Supplementary Materials: Glucose Tolerance-Improving Activity of Helichrysoside in Mice and its Structural Requirements for Promoting Glucose and Lipid Metabolism

Toshio Morikawa ^{1,2,+,*}, Akifumi Nagatomo ^{1,+}, Takahiro Oka ¹, Yoshinobu Miki ¹, Norihisa Taira ¹, Megumi Shibano-Kitahara ¹, Yuichiro Hori ¹, Osamu Muraoka ^{1,2} and Kiyofumi Ninomiya ^{1,2}

- ¹ Pharmaceutical Research and Technology Institute, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- ² Antiaging Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
- + These authors contributed equally to this work.
- * Correspondence: morikawa@kindai.ac.jp; Tel. +81-6-4307-4306; Fax: +81-6-6729-3577

Figure S1. HPLC chromatograms (UV, 254 nm) of the reaction mixture after **a**) 0 min, **b**) 5 min, **c**) 30 min, **d**) 1 h, **e**) 2 h, **f**) 4.5 h, and **g**) 24 h.

Table S1. Linearities for rutin (19), quercetin $3-O-\beta$ –D-glucopyranoside (17), and quercetin (20).

Analyte	Regression Equation ^a	Correlation Coefficient (R ²)			
Rutin (5)	$y = 6279.4 \ x - 1830.5$	0.99995			
Quercetin 3-O-β-D-glucopyranoside (17)	$y = 8747.4 \ x - 11811$	0.99995			
Quercetin (20)	$y = 14320 \ x - 17934$	0.99997			

^{*a*}In the regression equation, *x* is the concentration of the analyte solution (μ g/mL), and *y* is the peak area of the analyte.

Table S2. ¹³C NMR data (150 MHz) for acylated flavonol glycosides (2–6, 9, 11, 13–15).

Position	2 ^{<i>a</i>}	3^{b}	4 ^b	5^b	6 ^b	9 ^b	11^b	13^b	14^b	15^b
2	159.3	156.8	156.36	156.4	156.4	156.3	156.5	156.5	156.2	156.3
3	135.3	132.1	133.3	133.3	133.3	133.1	133.2	133.3	133.0	133.2
4	179.4	177.9	177.5	177.5	177.5	177.3	177.5	177.5	177.3	177.4
5	163.1	161.7	161.2	161.3	161.3	161.2	161.4	161.4	161.1	161.2
6	100.0	99.3	98.9	98.8	99.0	98.6	98.9	98.8	98.7	98.7
7	166.2	164.9	164.4	164.1	164.6	164.0	164.6	164.3	164.3	164.2
8	94.8	94.0	93.6	93.5	93.7	93.4	93.7	93.7	93.2	93.4
9	158.5	161.7	156.39	158.0	156.5	156.3	156.5	156.6	156.2	156.4
10	105.6	104.4	103.9	104.0	103.9	103.9	104.0	104.1	103.7	103.8
1'	123.1	127.0	121.2	122.3	121.2	121.0	121.2	121.3	121.0	121.2
2'	117.3	116.8	116.3	115.3	116.3	116.1	116.3	116.3	116.0	115.2
3'	145.9	133.9	145.0	144.9	145.0	144.7	145.0	145.0	144.8	144.9
4'	149.8	145.4	148.6	148.6	148.7	148.4	148.7	148.6	148.4	148.5
5'	115.9	115.7	115.4	111.8	115.3	115.1	115.3	115.3	115.1	116.1
6'	123.4	122.0	121.6	121.6	121.6	121.4	121.6	121.7	121.4	121.6
<i>Glc</i> -1"	104.0	101.3	101.0	100.9	101.1	100.8	100.9	101.1	100.7	101.0
2"	75.6	74.6	74.2	74.2	74.2	74.0	74.2	74.1	73.9	74.1
3"	78.1	77.0	76.5	76.5	76.5	76.3	76.5	76.5	76.4	76.5
4''	71.7	70.7	70.1	70.3	70.1	69.9	70.1	70.2	70.0	70.5
5''	75.6	74.9	74.4	74.4	74.4	74.0	74.3	74.1	74.4	74.4
6''	64.1	63.8	63.3	63.4	63.5	62.8	63.0	63.2	63.4	64.0
Acyl-1'''	127.6	127.0	120.8	121.3	135.2	125.8	125.9	134.6	120.4	124.6
2'''	133.7	130.4	156.9	156.4	114.7	117.7	114.6	128.0	112.4	106.5
3'''	115.7	114.9	116.3	116.3	157.8	144.4	146.9	129.0	147.2	141.9
4'''	159.9	149.0	131.6	132.0	117.8	147.2	148.6	129.7	151.3	152.6
5'''	115.7	114.9	119.5	120.8	130.0	114.8	115.0	129.0	115.0	141.9
6'''	133.7	130.4	128.7	128.6	119.2	123.5	125.5	128.0	123.0	106.5
7'''	145.3	144.6	140.3	139.4	144.7	143.7	144.1	142.6	165.2	164.9
8'''	116.2	115.4	116.6	117.6	117.4	114.4	114.7	119.0		
9'''	167.8	166.5	166.5	166.3	165.9	165.3	165.7	165.3		
3'''-OCH3		55.9		55.7			55.6		55.4	55.9
4'''-OCH3										60.2

