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Abstract: MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene
expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation
or by promoting mRNA degradation. The outcome of a myriad of physiological processes and
pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs.
However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts
is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA
expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic
status of the organism; and often poorly correlated with miRNA expression levels. Such biological
features of miRNAs suggest that various regulatory mechanisms control not only their expression, but
also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA
action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA
strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs.
Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages
of their maturation are also critical for their functionality. This regulatory mechanism called “RNA
editing” involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single
nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA’s
stability, maturation and activity by changing its specificity towards target mRNAs. Understanding
how editing events impact miRNA’s ability to regulate stress responses in cells and organs, or the
development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our
knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design
of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current
knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
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1. Introduction

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) highly conserved among species
that modulate gene expression, mainly through translational inhibition or degradation of messenger
RNAs (mRNA). However, the biology of miRNAs is much more complex than initially thought [1,2].
Indeed, recent advances in the field have uncovered numerous molecular mechanisms, which tightly
regulate their biogenesis, maturation and action in a cell-dependent manner under physiological
conditions or in diseases. For instance, single nucleotide polymorphisms; histone or DNA methylation;
asymmetric miRNA strand selection; interactions with other coding and non-coding RNA molecules
or RNA-binding proteins (RBPs); and RNA editing, are all recently identified mechanisms regulating
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miRNA biogenesis or activity. Among those new regulatory mechanisms, the relevance of miRNA
editing for their functions is highly debated, but progressions in our understanding of these mechanisms
are currently restricted by technological limitations specifically related to bioinformatic analyses of
high-throughput RNA-seq approaches. Convincing evidence has been provided showing that a single
nucleotide change on a primary miRNA molecule can greatly influence its stability and maturation, or
can alter its activity by retargeting miRNAs towards other messenger RNAs (mRNAs), as shown in the
context of several cancers or cellular stresses; e.g., hypoxia or endoplasmic reticulum (ER) stress [3,4].

This review discusses how miRNA editing affects their functions in physiological and pathological
conditions, and currently available approaches to investigating these mechanisms.

2. The Complex World of miRNA Biology—From Biogenesis to Action

In the canonical biosynthetic pathway, a primary miRNA (pri-miRNA) is transcribed, recognized
by a microprocessor complex, including the enzymes double-stranded RNA-specific endoribonuclease
(DROSHA) and DiGeorge syndrome critical region gene 8 (DGCR8), and cleaved to form a precursor
miRNA (pre-miRNA). Pre-miRNAs are then exported to the cytoplasm for further processing by
the enzyme DICER and co-factors, such as the protein activator of protein kinase R (PACT) or the
Trans-activation response RNA-binding protein (TRBP) [5]. The mature miRNA duplex is finally
loaded into a multi-protein complex, the RNA-induced silencing complex (RISC) and one selected
miRNA strand (-5p or -3p) binds to the Argonaute (AGO) protein, which guides the complex to its target
mRNA [6]. However, miRNAs’ biogenesis and maturation appear to be much more complex and tightly
regulated processes, under the control of multiple cellular factors sensitive to the physiopathological
statuses of the cells and their environments. At the DNA level, single nucleotide polymorphisms
(SNPs) and epigenetic control of transcription through classical mechanisms of acetylation/methylation
of DNA/histones represent a first level of miRNA regulation governing their action (Figure 1a,b).
Biosynthesis and maturation of miRNAs can also be influenced by RNA-binding proteins (RBPs),
which can interact with key enzymes in these processes, such as DROSHA/DGCR8/DICER and the RISC
complex (Figure 1c,d) [7]. Examples of such mechanisms are illustrated by the inhibition of let-7 miRNA
processing induced by Lin28 binding [8–10] or stabilization of pri- and/or pre-miR-144 by BUD13
and Interleukin Enhancer Binding Factor 3 (ILF3) that leads to increased levels of mature forms [11].
Finally, editing of pri/pre-miRNAs is also an important mechanism modulating the biosynthesis and
maturation of specific miRNAs, in addition to deeply impacting miRNAs’ actions on their targets
(Figure 1c,d) [12–14].

