Supplementary Information

Supplementary Figure S1. Sequence alignment of the three structural blocks that conforms site S2 in the CNNMs and in bacterial proteins SA0657, CorB and CorC (Uniprot codes A0A0H3JL60, A0A0H3NER8 and P0A2L3 respectively). The conserved acidic cluster (which prevents binding of ATP in the absence of Mg²⁺ in CNNMs [5]) is highlighted with a red rectangle. Secondary structure elements are represented above the alignment.

Supplementary Figure S2. Structure of the CBS module in CNNMs in three distinct conformations. The two Bateman modules are shown in *cyan* and *green*. CNNM2 adopts two limiting conformations: (A) a *twisted* disk in the absence of MgATP, and (C) a *flat* disk in the presence of bound MgATP. The plane intersecting the central β -sheets of one CBS module is represented by a *red* line to emphasise the *flat* to *twisted* conformational transition. (B) In the crystals, CNNM4 forms a *semi-twisted* disk in the absence of MgATP as an intermediate between conformations (A) and (C)

Supplementary Figure S3. (A) Ligand binding by hCNNM4_{BAT}. (**A** – **C**) Observation via 2D ¹⁵N HSQC NMR spectra of the protein (100 μ M). The complete spectral region is shown (corresponding zoom regions in Figure 2). **A)** Effect of Mg²⁺ addition to a final concentration of 0 mM (*black*), 10 mM (*light blue*), 20 mM (*blue*), and 40 mM (*dark blue*). (**B**) Effect of ADPNP addition to a final concentration of 0 mM (*black*), 570 μ M (*yellow*), 1.14 mM (*orange*), and 5.7 mM (*red*). (**C**) Effect of combined Mg²⁺ and ADPNP addition: 0 mM Mg²⁺ plus 0 mM ADPNP (*black*), 0 mM Mg²⁺ plus 5.7 mM ADPNP (*orange*), 0 mM Mg²⁺ plus 18 mM ADPNP (*red*), and 10 mM Mg²⁺ plus 5.7 mM ADPNP (*blue*). Spurious t₁ noise at ¹H frequencies of ca. 8.2 ppm and 8.4 ppm derive from protons H2 and H8 in the purine ring of ADPNP. (**D**) Observation via 1D ¹H_{protein}→¹H_{ligand} Saturation Transfer Difference (STD) spectra of the ligand ADPNP (5.7 mM; 300 μ M hCNNM4_{BAT}). The superposed STD spectra in the absence (*red*) and presence (*black*) of Mg²⁺ (10 mM MgCl₂) confirm ADPNP binding in both cases, where the stronger STD signals in the presence of Mg²⁺ indicate positive cooperativity of Mg²⁺ and ADPNP binding. The molecular structure and assigned ¹H signals of ADPNP are shown in the inset.

Supplementary Figure S4: Comparison of CNNM4_{cNMP} with further CNBD or CNBDH domains. (Top) Ribbon and stick representation of the β -roll in the CNB domain of PKG-1 (*left;* PDB ID 4Z07) and CNNM4_{cNMP} (right; PDB ID 6G52). Residues involved in cGMP (yellow) interaction are highlighted in red. CNNM4_{cNMP} neither conserves these residues nor provides for sufficient space to host a cNMP ligand since the cavity is occupied by bulky residues. CNNM4 residues T641, S696, D697, and E632 are located at positions equivalent to PKG-1 residues E292, R301, T302, and R282, respectively (Bottom). Sequence alignment of hCNNM4 vs human CNBD and CNBDH containing proteins. The location of key residues involved in cNMP binding and their analogs in CNNM4_{cNMP} are highlighted by colored symbols above the alignment (below the secondary structure elements). The known cNMP ligands are indicated in the first column, where known absence of cNMP binding is marked by (-). The Uniprot codes for the analyzed proteins are: hCNNM4, Q6P4Q7; MmKCNH1, Q60603; hKCNH1, O95259; hKCNH2, Q12809; hKCNH3, Q9ULD8; hKCNH4, Q9UQ05; hKCNH5, Q8NCM2; hKCNH6, Q9H252; hKCNH7, Q9NS40; hKCNH8, Q96L42; hHCN1, O60741; hHCN2, Q9UL51; hHCN3, Q9P1Z3; hHCN4, Q9Y3Q4; hCNGA1, P29973; hCNGA2, Q16280; hCNGA3, Q16281; hCNGA4, Q8IV77; hCNGB1, Q14028; hCNGB3, Q9NQW8; hPKAI, P10644; hPKAII, P31323; hPKGI, Q13976; hPKGII, Q13237; hRAPGEF2, Q9Y4G8; hRAPGEF4, Q9EQZ6; hRAPGEF6, Q8TEU7; hSLC9C1, Q4G0N8; hSLC9C2, Q5TAH2; hPLP6, Q8IY17; hPLP7, Q6ZV29

