseollinisoflavan], isoflavanones [#25: 2′,4′,5,7-
Tetrahydroxy-3′,8-diprenylisoflavanone], and isoflavans [#6: phaseollinisoflavan], which all decreased
their production in presence of T. velutinum (CT028 and RT028), except for compound #6, whose
production was DOWN-produced only in the three-way interaction (RT028) (Table 2).

(vi) Phenols. Most of the phenolic compounds differentially produced by beans reduced their level
in the presence of the beneficial fungus. This decrease was observed for compound #5 [homologous to
hydroxytyrosol 1-O-glucoside], #31 [garcimangosone D], and #33 [gambogic acid], while compound
#13 [similar to 1-O-sinapoylglucose] accumulated in higher amounts when T028 was present (CT028
and RT028), compared to the water-treated plant (Table 2).

2.7. Terpenes

The presence of T. velutinum and R. solani also affected the production of terpenes in bean leaves
(Table 2). Thus, both dihydrophaseic acid 4-O-β-D-glucoside [#9, m/z 443.1923, RT 8.88 min, C21H32O10]
and teucrein [#23, m/z 267.1235, at 17.52 min, C16H12O4], were UP-produced when Trichoderma was
present alone, compared to the control. On the other hand, the plant metabolome showed an increased
production of ethyl 7-epi-12-hydroxyjasmonate glucoside [#17, m/z 415.1971, RT 14.78 min, C20H32O9]
in all the interactions examined, while an opposite trend was observed for compound #32, found to be
similar to akeboside Ste [m/z 895.5050, RT 24.97 min, C47H76O16].

2.8. Principal Component Analysis (PCA)

PCA was used to determine the relationship between the experimental treatments and the
accumulation of selected phytochemical compounds in bean leaf metabolome. As shown in Figure 4,
the first two components accounted for 73.96% of the total variance. Each metabolomic interaction was
clustered separately. In particular, the plants infected with R. solani (CR) lie much closer to the control
plants (CC), while the presence of Trichoderma, both alone (CT028) and together with the pathogen
(RT028), also form a loose cluster (Figure 4).
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Figure 4. Principal components analysis of 36 compounds extracted from bean leaves subjected to
different treatments. (Blue) control beans without pathogen and biocontrol agent (CC); (Red) beans
that were infected with R. solani (CR); (Yellow) beans inoculated with T. velutinum (CT028); (Green)
beans inoculated with R. solani and T. velutinum (RT028).

3. Discussion

In this work, T. velutinum T028 was selected because of its positive effects on bean growth.
Plants inoculated with this fungus showed significant increases in dry weights of both aerial parts
and root system, also when the fungal pathogen R. solani was added to the substrate. Furthermore,
both T. velutinum T028 and R. solani R43 isolates induced the expression of defense-related genes [8].

Plant-pathogen interactions are complex phenomena and affect the metabolism of each partner
differently. Plant defense strategies against their pathogens are diverse, including the induction of
expression of defense genes and also the production of antifungal compounds called phytoalexins,
that include flavonoids, phenols, glucosinolates, terpenes and alkaloids with a broad spectrum
of antimicrobial functions [27,28]. In this work, we have investigated the changes in metabolite
profiles of bean plants cultivated for forty-five days in the presence of T. velutinum and/or R. solani.
The metabolomic analysis of leaf extracts allowed the characterization of samples from different
interaction conditions (plant alone, plant + pathogen, plant + antagonist, plant + pathogen + antagonist).
Putative identification of the differentially accumulated metabolites in two- and three-way interactions,
compared to control, revealed the increase or decrease in the accumulation of different classes
of compounds, including polyphenols, terpenes, amino acids, carbohydrates, fatty acids, lipids,
glycosides and peptides.