How mature miRNAs regulate gene expression is, further, dependent on multiple factors that
may vary with the cellular context and the cell environment [15]. The strand of the miRNA (-5p or -3p
strand), which is degraded (passenger strand) or incorporated in the RISC complex (guide strand)
determines the set of target mRNAs. The specificity of the RISC complex’s action towards mRNAs
highly depends on the complementarity between the miRNA response elements (MRE) on the mRNA
and the seed sequence on the miRNA strand. In addition, the degree of complementarity between
MRE and seed sequences usually dictates whether the mRNA is degraded or whether its translation is
blocked [16]. Of note, although most miRNAs interact with the 3′ untranslated regions (UTR) of target
mRNAs to inhibit their expression, interactions of miRNAs with gene promoters, 5′UTRs or coding
sequences have been described and may result in distinct outcomes. For example, activation of gene
expression instead of repression might occur in specific conditions [1,17–19].
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Figure 1. Molecular mechanisms controlling microRNA (miRNA) biogenesis and activity. (a) Single
nucleotide polymorphisms (SNPs) in genomic regions encoding miRNAs can impact their processing
and maturation, resulting in different expression levels between variants. (b) Epigenetic modifications
such as histone acetylation or DNA methylation can modulate transcription efficiencies of miRNAs.
(c) RNA editing (red stars) and RNA-binding proteins (RBPs) can interfere with miRNA processing
and maturation by affecting DGCR8/DROSHA activity, nuclear export of pre-miRNAs, cleavage of
pre-miRNA by DICER and incorporation of mature miRNA in the RISC (AGO) complex. (d) Mature
miRNA activity can be regulated by alternative mechanisms including (i) competition with RBPs for
the same binding site on a target mRNA, (ii) decoying of the miRNA–RISC complex by ceRNAs and
(iii) RNA editing of miRNA response elements (MREs) on target mRNAs. Stimulatory and inhibitory
effects are represented by pointed and blunt grey arrows, respectively.
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Another important feature of the miRNA biology is that a single miRNA can target hundreds
of mRNAs, thereby regulating whole networks of proteins. Conversely, one mRNA can be targeted
by several miRNAs [16,20]. There are two major consequences associated with these properties:
(1) various miRNAs and other factors may compete for binding sites on a particular mRNA (e.g., on
the 3′-UTR); (2) variations in the stoichiometry of targets for a specific miRNA, and localization of
these targets within distinct cell compartments, can deeply affect the expected interaction between the
miRNA and a particular mRNA. In this regard, miRNAs can also traffic between various intracellular
compartments (e.g., nucleus, cytoplasm, stress granules and mitochondria) under stress conditions (e.g.,
starvation or hypoxia), thereby either modulating transcriptional/translational rates of target mRNAs
within specific intracellular compartments or being secreted as paracrine factors mediating intercellular
communication [4,17,21–23]. In addition, expression of other endogenous competing RNAs (ceRNAs),
such as pseudogenes, circular RNAs and long ncRNAs (lncRNAs), can act as “sponges” and impair
specific miRNA-mRNA interactions (Figure 1d) [20]. Finally, other cellular factors can interact with
mature miRNAs and modulate their activity, as it has been demonstrated for AU-rich element-binding
proteins (AUBPs) [16]. All these mechanisms suggest that expression and bioactivity of a specific
miRNA within a particular cell type or tissue can be highly uncoupled and that observed alterations
of miRNA expression do not necessarily mirror the activity of this molecule, potentially leading to
misinterpretation of its relevance in pathophysiological conditions. In this regard, several tools have
been developed; e.g., reporter gene constructs harboring multiple MREs for the miRNA of interest, to
assess the bioavailability and activity of a specific miRNA in parallel to its expression level [24].

3. Editing of miRNA

RNA editing refers to specific modifications in an RNA molecule that result in alterations of
the RNA sequence compared to the one encoded by the genome. RNA editing events occur in all
eukaryotes, although the molecular mechanisms are taxon dependent and may involve different
enzymes, leading to different RNA modifications, particularly between plants and animals [25,26]. For
instance, substitutional RNA editing is a mechanism occurring across all metazoans, and this process is
characterized by nucleotide modification mediated by deaminases of, principally, two distinct families.
These include adenosine deaminases acting on RNA (ADARs) and cytidine deaminases from the
AID/APOBEC protein family (activation induced cytidine deaminases/apolipoprotein B mRNA editing
enzyme cytidine deaminases). ADARs are responsible for deamination of adenosine (A) to inosine (I),
whereas AID/APOBEC deaminate cytidine (C) to uridine (U). These reactions are known as A-to-I
editing and C-to-U editing, respectively [25].

Enzymes triggering RNA editing are essential for several processes requiring cell growth and
adaptation (e.g., embryogenesis, proliferation, immunity and neural plasticity) [27–29]. In this respect,
activity of editing enzymes can lead to various functional cellular outcomes depending on the RNA
molecules being modified and of the type of modification. Indeed, nucleotide substitution within
RNA sequences may occur in distinct regions of the transcript and affect the final protein product
differently: through disruption of the reading frame, alterations of splicing sites or modifications of
regions essential for RNA interference mechanisms [30]. Although the consequences of editing on
coding RNA are evident, the frequency of RNA editing events is higher in non-coding sequences of
the transcriptome [31,32]. The identification of identical A-to-I miRNA editing events (on miR-140,
miR-301a and miR-455) in both mammals and birds, further suggests that miRNA editing is a highly
conserved mechanism, which appears to occur frequently within seed sequences of miRNAs [33]. In
light of our current knowledge, it is clear that editing of non-coding RNA sequences, such as miRNAs,
might impair their regulatory functions, thereby affecting, directly or indirectly, cellular processes and
homeostasis [13].
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3.1. ADAR

ADAR proteins catalyze deamination of A-to-I on mRNAs. This protein family is highly conserved
in metazoans [34], but the number of genes and isoforms are species-specific. In mammals, three
ADAR genes were identified—ADAR1, ADAR2 and ADAR3—but only the first two seem to encode
proteins with catalytic activity. ADAR1 is ubiquitously expressed to different extents depending on
the tissue or cell type. Regarding ADAR2, while the GEPIA2 database indicates a lower but also
ubiquitous distribution of ADAR1, the enzyme was reported to be highly expressed in the brain, but at
lower levels in other tissues (e.g., lung, kidney, testis and vascular tissues). Finally, ADAR3 expression
was shown to be mostly brain and testis-specific (Figure 2a,b) [34–37]. ADAR1 gene encodes two
distinct isoforms that localize in different cell compartments—the full-length ADAR1p150 is inducible
by interferon and mostly located in the cytoplasm, but can translocate also into the nucleus [34,35].
The N-terminally truncated ADAR1p110 (constitutively expressed) and ADAR2 are exclusively located
in the nucleus [38].