CNININ 44	β2	Loop β6-β7	CNINIM2	β2	Loop β6-β7
CININIVIT	#	\$ *	CIVIVIVIS		\$ *
Homo sapiens			Homo sapiens	547 Y L Y Q R S Q P V D 556	622 SAYCPDYTVR 631
Pan troalodytes	660 Y L Y Q R N R P V D 669	762 NLYMPDYSVH771	Pan troalodytes	547 YLYQBSQPVD 556	622 SAYCPDYTVR631
Papio anubis	645 Y L Y Q R N R P V D 654	747 NLYTPDYSVH 756	Papio anubis	547 YLYQRSQPVD 556	622 SAYCPDYTVR 631
Callithrix iacchus	660 Y L Y Q R N R P V D 669	762 N L Y T P D Y S V H 771	Callithrix jacchus	547 YLYQRSQPVD 556	622 STYCPDYTVB631
Mus musculus	660 Y L Y Q R N R P V D 669	762 NLYTPDYSVH 771	Mus musculus	553 YLYQRSQPVD 562	628 C T Y C P D Y T V R 637
Myotis lucifugus	658 Y L Y Q R S R P V D 667	759 NLYTPDYSVH 768	Myotis lucifuaus	551 YLYQBSQPVD 560	626 S T Y C P D Y T V R 635
Bos taurus	659 Y L Y Q R N R P V D 668	761 NLYTPDYSVH 770	Bos taurus	557 YLYQRSRPVD 566	632 SAYCPDYTVR 641
Sus scrofa	657 Y L Y Q R N R P V D 666	780 NLYTPDYSVH 789	Sus scrafa	585 Y L Y Q R S Q P V D 594	660 SAYCPDYTVR 669
Loxodonta africana	295 Y L Y Q R N R P V D 304	420 NLYTPDYSVH 429	Eringceus eurongeus	498 YLYQRSQPVD 507	573 STYCPDYTVR 582
Erinaceus europaeus	295 Y L Y Q R S R P V D 304	418 NLYTPDYSVH 427	Canis lunus	553 YLYQRSQPVD 562	628 SAYCPDYTVR 637
Canis lupus	657 Y L Y Q R N R P V D 666	759 NLYTPDYSVH 768	Ictalurus punctatus	608 Y L Y T R N H P V D 617	682 S S Y C P D Y T V R 691
Ophiophagus hannah	398 Y L Y Q R N R P V D 407	522 N I Y T P D Y S V H 531	Danio rerio	592 Y L Y T R N H P V D 601	666 S S Y C P D Y T V R 675
Ictalurus punctatus	609 Y L Y Q R N K P V D 618	689 GAYLPDYSVR 698	Salmo salar	603 Y L Y T R N H P V D 612	677 SSYCPDYTVR 686
Danio rerio	614 Y L F L R N K P V D 623	695 G P Y L P D Y S V R 704	Xenopus tropicalis	552 FLYLRSQPVD 561	615 S F Y Y P D Y T V R 624
Xenopus tropicalis	295 Y L Y Q R N R P V D 304	418 NLYTPDYSVH 427			
	β2	Loon 66-67		β2	Loop 66-67
CNNM2		Loop be by	CNNM4		p
	#	\$ *	CITITI	#	\$ *
Homo sapiens	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Homo sapiens	601 YLYTRNKPAD 610	692 G Q Y I S D F S V R 701
Pan troglodytes	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Pan troglodytes	601 YLYTRNKPAD 610	692 G Q Y I S D F S V R 701
Papio anubis	627 Y L Y Q R N K P V D 636	740 Q V Y I P D Y S V R 749	Papio anubis	601 YLYTRNKPAD 610	692 G Q Y I S D F S V R 701
Callithrix jacchus	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Callithrix jacchus	601 YLYTRNKPAD 610	692 GQYISDFSVR 701
Mus musculus	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Mus musculus	598 Y L Y T R N K P A D 607	688 G Q Y V S D F S V R 697
Sarcophilus harrisii	494 Y L Y Q R N K P V D 503	588 Q V Y V P D Y S V R 597	Sarcophilus harrisii	593 Y L Y V R N K A A D 602	681 TQYVSDFSVR 690
Myotis lucifugus	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Myotis lucifugus	601 YLYTRNKPAD 610	692 GQYISDFSVR 701
Ailuropoda melanoleuca	624 Y L Y Q R N K P V D 633	737 Q V Y I P D Y S V R 746	Ailuropoda melanoleuca	604 YLYTRNKPAD 613	717 GQYISDFSVR 726
Bos taurus	675 Y L Y Q R N K P V D 684	766 Q V Y I P D Y S V R 775	Bos taurus	461 YLYTRNKPAD 470	554 GQYISDFSVR 563
Sus scrofa	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Sus scrofa	601 YLYTRNKPAD 610	692 GQYISDFSVR 701
Loxodonta africana	653 Y L Y Q R N K P V D 662	766 Q V Y I P D Y S V R 775	Loxodonta africana	569 YLYTRNKPAD 578	658 GQYISDFSVR 667
Erinaceus europaeus	674 Y L Y Q R N K P V D 683	763 Q V Y I P D Y S V R 772	Erinaceus europaeus	553 Y L Y A R N K P A D 562	645 GQYISDFSVR 654
Canis lupus	675 Y L Y Q R N K P V D 684	788 Q V Y I P D Y S V R 797	Canis lupus	601 YLYTRNKPAD 610	692 GQYISDFSVR 701
Alligator sinensis	536 Y L Y Q R N K P V D 545	649 Q V Y V P D Y S V K 658	Alligator sinensis	505 FLYVRGRPAD 514	697 PQYVPDFSVR 706
Ictalurus punctatus	615 Y L F Q R N K P V D 624	725 Q I Y V P D Y S V R 734	Ictalurus punctatus	592 Y V Y Q R G K A V D 601	680 MUYTPDFNVR 689
Danio rerio	618 Y L F H R N K P V D 627	728 Q V Y V P D Y S V R 737	Danio rerio	589 YLYLHGKPVD 598	678 PUTIPDENVR 687
Galius gallus	658 Y L Y Q R N K P V D 667	771 Q V Y V P D Y S V K 780	Gallus gallus	b1/ FLYIKNKAAD 626	
Cuculus canorus	397 Y L Y Q R N K P V D 406	510 Q V Y V P D Y S V K 519	Cuculus canorus	400 FLYCKNKAAD 399	
Orchesella cincta	571 F L Y E S G K A T D 580	620 T N F T P D Y S V K 629	Xenopus tropicalis	599 FLYURSKIAD 608	689 AUTWADES VR 698
Apis cerana	744 V I Y Q Q G K A V D 753	819 Y T F I P D Y T V R 828	Urchesella cincta	400 VLFENGRPAD 475	
			Cryptotermes secundus		
			Agrilus planipennis	737 LIYUUGK PVD 746	