Many polyphenolic compounds with antibiotic activity act as phytoalexins in plant tissues during
their interaction with phytopathogenic agents [29]. Phytoalexins are considered molecular markers
of disease resistance [30] since they are synthesized de novo in response to pathogen attack [31].
Several biotic and abiotic factors induced the production of phytoalexins in different plant species
of the Solanaceae, Leguminosae and Gramineae families [32]. Inoculation with non-pathogenic
microorganisms, such as Trichoderma spp., or with hypovirulent pathogen strains induces systemic
resistance in plant, resulting in the accumulation of phytoalexins at the site of infection and the
production of antibiotic substances [2,33] e.g., accumulation of camalexin, a phytoalexin in Arabidopsis,
in response to the presence of Trichoderma, which would indicate a further level of plant protection by
these fungal strains [27,34].
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Polyphenols comprise a large number of compounds, like phenols, phenolic acids, and
flavonoids [11]. In this work, we found differences in the accumulation of flavonoids in plant leaves
depending on the interaction condition (Table 2). Up to 8 different flavonoids (#1, 18, 19, 22, 24,
25, 26, 27) always resulted less abundant when plants were cultivated in presence of one or both
fungi, compared to the non-inoculated control. Conversely, the production of 6 other flavonoids
(#3, 10, 12, 14, 20, 21) was significantly increased whenever Trichoderma was present, but not in the sole
presence or R. solani. Flavonoids protect plants against various biotic and abiotic stresses and exhibit
a diverse spectrum of biological functions, playing an important role in the interaction between the
plant and the environment [35]. The differences in the pattern of flavonoid accumulation observed in
the metabolome of bean leaves could reflect the different metabolic pathways induced by the beneficial
fungus rather than by the pathogenic one.

It is unclear whether the accumulation of different but structurally related phytoalexins in the
plant (e.g., phaseollin, phaseollidin in the bean) is important for the resistance against pathogens [36].
In a previous study, when bean plants were inoculated with R. solani, a considerable amount
of phaseollin accumulated in the lesions within 36 h after the treatment and was detected up
to 12 days later [25]. We found a decreased production of two phytoalexin related compounds
[#28: 2′-O-methylphaseollinisoflavan and #6: phaseollinisoflavan] in plants treated with T. velutinum.

The plant hormone jasmonic acid (JA) and its derivatives have been recognized as key regulators
of defense responses against both biotrophic and necrotrophic pathogens [33]. We observed an
over-accumulation of the terpene ethyl 7-epi-12-hydroxyjasmonate glucoside (#17; Table 2) in the
presence of T. velutinum and/or R. solani, in comparison to control plants. This compound has been
related to the metabolic pathway of JA, and its production was found to be induced when plants
detect a microorganism. In this sense, Yogendra et al. [37] demonstrated that this terpene was detected
when potato plants were in contact with the pathogen Phytophthora infestans. Similarly, we can
hypothesize that both Trichoderma and Rhizoctonia activate the plant signaling cascade induced by
this compound. However, other terpenes detected in the bean leaf metabolome showed a different
accumulation pattern according to the different plant-microbe interactions analyzed in the present
work (Table 2). Thus, compounds #9 (Dihydrophaseic acid 4-O-β-D-glucoside) and #23 (Teucrein)
increased their accumulation only in presence of the beneficial fungus, while compound #32 (akeboside
Ste) was less abundant in all the treated plants compared to controls. These evidences contribute
to support that the presence of different beneficial of detrimental microbes in the rhizosphere may
induce different plant metabolic pathways. Similar results were also observed with fatty acids and
lipids, like γ-Linolenic acid (#35) and its derivative 13(S)-HOTrE (#34), both of which were produced
at lower levels in the presence of the pathogen, compared to control plants. γ-Linolenic acid is the
main precursor of jasmonate [38], which is responsible for the induction of a signalling cascade in
response to non-pathogenic microorganisms [39]. In this work R. solani causes a reduction in the level
of production of these compounds, which would result in a reduction in the ISR response, thereby
facilitating plant invasion by the plant pathogen.

Bean plant metabolome also showed differences in peptide and amino acid accumulation.
The presence of T. velutinum alone stimulated the production of L-Tryptophan (#8, Table 2), while
the simultaneous occurrence of both microbes (RT028 treatment) stimulated the accumulation of its
acetylated form (#15, N-acetyltryptophan). Conversely, R. solani-infected plants showed decreased
amounts of both metabolites, compared to control. L-tryptophan has been found to stimulate the
synthesis of auxins in the rhizosphere and trigger plant growth. The enhancement of plant biomass by
promoting the growth of lateral root has been observed in many plant species treated with Trichoderma
spp. and this effect has also been related to the production of indole-3-acetic acid (IAA) or auxin
analogues [40,41]. In a similar way, the inoculation of Vigna mungo with other biocontrol agents
(Rhizobium spp. and Bacillus spp.) increased yield up to 23.36% in presence of this compound [42].