Figure 2. Expression patterns of ADAR and APOBEC editing enzymes. (a) Heat map showing
mean relative expression (log2(transcripts per million (TPM) + 1)) of ADARs and APOBECs across
different tissues. Expression levels of each gene were retrieved using GEPIA2 database (http://gepia2.
cancer-pku.cn/#index), which include non-tumoral tissue samples from the Cancer Genome Atlas
(TCGA) and normal tissue samples from the genotype-tissue expression (GTEx) projects. (b) Heat
map showing mean relative expressions (log2 TPM + 1) of ADARs and APOBECs in subpopulations
of immune cells, before or after activation. Expression levels of each gene were retrieved from
DICE database (https://dice-database.org/). Both heat maps were designed using Morpheus (https:
//software.broadinstitute.org/morpheus).

ADARs are required during embryogenesis of mammals, since knock-out models for both ADAR1
and ADAR2 are not viable and die during embryonic development or shortly after birth due to
over-stimulation of the immune system; hepatic and hematopoietic disorders (ADAR1 knockout); or
from neurological disorders (ADAR2 knockout) [38–41]. Despite these striking phenotypes, very little
is known about the specificity of ADAR editing activity, which is still debated [42]. The secondary
structure of dsRNA appears to impact the editing frequency. For example, perfect stretches on dsRNA
generally represent hyper-edited sites independently of their sequence. In contrast, RNA loops require
specific nucleotide pairings in order to be edited [38]. In addition, editing activity of ADAR enzymes
seems to be affected by other factors independent of the RNA structure [42].

http://gepia2.cancer-pku.cn/#index
http://gepia2.cancer-pku.cn/#index
https://dice-database.org/
https://software.broadinstitute.org/morpheus
https://software.broadinstitute.org/morpheus
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Based on their secondary structure, A-to-I editing could occur in pri-, pre- and mature miRNAs,
although the probability of editing events is likely dependent on the lengths of these different
molecules [38,42,43] (Figure 3a). RNA cis-elements and the recruited ADAR isoform might also be
important for miRNA editing, as highlighted by several studies, suggesting a preferred editing activity
of nuclear ADARs, i.e., ADAR2 and ADAR1p110, depending on miRNA sequence characteristics [38].
This concept is further refined by data suggesting that nucleic forms of ADARs are responsible for
editing of pri- and pre-miRNA, while cytosolic forms are responsible for editing of mature miRNAs
before or during AGO2 incorporation [30]. However, shuttling of ADAR1p150 and specific mature
miRNAs, through mechanisms involving members of the GW-182 protein family, between the nucleus
and the cytoplasm indicates that A-to-I editing is not as compartmentalized as suggested [30,44].

As discussed later, editing by ADARs can greatly impact miRNA biogenesis and function
(Figure 3a). However, recent studies also revealed that ADARs can promote miRNA biogenesis,
independently of its editing activity, through direct interactions with the DICER enzyme [45].

3.2. AID/APOBEC

The AID/APOBEC family includes several enzymes sharing a similar structure but differing in
terms of function, with only few of them, i.e., APOBEC1, APOBEC3A and APOBEC3G, having C-to-U
RNA editing activities [29,46–48]. Similarly to ADAR proteins, APOBECs have different intracellular
distributions. Both APOBEC1 and APOBEC3A shuttle from the nucleus to the cytoplasm and vice
versa [47], while APOBEC3G is restrained to the cytoplasm under physiological conditions [49].

In contrast to APOBEC1, APOBEC3A and 3G are expressed in most tissues (Figure 2a), but
APOBEC1 is the most well characterized isoform of the AID/APOBEC family [50]. Loss of APOBEC1
does not alter embryonic development but it impairs lipoprotein metabolism by editing apolipoprotein
B (apoB) RNA and it affects neurological function [48–51]. In contrast to information collected from
DICE database (Figure 2b), the APOBEC1 deaminase was reported to be significantly expressed
in immune cells, where it exerts RNA editing activity on 3′-UTRs of numerous mRNAs [48,50,52].
Regarding APOBEC3A and APOBEC3G, very little is known about their functional roles. Recently,
APOBEC3A was shown to be expressed mainly in immune cells, specifically in monocytes and
macrophages, and to be upregulated by interferon type 1 (IFN-1) [52]. On the other hand, APOBEC3G
binds DNA and induces genotoxicity when not restricted to the cytoplasm [49]. Interestingly,
however, APOBEC3G was suggested to counteract the miRNA-mediated inhibition of gene expression
independently of its potential editing activity. Indeed, APOBEC3G might control miRNAs’ actions
by interfering with the RISC complex assembly (Figure 3b), a mechanism further supported by the
reported interaction of APOBEC3G with Moloney leukemia virus 10 protein (MOV10), an essential
RISC complex component [53,54].

Finally, APOBEC-mediated editing occurs preferentially on single-stranded RNA (ssRNA)
molecules with a looped conformation and in AU-rich sequences [48,52]. Oligomerization of APOBEC
proteins might be also required for their editing activities, and interactions with other factors [47].
In this regard, RNA-binding motif-47 (RMB47) was shown to modulate APOBEC1 editing activity by
recruiting the deaminase to specific transcripts [48].