Supplementary Figure S5: Sequence alignment of CNNM proteins from different species. The indicated bulky hydrophobic residues Y603 (#), Y694 (\$) and F698 (*) that occupy the main cavity of the β-roll in CNNM4_{cNMP} are highly conserved in all CNNMs from different species, from insects to mammals, while not all organisms encode all four CNNM members. Residue numbers and secondary elements are indicated. The Uniprot codes for the analyzed proteins are: HSCNNMI, Q9NRU3; PtCNNMI, H2Q2E3; Pacnnmi, A0A096P643; Cjcnnmi, F7I103; Mmcnnmi, Q0GA42; Mlcnnmi, G1P8Z7; Btcnnmi, F1MD84; SSCNNM1, F1S8W6; LacNNM1, G3TYT9; EeCNNM1, A0A1S3AFW3; ClCNNM1 F1PMJ7; OhCNNM1, V8NPD9; *Ipcnnmi*, A0A2D0QLR5; *Drcnnmi*, A0A0G2KKC2; *Xtcnnmi*, F6WMC5; *Hscnnm2*, Q9H8M5; Ptcnnm2, K7CZV7; Pacnnm2, A0A096P6G5; Cjcnnm2, U3E1C9; Mmcnnm2, Q3TWN3; Shcnnm2, G3X2G0; MICNNM2, G1Q8B9; AmcNNM2, G1MHQ7; BtcNNM2, E1BIL3; SSCNNM2, A0A287AM25; LacNNM2, G3UIL2; Eecnnm2, A0A1S3WKT5; ClCnnm2, E2RJ19; Ascnnm2, A0A1U7RW72; Ipcnnm2, A0A2D0QNG1; DrCnnm2, A2ATX7; GgCNNM2, A0A1D5PIB9; CCCNNM2, A0A091G624; OCCNNM2, A0A1D2NLQ6; ACCNNM2, A0A2A3EE16; HSCNNM3, Q8NE01; PtCNNM3, A0A2I3TCA8; PaCNNM3, A0A096NGS2; CjCNNM3, U3DC74; Мтсиниз, Q32NY4; Mlcиниз, G1PS60; Btcinnus, F1N293; Sscinnus, F1STC7; Eecinnus, A0A1S3AJ95; Clcinnus, E2RGW9; Ipcnnm3, A0A2D0SQK4; Drcnnm3, E7F3M2; Sscnnm3, A0A1S3KYV5; Xtcnnm3, F7B785; Hscnnm4, Q6P4Q7; Ptcnnm4, H2QID4; Pacnnm4, A0A096NGR9; Cjcnnm4, F7I1N7; Mmcnnm4, Q69ZF7; Sjcnnm4, G3WZR3; Mlcnnm4, G1QFN; Amcnnm4, G1LFK1; Btcnnm4, F1MK24; Sscnnm4, F1STC6; Lacnnm4, G3TEW1; Eecnnm4, A0A1S3AIV6; Clcnnm4, F1PJ05; ASCNNM4, A0A1U7S4Z7; Ipcnnm4, W5UIQ1; Drcnnm4, F1Q7I7; GgCNNM4, A0A1D5P3M6; CCCNNM4, A0A091H8N3; XtCNNM4, A0JPA0; OCCNNM4, A0A1D2NLL8; CSCNNM4, A0A2J7RPU8; *Ap*CNNM4, A0A1W4XF17.