Antifungal peptides derived from common bean demonstrated inhibitory activity against
numerous plant pathogens, such as Mycosphaerella arachidicola, R. solani, Verticillium dahliae, Setosphaeria
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turcica and Fusarium oxysporum [43]. Antifungal activities of common bean peptides include
modifications of hyphae morphology, membrane cell disruption, altered membrane permeabilization
and induction of chitin accumulation at hyphal tips [43]. In our work, the accumulation of three
peptides (Table 2) showed significant differences in plant leaves in presence of T. velutinum and/or
R. solani. In particular, compounds #11 and #29 (homologs to the tripeptides Ile-Gln-Ile and
Gln-Gln-Gln, respectively) were less abundant in bean plants treated with Trichoderma or Rhizoctonia
than in controls. Interestingly, the dipeptide Valyl-Leucine (similar to compound #7) significantly
increased after T. velutinum inoculation, and also in the presence of the pathogen. This could represent
an example of metabolite production induced by the antagonistic interaction between Trichoderma and
R. solani, and involved in the activation of plant defense responses.

4. Material and Methods

4.1. Fungal Isolates and Culture Conditions

The present study was conducted using strain T. velutinum T028, previously isolated from the
Protected Geographical Indication (PGI) called “Alubia La Bañeza—León” (EC Reg. n.256/2010
published on 26 March 2010, OJEU L880/17).

R. solani R43 is a highly virulent strain isolated from plants of the same PGI. This strain was
stored in the collection “Pathogens and Antagonists of the Laboratory Diagnosis of Pests and Diseases”
(PALDPD) at the University of Leon, Spain.

The fungal isolates were grown on potato-dextrose-agar (PDA, Sigma-Aldrich, St. Louis, MO,
USA) in the dark at 25 ◦C for one week. Trichoderma cultures were then exposed to light for
3–4 days in order to induce spore formation. Spores were collected and maintained at −80 ◦C in
50% glycerol suspensions.

4.2. Plant Material and Growth Conditions

Bean (P. vulgaris L. cv. Canela) seeds were germinated and cultured in four different conditions:
(1) in presence of both T. velutinum (T028) and R. solani (R43) [RT028]; (2) T028 alone (CT028); (3) R. solani
alone (CR); and (4) control without fungi (CC) (Figure 1).

Plants were grown in a climatic chamber; thirty pots (1 L capacity) with substrate, bentonite and
cornmeal (100:5:2) were used per treatment, with two seeds per pot which were irrigated with 250 mL
of water prior inoculation. Biomass of R. solani R43 was scraped from fungal cultures grown on PDA
plates (5 plates per liter), homogenized and inoculated into the soil (50 mL per pot). For the control
treatment, an uninoculated PDA medium was used. Pots were kept in a growth chamber for 8 days at
25 ◦C (16 h) and 16 ◦C (8 h), with 60% relative humidity in the dark.

Bean seeds were surface sterilized (sodium hypochlorite 1% for 3 min and then rinsed with sterile
distilled water for 6 min) and coated with a spore suspension (concentration 2 × 107 spores mL−1 in
20 mL water for every 45 seeds) of T. velutinum (T028). Coated seeds were sown 8 days after inoculating
the soil with the pathogen (Figure 1). Plants were grown in a climatic chamber under the conditions
previously described [44], using a photoperiod of 16 h light/8 h dark, 25 ◦C/16 ◦C (day/night), 60%
relative humidity and brightness of 3500 lux. The plants were harvested 45 days after sowing and their
leaves were collected and lyophilized. In particular, three biological samples (obtained randomly from
different pots within the same treatment) were processed per treatment.

4.3. Preparation of Bean Leaf Extracts

Extracts of plant leaves were obtained as described by Talhaoui et al. [45], with some modifications.
Freeze-dried leaves (250 mg) were ground to a powder and extracted twice via Ultra-Turrax IKA T18
basic, using 10 mL of MeOH/H2O (80/20 v/v). Afterwards, samples were placed in an ultrasonic liquid
processor (Sonics & Materials, Inc., Newtown, CT, USA) for 10 min, and centrifuged at 4000 rpm for
10 min at 4 ◦C. After solvent evaporation, extracts were reconstituted with 4 mL of MeOH:H2O (50:50
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v/v) and filtered through a 0.2 µm membrane (Minisart®, Sartorius Stedim Biotech CA, Goettingen,
Germany).

4.4. LC-MS qTOF Conditions

Bean leaf extracts were separated on an Agilent HP 1260 Infinity Series liquid chromatograph
coupled to a Q-TOF mass spectrometer, model G6540B (Agilent Technologies, Santa Clara, CA, USA).
The chromatographic separations were performed using a Zorbax Eclipse Plus C18 analytical column
(4.6 × 100 mm, 3.5 µm particle size) (Agilent Technologies, Santa Clara, CA, USA) as previously
described [11] with slight modifications.