Occurrence of C-to-U editing in miRNA and its functional consequences on miRNA activity or
specificity are still unclear since very few studies are available, compared to investigations of A-to-I
substitution in miRNA [32,55]. It is likely, however, that APOBEC’s editing of 3′UTRs of mRNAs
may significantly modify MREs, and therefore, change miRNAs’ specificities for particular transcripts
(Figure 3b) [50,56].
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Figure 3. Functional outcomes of RNA editing on miRNA biogenesis and activity. (a) ADAR-mediated
miRNA editing can occur in pri- and pre-miRNA, both within and outside of seed sequences, thereby
affecting their processing (pointed black arrows: stimulation of processing; blunt grey arrows: inhibition
of processing) and final expression levels of the mature miRNA duplexes. Editing can also occur on
mature miRNA duplexes seed sequences either modulating their activities or changing their specificities
to different target mRNAs. (b) Activity of APOBEC enzymes interfere with miRNA functions through
editing-dependent or independent mechanisms. Stimulatory and inhibitory effects are represented by
pointed black and blunt grey arrows, respectively. APOBEC editing of single strand miRNAs associated
with AGO can affect miRNA activity or change miRNA specificity to different target mRNAs (left side of
the panel). On the other hand, APOBEC activity can also directly impact the RISC complex and perturb
its assembly (right side of the panel). (c) APOBEC/ADAR-mediated miRNA editing can modulate
miRNAs activity through different mechanisms. First, editing of the seed sequence on miRNAs can
change their specificities for given mRNAs or ceRNAs (upper panels). Second, editing of the MRE on
mRNA targets can either impede the recognition and binding of miRNAs (middle panels), or on the
contrary, modify MREs, thereby allowing binding of miRNAs that were not recognizing the unedited
MRE (lower panels).
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4. Editing in miRNA Biogenesis and Activity

4.1. miRNA Maturation

Several lines of evidence support a key role for RNA editing on the maturation processes of
miRNAs (Figure 1c). First, ablation of ADARs in Caenorhabditis elegans and in mice was reported to
compromise pri- or pre-miRNA processing, resulting in altered miRNA levels [57]. Second, in human
cell lines (HEK293 cells), destabilization of miRNA structure by editing events on regions outside
of seed sequences resulted in alterations of (i) miRNA processing by the DROSHA/DICER complex
(e.g., miR-151, let7-g, miR-33, miR-133a2, miR-197, miR-203 and miR-379) [58,59], and (ii) miRNA
strand-selection and loading onto AGO [60,61]. In addition, adenosine deamination was shown to
introduce specific mismatches potentially recognized by inosine-specific RBPs with endonuclease
activity such as Tudor staphylococcal nuclease (Tudor-SN) and endonuclease V (ENDOV) [62–64].
Such events affect both level of mature miRNAs and their activities (Figure 3a). It was, for example,
shown that editing of pri-miR-142 in HEK293 cells inhibited DROSHA cleavage and led to Tudor-SN
degradation of the edited miRNA [12]. Consistently with these findings, increased levels of miR-142
were found in hematopoietic tissues of B-lineage-specific ADAR1 knock-out mice compared to
wild-type controls [12]. Furthermore, editing of pri- or pre-miR-151 was reported to inhibit DICER
processing [59], while another recent report indicates that ADAR2 edits precursors of miR-221, miR-222
and miR-21 in the brain, thereby impairing processing and maturation of these oncogenic miRNAs [45].

Conversely, editing can also favor the stability, processing and maturation of miRNAs (Figure 3a).
For example, editing of primary miR-376a-1 at position +4 increases the stability of the molecule
compared to the unedited one. This specific editing event was shown to be conserved between different
human tissues (brain and placenta) and in primate brain tissues [65]. Miscellaneous effects of miRNA
editing were also observed in gastric cancer cells (AGS and MKN 45 cell lines), where edited miRNAs
are either upregulated, e.g., miR-345-5p, miR-149-5p, let-7a-5p and miR-221-5p, or downregulated,
e.g., miR-146b-5p, miR-148a-3p miR-22-3p and miR-302a-3p, following ADAR1p150 knock down [66].
Finally, editing regulates the expression of polycistronic miRNA clusters, as suggested by experimental
evidence in Drosophila melanogaster, where ADAR editing of primary let-7 cluster at different sites
selectively modify the processing of distinct miRNAs depending on the editing position [67].

4.2. miRNA–mRNA Interactions

Editing of seed sequences of miRNAs may not only impair their target recognition but also
redirect them to a different network of mRNAs or competing RNAs (Figure 3) [13,16]. This is typically
illustrated by the case of the edited and unedited forms of miR-455-5p, which recognize different
target genes, thereby contributing to distinct outcomes in melanoma development/progression [68].
Another striking example of this effect is mir-376a*, which targets different mRNAs under its edited
and unedited form, i.e., autocrine motility factor receptor (AMFR) and Ras-related protein 2A (RAP2A)
respectively, thereby promoting glioblastoma development and progression when a decreased editing
capacity occurs in the brain [69]. miRNA editing (e.g., A-to-I substitutions) may have also other
functional consequences as in the case of miR-376, miR-22 and miR-191, where A to-I substitutions
impair the thermodynamics of nucleotide pairing, leading to weaker miRNA MRE binding of known
targets of the unedited forms, consequently, modifying the silencing efficacy of these miRNAs [70]. Of
note, editing activity on miRNAs is limited by the stoichiometry of editing enzymes expressed in cells;
thus, both edited and unedited forms of miRNAs are usually found in the same cell and in variable
ratios depending on the cell type. mRNA targets modulated by a single miRNA are, therefore, highly
dependent of this cellular edited/unedited ratio, as well as the related cellular processes.

RNA editing can also modulate miRNA activity indirectly by modifying MREs of their
corresponding target mRNAs (Figure 3c) [71–73]. For example, loss of edited sites in the 3′-UTR of
phosphatase and actin regulator 4 gene (PHACTR4) due to downregulation of ADAR1 prevented
the binding of miR-196a-3p, resulting in higher protein levels of PHACTR4 [66]. As well, ADAR1
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knockdown in the hepatic cell line Huh-7 correlated with upregulation of human aryl hydrocarbon
receptor (AhR) due to loss of miR-378 target site on its 3′-UTR [74]. Finally, APOBEC1 knockout in
mice led to 238 C-to-U substitutions on the 3′-UTRs of several genes, modifying the pattern of miRNAs
susceptible to modulate their expressions [56].

