Less cytotoxic protoflavones as antiviral agents: protoapigenone 1'-O-isopropyl ether shows improved selectivity against the Epstein-Barr virus lytic cycle

Supporting information

Figure S1. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 10.

Figure S2. JMOD (125 MHz, DMSO-*d*₆) spectrum of compound 10.

Figure S3. ¹H NMR (500 MHz, DMSO-d₆) spectrum of compound 11.

Figure S4. JMOD (125 MHz, DMSO-*d*₆) spectrum of compound 11.

Figure S5. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound **12**.

Figure S6. JMOD (125 MHz, DMSO-d₆) spectrum of compound 12.

Figure S7. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 13.

Figure S8. JMOD (125 MHz, DMSO-d₆) spectrum of compound 13.

Figure S9. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 15.

Figure S10. JMOD (125 MHz, DMSO-d₆) spectrum of compound 15.

Figure S11. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 16.

Figure S12. JMOD (125 MHz, DMSO-d₆) spectrum of compound 16.

Figure S13. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 17.

Figure S14. JMOD (125 MHz, DMSO-d₆) spectrum of compound 17.

Figure S15. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 18.

Figure S16. JMOD (125 MHz, DMSO-d6) spectrum of compound 18.

Figure S17. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 19.

Figure S18. JMOD (125 MHz, DMSO-d₆) spectrum of compound 19.

Figure S19. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 20.

Figure S20. JMOD (125 MHz, DMSO-d₆) spectrum of compound 20.

Figure S21. ¹H NMR (500 MHz, DMSO-d₆) spectrum of compound 21.

Figure S22. JMOD (125 MHz, DMSO-d₆) spectrum of compound 21.

Figure S23. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 22.

Figure S24. JMOD (125 MHz, DMSO-d₆) spectrum of compound 22.

Figure S25. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 23.

Figure S26. JMOD (125 MHz, DMSO-d₆) spectrum of compound 23.

Figure S27. ¹H NMR (500 MHz, DMSO-d₆) spectrum of compound 24.

Figure S28. JMOD (125 MHz, DMSO-d₆) spectrum of compound 24.

Figure S29. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 25.

Figure S30. JMOD (125 MHz, DMSO-d₆) spectrum of compound 25.

Figure S31. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 26.

Figure S32. JMOD (125 MHz, DMSO-d₆) spectrum of compound 26.

Figure S33. ¹H NMR (500 MHz, DMSO-*d*₆) spectrum of compound 27.

Figure S34. JMOD (125 MHz, DMSO-d₆) spectrum of compound 27.

Figure S35. ¹H NMR (500 MHz, DMSO-d₆) spectrum of compound 28.

Figure S36. JMOD (125 MHz, DMSO-d₆) spectrum of compound 28.

Figure S37. Mass spectrum of compound 10 recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S38. Mass spectrum of compound **11** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S39. Mass spectrum of compound 12 recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S40. Mass spectrum of compound 13 recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S41. Mass spectrum of compound **15** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S42. Mass spectrum of compound **16** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S43. Mass spectrum of compound **17** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S44. Mass spectrum of compound 18 recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S45. Mass spectrum of compound **19** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S46. Mass spectrum of compound **20** recorded in negative ionization mode. (solvent: CH₃CN + 1% HCOOH)

Figure S47. Mass spectrum of racemate 21 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S48. Mass spectrum of racemate 22 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S49. Mass spectrum of racemate 23 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S50. Mass spectrum of racemate 24 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S51. Mass spectrum of racemate 25 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S52. Mass spectrum of racemate 26 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S53. Mass spectrum of racemate 27 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S54. Mass spectrum of racemate 28 recorded in negative ionization mode. (solvent: CH₃CN)

Figure S55. Compound 9 inhibits HIV-1 infection using the pseudotype virus assay at the non-cytotoxic concentration of 100 μ M. Two independent experiments were performed in triplicates.

Table S1. Cytotoxicity of compounds **2-14** and **21-28** on U373-CD4-CCR5 cells, n=2. Compounds were tested up to 100 μ M except for compound **9** whose cytotoxicity evaluation was repeated up to a maximum concentration of 500 μ M. Both chemical strategies (B-ring saturation and 4'-oxime formation) allowed us to successfully decrease the cytotoxicity of protoflavones.

Compound	Compound type	Cytotoxic IC50 ± SEM [µM]
2	protoflavone	0.22 ± 0.003
6	protoflavone	2.09 ± 0.13
7	protoflavone	0.25 ± 0.002
8	protoflavone	0.67 ± 0.03
9	tetrahydroprotoflavone	> 500
10	tetrahydroprotoflavone	> 100
11	tetrahydroprotoflavone	> 100
12	tetrahydroprotoflavone	> 100
13	tetrahydroprotoflavone	> 100
14	tetrahydroprotoflavone	~ 6.37
21	dihydroprotoflavone 4'-oxime	> 100
22	dihydroprotoflavone 4'-oxime	> 100
23	dihydroprotoflavone 4'-oxime	~ 89.45
24	dihydroprotoflavone 4'-oxime	> 100
25	dihydroprotoflavone 4'-oxime	53.88 ± 0.35
26	dihydroprotoflavone 4'-oxime	> 100
27	tetrahydroprotoflavone 4'-oxime	> 100
28	tetrahydroprotoflavone 4'-oxime	27.02 ± 8.4