The mobile phases were treated with acidified water [H2O plus 0.1% formic acid (FA)] (eluent A)
and acetonitrile (ACN) (ACN plus 0.1% FA) (eluent B). The chromatographic method consisted in the
following linear gradient with a flow rate of 0.80 mL/min: 0 min, 0% B; 10 min, 20% B; 15 min, 30% B;
20 min, 50% B; 25 min, 75% B; 30 min, 100% B; 35 min, 100% B; 35.10 min, 0% B; and finally a 5 min
post-run was used after each analysis. The injection volume was 5.0 µL and the column temperature
was maintained at 25 ◦C.

The mass spectrometer was equipped with the model G6540B Dual ESI (Agilent Technologies, Santa
Clara, CA, USA) source operating in negative ion mode. The optimum values of source parameters
were: drying-gas temperature, 300 ◦C; drying-flow, 9 L/min; and nebulising-gas pressure, 45 psig.
Two reference mass compounds were used to perform the real-time lock mass correction: purine
(C5H4N4 at m/z 121.050873, 10 µmol L−1) and hexakis (1H,1H,3H-tetrafluoropentoxy)-phosphazene
(C18H18O6N3P3F24 at m/z 922.009798, 2 µmol L−1). The capillary was maintained at 4000 V, fragmentor
voltage at 180 V, cone 1 (skimmer 1) at 45 V, Oct RFV at 750 V. The spectra were recorded in the
targeted mode as centroid spectra, with 3 scans per second, within the m/z mass range of 50–1100 amu.
Each sample was run in triplicate, with 3 biological replicates per interaction examined.

The MS data were processed through Agilent MassHunter Qualitative Analysis B.06.00 software
(Agilent Technologies, Santa Clara, CA, USA), which provides a list of possible elemental formulas
by using a molecular formula editor tool (ID Browser program, Agilent MassHunter Mass Profiler
Software, Santa Clara, CA, USA). Sample normalization was performed as reported previously [16]
by calculating the relative ratio of abundance of metabolites to all other peaks. According to the
literature, the phytochemical compounds were tentatively identified based on the accurate mass
measurements of the pseudomolecular ion [M-H]−, and comparing them to different databases
containing more than 15.000 natural secondary metabolites (METLINE from Agilent Technologies;
PubChem: https://pubchem.ncbi.nlm.nih.gov (access on 18 July 2018); ChemSpider: http://www.
chemspider.com (access on 20 June 2018); HMDB: http://www.hmdb.ca (access on 30 May 2018); CAS:
https://www.cas.org/cas-home (access on 15 April 2018); in-house plant metabolite database), as well
as literature on Fabaceae species.

Statistical analyses were carried out using the Mass Profiler Professional Software 13.0 (G3835AA,
Agilent Technologies, Santa Clara, CA, USA). Significant statistical differences among treatments
(p < 0.05) were assessed by one-way ANOVA and principal component analysis (PCA). Leaf extracts
obtained by each treatment were run in triplicate.

5. Conclusions

The metabolic profiles of bean leaves (P. vulgaris) were investigated by LC-MS analysis. As a
result, 216 compounds were detected in the metabolome of bean leaves; among these, 36 metabolites
accumulated differently in leaves inoculated with T. velutinum and/or R. solani compared to controls.
Such metabolites were tentatively identified and included flavonoids, terpenes, carbohydrates, phenols,
amino acids and peptides. T. velutinum treatments increased the accumulation of L- Tryptophan and
its acetylated derivative in bean leaf metabolome, which could stimulate the synthesis of auxins in the
rhizosphere and thereby stimulate plant growth. A derivative of JA, Ethyl 7-epi-12-hydroxyjasmonate
glucoside, was found to increase in presence of T. velutinum and/or R. solani compared to control,

https://pubchem.ncbi.nlm.nih.gov
http://www.chemspider.com
http://www.chemspider.com
http://www.hmdb.ca
https://www.cas.org/cas-home
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thus suggesting the induction of a plant defense response effected by both fungi. However, a
precursor of jasmonate (γ-Linolenic acid) found less accumulation in plants upon pathogen challenge,
as compared to control. To the best of our knowledge, this work is the first report that investigates
the effect of a biocontrol agent and/or a fungal pathogen on the metabolome of bean plants using an
LC-MS-based analysis.
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