4.3. miRNA–ceRNA Interactions

Competing endogenous RNAs, including pseudogenes, circular RNAs and lncRNAs, play a major
role in the regulation of miRNA activity by acting as natural miRNA sponges or decoys [75]. Indeed,
multiple MREs are present in ceRNAs and enable direct interactions with miRNAs, thereby preventing
binding of these miRNAs to their respective target mRNAs (Figure 1d). The role of ceRNAs in various
cellular processes (e.g., cell cycle, apoptosis) is well established, and alteration of their expression
contributes to the onset of various pathologies [76–78]. One representative and well-studied example
of such regulation is provided by the phosphatase and tensin homologue, pseudogene 1 (PTENP1),
which can sponge various miRNAs (e.g., miR-21, miR-106b and miR-93) targeting the 3′UTR of the
tumor suppressor gene phosphatase and tensin homologue (PTEN) [79,80]. Accordingly, PTENP1 acts
as a tumor suppressor, and its loss leads to a reduction of PTEN expression in various cancers [79–82].
It is, therefore, clear that editing on miRNA seed-sequences or their corresponding MREs on ceRNAs
may impair their interaction, leading to imbalance in these regulatory mechanisms and functional
outcomes. Of note, emerging evidence indicates that lncRNAs are also subjected to RNA editing [83,84].
The potential impact of editing on ceRNA–miRNA interactions is currently likely underestimated, but
it may represent an important mechanism of epigenetic plasticity.

4.4. Regulation of the miRNA Editing Machinery by RNA-Binding Proteins (RBPs)

RNA-binding proteins are a family of multi-functional proteins capable to directly interact
with mature transcripts and miRNAs, or to form complexes with other regulatory factors, thereby
modulating miRNA editing, processing or activity (Figure 1c,d) [85–87]. RBPs binding to miRNAs
or competition of RBPs and miRNAs for specific binding sites on mRNA targets are also important
regulatory mechanisms of gene expression [85,86] that can potentially be deeply affected by RNA
editing. For example, this is the case of human antigen R (HuR), an RBP with specificity for AU-rich
elements, which competes with miRNAs (e.g., miR-21) for binding sites in the 3′UTR of target mRNAs
(i.e., PDCD4, proinflammatory tumor suppressor protein programmed cell death 4), thereby stabilizing
this transcript as opposed to the effects of miRNAs. Binding of HuR to these specific 3′UTR sequences
can be modulated by A-to-I editing of target mRNAs [85]. In addition, binding sites for HuR are present
in close proximity to ADAR1 binding sites, and both enzymes appear to directly or indirectly interact
to regulate transcript stability [88,89]. For example, ADAR1 and ADAR2 prevent destabilization of
the Cat2 transcribed nuclear RNA (CTN) transcript, which is mediated by HuR in complex with
poly(A)-specific ribonuclease deadenylase (PARN), by competing for specific binding sites within the
target transcript [90,91].

Finally, RBP—-miRNA interactions can also be regulated by editing proteins, as illustrated
by APOBEC3G, which counteracts the inhibitory effect of dead-end protein homolog 1 (DND1) on
miRNA–mRNA interactions, thereby restoring for example the inhibitory activities of miR-372 and
miR-206 on their mRNA targets [87].

5. Tools to Study miRNA Editing

Classical genetic approaches of gain and/or loss of function of editing enzymes in rodents have
been performed to investigate the biological relevance of RNA editing mechanisms [92]. However,
knockout of genes such as Adar leads to non-viable embryos; thus, preventing further analyses [92].
Therefore, most of the information regarding the biological role of these enzymes has been gained
from in vitro experiments designed to address the impact of editing activity on miRNAs, as described
in other sections. In this regard, methodologies to modify nucleic acids within living cells have been
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developed; e.g., site-directed RNA editing (SRDE) systems. SRDE is based on cell transfection of
chimeric proteins, including deaminase domains (DD) from ADAR1/2 and guide RNAs molecules
allowing targeting of the chimera to the RNA to edit [93–95]. SRDE techniques were developed using
a bacteriophage λn peptide fused to ADAR2 DD. The λn peptide recognizes a specific boxB hairpin
RNA, which, in addition to the sequence complementary to the desired target mRNA, is encoded by
the guide RNA [95,96]. The methodology evolved with the generation of either wild-type or mutated
ADAR1/2 DD fused to a SNAP-tag, which has the advantage of recognizing and binding to chemically
modified guide RNAs [94,97]. More recently, the CRISPR-Cas13b RNA editing for programmable
A-to-I replacement (REPAIR) system has been established by fusing a Cas13b protein and wild-type or
mutated ADAR1/2 DD, and it acts similarly to the CRISPR-Cas9 system [93]. This REPAIR system
also triggers RNA editing under the control of guide RNAs. These methodologies allow, to some
extent, guided A-to-I substitution in the transcriptome; therefore, representing key tools with which
to decipher the functional consequences of miRNA editing. Optimization of these methods aims at
overcoming significant issues associated with these approaches, such as off-target effects, generation
of complex guide RNAs molecules and variability in the editing efficiency of large RNA targets in
particular. In addition, since SRDE is currently not used to edit miRNAs, whether this approach is
applicable to small size RNAs remains to be evaluated. Finally, a powerful alternative to investigate the
functional relevance of miRNA editing remains to be the usage of synthetic modified oligonucleotides
mimicking or inhibiting the edited miRNA of interest, one which can efficiently be incorporated in vitro
by cultured cells or in vivo following venous injections [20,70].