Supplementary Figure S6. ITC data from cAMP (left) or cGMP (right) titration to CNNM4BATCNMP-CTail. Upper panels show the thermogram, lower panels the mixing isotherm.

Supplementary Figure S7. Dimensionless Kratky plots of SAXS data for CNNM4_{BAT-CNMP-Ctail} (*left*) in the absence (*above*) and presence (*below*) of MgATP, and for its complex with PRL-1 (*right*). In all cases, the plots indicate a well folded and elongated molecule. The pertaining BSA reference peak is indicated by a black dot.

Supplementary Movie S1: SAXS derived solution structure of CNNM4_{BAT-CNMP-Ctail} in the absence of MgATP. The associated Bateman modules are shown in *orange* and *red*, their connected cNMP binding domains in *dark* and *light blue*, and the interdomain linkers (added with CORAL) in *dark* and *light green*, respectively. In the absence of ATP, the Bateman modules associate to form a *twisted* disk shaped CBS module. The two main cavities formed between connected CBS1 and CBS2 motives are named S1 and S2, where S2 provides the MgATP binding site. The CBS module is located above the cNMP domain dimer, with their CBS1 motives inserting into the main cleft formed between both cNMP monomers. Helix H0 links the Bateman module to the preceding DUF21 transmembrane region at the distal end. The disordered αterminal tail (following the cNMP binding domain) is not shown.

Supplementary Movie S2: SAXS derived solution structure of the complete intracellular region, CNNM4_{BAT-cNMP-Ctail}, in the presence of MgATP. Naming and colouring as in movie S1. MgATP binding causes the Bateman modules to shift into a *flat* conformation of the CBS module by sliding of their CBS1 ends within the cleft formed by the cNMP domain dimer.

Supplementary Movie S3: SAXS derived solution structure of the complex formed by CNNM4_{BAT}-_{cNMP-Ctail} with PRL-1 in the presence of MgATP (indicated by a label). Naming and colouring as for movie S1, with PRL-1 shown in *yellow*. The location of the long loop of the cNMP domain (not visible in the crystals) is indicated.

Supplementary Movie S4. Model of the twisted-to-flat conformational change induced by MgATP in CNNM4. Binding of MgATP at the Bateman modules (colored in *red* and *orange*) triggers a rotation of their CBS motifs that transforms the disk shaped CBS module from a twisted to a flat conformation. The CBS1 motifs from the Bateman modules insert into the large cleft formed between the rigidly dimerized cNMP domains (in *dark* and *light blue*, respectively), which restricts their sliding during the conformational change. The linkers connecting both intracellular domains as well as the C-tail following the cNMP domain are omitted for clarity.