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The detection of ALDH3B2 in human placenta
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Supplementary Materials:

Unedited images of the western blot analyses of placenta homogenates are shown in Figure S1.

placenta placenta

Figure S1. Western blot analysis of placenta homogenates using anti-ALDH3B2 (A) and anti-GAPDH (B)
antibodies revealed bands corresponding to the molecular weight of 53 kDa (long isoform of ALDH3B2) and
bands corresponding to molecular weight of 37 kDa (GAPDH). Proteins in homogenates were applied onto
the polyacrylamide gel. After separation, they were transferred onto the PVDF membrane. Immunodetection of
ALDH3B2 protein was performed using anti-ALDH3B2 antibody (A). After membrane stripping the
immunodetection was repeated with anti-GAPDH antibody (B). GAPDH detection was used as a loading
control, as GAPDH gene is constitutively expressed at high levels in many tissues. The image was taken using
ChemiDoc XRS+ (Bio-Rad). As size standard PageRuler™ Prestained Protein Ladder (cat. No 26616) was used.

The images of western blot analyses of recombinant ALDH1A1, ALDH3A1 and short ALDH3B2 proteins as well
as colons and ovaries homogenates are shown in Figure S2.
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Figure S2. Western blot analyses using anti-ALDH3B2 antibody revealed bands corresponding to the
molecular weight of 53 kDa (long isoform of ALDH3B2) in colons and ovaries homogenates and a band
corresponding to molecular weight of 43 kDa in the case of purified short recombinant ALDH3B2. No bands
were obtained in the case of purified recombinant ALDH1A1 and ALDHB3A1 proteins. Homogenates and
recombinant proteins were applied onto the polyacrylamide gel. After separation, proteins were transferred onto
the PVDF membrane. Inmunodetection was performed using anti-ALDH3B2 antibody. The chemiluminescence
was detected using BioMax MR Film, Kodak.

The mass spectrum for sequencing of peptide AAQLQGLGHFLQENK found among tryptic fragments of long
recombinant ALDH3B2 protein as well as sequence coverage of the recombinant long ALDH3B2 protein are

shown in Figure S3.
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Figure S3. A. Sequence coverage of the recombinant long ALDH3B2 (from Mascot report). Peptides found
experimentally are marked with red color, amino acid sequence encoded by nucleotides located upstream the
second start codon is underlined, amino acid sequence of unique peptide identified also in analysis of placenta
homogenate is framed with a black box. B. MS/MS spectrum registered for AAQLQGLGHFLQENK peptide. The
upper left corner indicates the source of the fragment ions identified as either a, b or y ions. ** designates doubly
charged fragment ions, * designates fragment ions with neutral loss.

The probability curve for the formation of transmembrane helices by long ALDH3B2 isoform obtained using
TMHMM Server v. 2.0 [1,2] is shown in Figure S4.
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Figure S4. Prediction of transmembrane helix formation by long ALDH3B2 isoform. The probability curve for
the occurrence of transmembrane helix in case of long ALDH3B2 isoform was obtained using TMHMM Server
v. 2.0 [1,2] and the ALDH3B2 sequence, the product of translation of mRNA transcript number U37519.1 from
NCBI obtained using ExPASy server [3] with alanine in the position encoded by premature stop codon.

The alignment of all ALDH3B2 mRNA sequences available in NCBI is shown in Figure S5.
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Figure S5. Alignment of different ALDH3B2 mRNA sequences available in NCBI. The following ALDH3B2
mRNA sequences were aligned using Clustal Omega server [4]: mRNAI (NCBI: U37519.1), mRNA2 (NCBI:
NM_000695.3), mRNA3 (NCBI: NM_001354345.1), mRNA4 (NCBI: NM_000695.2) and mRNAS (NCBI:
NM_001031615.2). Green indicates start codons, red indicates stop codon, yellow indicates potential matching take-oft and
landing sites of ribosome during bypassing event and violet indicates the nucleotides encoding the peptide identified in
MS/MS analysis. Its sequence is annotated above the corresponding nucleotides.

Supplementary materials can be found at www.mdpi.com/xxx/s1.
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