Regarding the detection of RNA editing events per se, all currently available methods are based on
comparison of complementary DNA (cDNA) sequences obtained from reverse transcribed (RT) RNAs
with the original genomic information of samples under consideration or with miRNA sequences
provided by miRNA databases [98]. The identification of A-to-G or C-to-T substitutions (since during
reverse transcription I is recognized as G and U as T) delineates edited sites, provided that sequencing
techniques are accurate and do not introduce errors. Despite the simplistic concept, identification
and validation of these modifications specifically in miRNAs, remains complex due in particular, to
differences between methodological protocols (e.g., between commercially available kits for RNA
isolation) used to isolate and to prepare libraries of miRNAs. Indeed, distinct biases are associated with
different methodological protocols and their efficiencies to prepare miRNA libraries, thereby leading
to potential discrepant analyses (e.g., amounts of false positives) between studies [99]. To identify
editing events in small regions of interest, e.g., precursor/mature miRNAs or intronic/untranslated
regions of genes harboring MREs, Sanger sequencing on gDNA and cDNA amplified by PCR usually
allows one to recognize edited sites. However, interpretation of the data might be distorted due to
the fact that not all transcripts of the same sequence might be modified [100]. Conversely, to detect
multiple editing events in the same transcript or sample, next generation sequencing (NGS) techniques
are more appropriate [101].

Several bioinformatics tools and pipelines have been designed to eliminate potential artefacts
and false positive editing events when analyzing sequencing data that typically follow similar
workflows. In addition, processing pipelines can be differentially designed to take into consideration
various parameters used to filter and annotate reads as miRNAs; i.e., size exclusion [102], minimum
free energy to predict secondary structure, number and type of mismatches and alignments with
either genomic libraries [103] or available miRNA databases (e.g., miRbase or mirGeneDB) [102,104].
Processing pipelines may also vary in their depths of analyses, some of them assessing only the
abundance of edited miRNA forms (e.g., miRSeqNovel [105], isomiReX [106], IsomiRage [107],
MIRPIPE [108], miRge 2.0 [102] or mirPRo [109]), while others allow one to identify targets of edited
miRNAs (e.g., SeqBuster [110], iMir [111] and Prost! [112]) and related genes and pathway enrichment,
and protein–protein interactions (e.g., CPSS 2.0 [113], miRGator v3.0 [114], miRTools 2.0 [115] and
DeAnniso [116]). Finally, whether available algorithms are user-friendly or not, free or paid and allow
parameters changes or not, often depends of whether these tools are available online (e.g., CPSS2.0 [113];
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miRGator v3.0 [114]; miRTools 2.0 [115]; MIRPIPE [108]; sRNAbench [117]; DeAnnIso [116]), or require
a local installation using the terminal, or are provided as independent packages for use with Python/R
(e.g., SeqBuster [110], miRSeqNovel [105], iMir [111], IsomiRage [107], miRge 2.0 [102], mirPRo [109]
and Prost! [112]). The more recent online algorithms are usually faster, but do not always allow one
to analyze data in batch mode [108,117]. This variability of protocols and pipelines dedicated to the
identification of miRNA editing sites from sequencing data can of course strengthen the reliability
of data obtained through different bioinformatic approaches, but also can lead to differences and
inconsistencies between studies.

Finally, recent progresses of single-cell (sc) omics-related methods should help with investigating
the variability of miRNA profiles and editing between single cells within the same tissue. In this
regard, a recent report by Wang et al. (2019) highlighted different miRNA and mRNA profiles between
single cells expanded from a K562 cell line, as well as potential molecular mechanisms underlying
the observed transcriptomic variability [118]. Improvements in the methods to prepare and process
transcript libraries coupled to scRNA-seq techniques should greatly advance, in the future, our
understanding of the functional role of miRNA editing in transcriptome variability of single cells [119].

6. miRNA-Dependent Regulation of Editing—Closing the Loop

Regulation of ADAR and APOBEC RNA editing enzymes is currently poorly understood, but
based on bioinformatic predictions (Figure 4) and nascent experimental evidence, it is likely that
reciprocal regulation between miRNA and editing enzymes may occur. In this regard, miRwalk 2.0
database predicts several miRNAs to target ADAR1, ADAR2 and ADAR3 (Figure 4a). However, the
functional relevance of miRNA-based regulation of editing enzymes remains to be firmly established.
Currently, only one study has reported downregulation of ADAR1 by miR-17 and miR-432 in melanoma
cells, a mechanism suggested to foster tumor growth [120]. Although nothing is known about APOBECs’
regulation by miRNAs, an interesting observation supports a functional regulation by miRNAs of this
class of enzymes. Indeed, genetic polymorphisms exist where the APOBEC3A coding sequence is
fused to the APOBEC3B 3′UTR. This hybrid fusion product is overexpressed compared to wild type
APOBEC3A, and hyper editing activity on nuclear DNA is observed [121]. One hypothesis supporting
this phenotype is that APOBEC3A expression is repressed to some extent through 3′UTR-dependent
mechanisms, potentially through the action of miRNAs, and this repression is abolished when its 3′UTR
sequence is exchanged with the one of APOBEC3B. Consistent with this concept, our bioinformatic
analysis of the APOBEC3A 3′UTR using the miRWalk 2.0 database reveals the presence of several
potential miRNA-binding sites (Figure 4b). Further analyses and experimental evidence are now
required to assess the functional relevance of reciprocal regulatory interactions between miRNAs and
editing enzymes in both physiological and pathological conditions.
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Figure 4. Predicted human miRNAs potentially regulating ADARs and APOBECs expressions.
(a) Predicted human miRNAs targeting the three ADAR isoforms. (b) Predicted human miRNAs
targeting the three APOBEC isoforms. The lists of predicted miRNAs modulating ADARs or APOBECs
were retrieved from the miRWalk 2.0 database. Predicted miRNAs were obtained using 12 different
algorithms (i.e., miRWalk2.0, MicroT4, miRanda, miRBridge, miRDB, miRMap, miRNAMap, PICTAR2,
PITA, RNA22, RNAhybrid and TargetScan). Only miRNAs predicted by at least five different algorithms
were considered.