Measured in aCD3OD and bDMSO-d6

Compound names: quercetin 3-O-(6"-O-cis-p-methylcoumaroyl)-β-D-glucopyranoside (2), quercetin 3-O-(6"-O-trans-p-methylcoumaroyl)-β-D-glucopyranoside (3), quercetin 3-O-(6"-O-trans-ocoumaroyl)-β-D-glucopyranoside quercetin 3-O-(6"-O-trans-o-methylcoumaroyl)-β-D-(4), glucopyranoside (**5**), quercetin 3-O-(6"-O-*trans-m*-coumaroyl)-β-D-glucopyranoside (**6**), quercetin 3-*O*-(6"-*O*-*cis*-caffeoyl)-β-D-glucopyranoside (9), quercetin 3-O-(6"-O-cis-feruloyl)-β-Dglucopyranoside (11), quercetin 3-O-(6"-O-cis-cinnamoyl)-β-D-glucopyranoside (13), quercetin 3-Oquercetin 3-O-(6"-O-trimethylgalloyl)-β-D-(6"-O-vanilloyl)- β -D-glucopyranoside (14), and glucopyranoside (15).

Table S3. Effects of helichrysoside (1) on glucose tolerance test after 14 days administration in mice.

	Dose	Ν		AUC			
Treatment	(mg/kg/day, p.o.)		0 min	30 min	60 min	60 min 120 min (h·mg/dL	(h∙mg/dL)
Control	_	11	117.2 ± 4.0	324.0 ± 9.2	254.9 ± 13.2	169.5 ± 7.7	467.3 ± 16.0
Helichrysoside (1)	1	6	105.9 ± 5.1	313.8 ± 18.9	209.1 ± 15.8 *	159.5 ± 7.8	419.9 ± 24.1
-	10	6	107.3 ± 5.0	290.1 ± 13.6	206.7 ± 9.9 *	149.6 ± 9.1	401.7 ± 16.9 *

Each value represents the mean \pm S.E.; asterisks denote significant differences from the control group, * p < 0.05.

Treatment	Dose	N	Food Intake	Epididymal Fat ^a	Mesenteric Fat ^b	Paranephric Fat ^c	Visceral Fat ^(a+b+c)	Liver Weight	Liver Triglyceride	Plasma Triglyceride	Plasma Cholesterol	Plasma Free Fatty Acid
	(mg/kg/day, p.o.)		(g/mouse/day)	(mg)	(mg)	(mg)	(mg)	(mg)	(mg/g)	(mg/dL)	(mg/dL)	(mEq/L)
Control	_	11	4.8 ± 0.2	1089 ± 104	758 ± 44	367 ± 34	2214 ± 172	1626 ± 56	36.6 ± 1.3	137 ± 7	122 ± 5	1.80 ± 0.05
Helichrysoside (1)	1	6	4.7 ± 0.2	923 ± 158	687 ± 98	338 ± 79	1948 ± 327	1588 ± 30	32.0 ± 1.2	127 ± 8	117 ± 4	1.74 ± 0.11
	10	6	5.0 ± 0.2	987 ± 98	717 ± 55	328 ± 57	2032 ± 206	1557 ± 79	33.1 ± 1.7	141 ± 15	119 ± 4	1.65 ± 0.17

Table S4. Effects of helichrysoside (1) on food intake, visceral fat weight, liver weight, liver triglyceride content, and plasma parameters after 14 days administration in mice.

Each value represents the mean ± S.E.; significant differences were not observed.