7. miRNA Editing in Pathophysiological Processes

7.1. Development

In early stages of human embryogenesis (eight cells to the morula stage), RNA editing activity was
reported to be low [27], but whether this observation can be extrapolated to miRNA editing is unknown.
Nevertheless, in murine E15 embryonic stage miRNA editing events were reported to be rare, but to
increase with postnatal development [122]. An increased miRNA editing during postnatal development
and aging was observed in humans, and macaques as well, and several miRNAs, such as miR-376b,
miR-376c, miR-381, miR-379, miR-411 and miR-497, showed an age-correlated increase in editing
frequency in both species [33]. A higher number of mature miRNAs was found in embryonic tissues
from ADAR2-deficient and ADAR1/ADAR2-deficient mice, indicating that miRNA editing leads more
to the inhibition of miRNA processing, rather than its enhancement [104]. Interestingly, in the same
study, only slight differences in miRNA abundances were detected in embryos from ADAR2-deficient
and ADAR1/ADAR2-deficient mice, emphasizing the relevance of ADAR2 for miRNA editing.

In both humans and mice, neural tissues display significantly higher editing levels than non-neural
tissues [33]. An increased A-to-I editing in the mammalian brain throughout development was reported
to lead to alterations of miR-381 and miR-376b, thereby affecting their target specificity, among which
pumilio RNA binding family member 2 (PUM2), a translational repressor negatively regulating
dendritic outgrowth, was identified [122]. Moreover, alterations of miRNA abundance by inhibiting
ADAR activity resulted in synapsin 2 (SYN2) downregulation and upregulation of miR-153, miR-30
and miR-32, all predicted to target SYN2 [104]. The impact of miRNA editing on the expression
of SYN2, which contributes to synaptogenesis, and PUM2, which regulates dendritic outgrowth,
are representative example illustrating the functional relevance miRNA editing in developmental
processes [104,122].
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7.2. Obesity and Metabolic Diseases

The relevance of miRNA editing in metabolic diseases has not been currently evaluated, but
miRNAs are playing key roles in these disorders (see, for example, [20]) and several lines of evidence
indicate that RNA editing enzymes might represent key regulators of metabolic processes [20].
For instance, ADAR1 and ADAR2 are upregulated and RNA editing is increased in β-cells of the
pancreases of diet-induced obese and insulin-resistant mice [123]. In the same cells, ADAR2 expression
was further reported to be regulated by glucose and the nutritional status of mice, suggesting that
RNA editing might regulate beta-cells’ activity and glucose metabolism [124]. In another study,
transgenic mice overexpressing a catalytically inactive ADAR2 isoform were reported to develop
hyperphagia-mediated obesity [125]. Finally, a decreased activity of APOBEC1 was shown to promote
the unedited form of the ApoB protein, a phenotype associated with atherosclerosis [25,56]. As already
mentioned, whether metabolic disorders related to deregulations of editing enzymes are mediated
through miRNAs-dependent mechanisms remains unknown and needs to be evaluated [125].

7.3. Inflammation and Immunity

Although direct evidence supporting a role for miRNA editing in inflammation is scarce,
RNA interference and editing, and dysregulations of editing enzymes, have been associated to
the development and progression of several inflammatory conditions [103–106]. Based on DICE
project database (https://dice-database.org/) analysis [126], ADAR and APOBEC editing enzymes
are differentially expressed between immune cells subtypes, e.g., naïve and activated B and T cells,
suggesting different editing activities associated with immune cell activation (Figure 2B). JAK2
signaling induced upregulation of ADAR1 expression in immune cells was experimentally confirmed
and suggested to impact miRNA processing, since ADAR1 editing activity affected let-7 biogenesis
in isolated hematopoietic progenitor cells and in the leukemic cell line K562 [127,128]. APOBEC3A
was also reported to induce RNA editing in monocytes and macrophages following pro-inflammatory
stimuli (i.e., hypoxia and interferon) leading to editing and downregulation of several genes, possibly
via miRNA targeting [29]. Along the same line, increased editing of 3′-UTR mRNAs by APOBEC3G
was observed in natural killer (NK) cells following hypoxic stimuli [129]. Finally, several miRNAs
known to be significantly edited, e.g., miR-155 and miR-222, are essential for hematopoiesis and
myeloid/lymphoid lineage commitment [130], and deeply so, for the functions and adaptability of
immune cells [131,132].

The importance of miRNA editing in inflammatory processes does not only rely on the direct
modulation of immune cells functions specifically. Indeed, miRNA editing was equally shown to
contribute to changes in specific miRNA targets induced by hypoxia [3], a condition modulating
immune responses and progression of related pathologic conditions (e.g., inflammatory bowel disease,
liver diseases and cancers) [133]. Supporting this concept, 31 A-to-I editing events were observed in
miRNAs of a human breast cancer cell line exposed to hypoxic conditions (e.g., miR-200b-3p, miR-148b,
miR-27a-5p and -3p miR-421, etc.) with 83% of nucleotides substitution occurring in miRNA seed
sequences [3].

7.4. Cancer

Similarly to metabolic diseases, the functional relevance of miRNA editing in cancer is still a
field of research in its infancy. Most of the evidence suggesting a role for miRNA editing in cancer
initiation and/or development results from observed alterations of the expression of editing enzymes in
cancerous cells and in cancers of the nervous system, where editing activity is high. Editing enzymes
display highly versatile expression levels, depending on the cancer type, when compared to normal
tissue (Figure 5) [134]. ADAR1, which is the most expressed enzyme of the ADAR family, was found
downregulated in adrenocortical carcinoma (ACC), while it was upregulated in cholangiocarcinoma
(CHOL) [134]. In glioblastoma (GBM) both ADAR2 and ADAR3 expression are decreased, suggesting

https://dice-database.org/
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low levels of RNA editing [134]. Inhibition of A-to-I miRNA editing was further confirmed in high-grade
gliomas to lead to an increase of unedited miRNAs, such as miR-376a [69]. Similarly, low editing
of miR-589 in glioma was reported to change its specificity from disintegrin and metalloproteinase
domain-containing protein 12 (ADAM12), a primary target of miR-589, towards protocadherin 9
(PCDH9), thereby promoting cell migration and invasion [135]. This example highlights the high
potential of miRNA editing to influence carcinogenesis in specific organs.

Figure 5. Expression patterns of ADAR and APOBEC editing enzymes in tumors. The heat map displays
the mean fold change, following a log2 transformation, of ADAR and APOBEC gene expression in tumors
from different tissues compared to their related non-tumoral tissues. Expression levels of each gene were
retrieved using GEPIA2 database (http://gepia2.cancer-pku.cn/#index), which includes non-tumoral
tissue and tumor samples from the Cancer Genome Atlas (TCGA). Fold changes were calculated using
the ratio of tumor versus non-tumoral expression levels. Heat map was designed using Morpheus
(https://software.broadinstitute.org/morpheus). Tumors are identified according with the TCGA
nomenclature: ACC—adrenocortical carcinoma; BLCA—bladder urothelial carcinoma; BRCA—breast
invasive carcinoma; CESC—cervical squamous cell carcinoma and endocervical adenocarcinoma;
CHOL—cholangiocarcinoma; COAD—colon adenocarcinoma; DLBC—lymphoid neoplasm diffuse
large B-cell lymphoma; ESCA—esophageal carcinoma; GBM—glioblastoma multiform; HNSC—head
and neck squamous cell carcinoma; KICH—kidney chromophobe; KIRC—kidney renal clear cell
carcinoma; KIRP—kidney renal papillary cell carcinoma; LAML – lymphoblastic acute myeloid
leukemia; LGG—brain lower grade glioma; LIHC—liver hepatocellular carcinoma; LUAD—lung
adenocarcinoma; LUSC—lung squamous cell carcinoma; MESO—mesothelioma; OV—ovarian
serous cystadenocarcinoma; PAAD—pancreatic adenocarcinoma; PCPG—pheochromocytoma and
paraganglioma; PRAD—prostate adenocarcinoma; READ—rectum adenocarcinoma; SARC—sarcoma;
SKCM—skin cutaneous Melanoma; STAD—stomach adenocarcinoma; TGCT—testicular germ cell
tumors; THCA—thyroid carcinoma; THYM—thymoma; UCEC—uterine corpus endometrial carcinoma;
UCS—uterine carcinosarcoma; UVM—uveal melanoma.

Even though miRNA cytosine deamination by APOBECs remains controversial, expression of
these enzymes (APOBEC1, 3A and 3G) is also altered in cancers (Figure 5). APOBEC1 is upregulated
in tumor samples from different adenocarcinomas; e.g., from the colon (COAD), the pancreas (PAAD),
the rectum (READ) and the stomach (STAD). Other isoforms of APOBEC have been reported to have
opposite deregulations in specific cancer types, such as in diffuse large B-cell lymphoma (DLBC), where
APOBEC3A is downregulated while expression of the 3G isoform is increased (Figure 5). In contrast,
both the 3A and 3G isoforms of APOBEC are overexpressed in acute myeloid leukemia (LAML) (Figure 5).

http://gepia2.cancer-pku.cn/#index
https://software.broadinstitute.org/morpheus
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A link between APOBEC3G and miRNA was previously suggested by Ding et al. (2012) [55], who
observed that overexpression of APOBEC3G in colorectal liver metastasis, promoted cell migration
and invasion due to the loss of miR-29-dependent repression of matrix metalloproteinase-2 (MMP-2).
However, whether APOBEC3G-dependent miR-29 downregulation in this case relies on the APOBEC3G
editing activity remains elusive [55]. Of interest, analyses of editing events occurring in different cancer
types revealed that 3′ UTR regions were the most edited sites of several cancer-related transcripts.
The authors of this study further confirmed that repression of a specific oncogene, i.e., mouse double
minute 2 homolog (MDM2), by miR-200b/c was impaired due to extensive editing of the MDM2
3′UTR [73]. Finally, edits of specific miRNAs can also potentially be used as biomarkers or prognostic
markers in cancer. In lung adenocarcinoma, several edited sites on mature miRNAs common to
most of the tumoral samples were identified [103]. Deep analyses of data available from The Cancer
Genome Atlas (TCGA), also allowed for some to correlate the prevalence of miRNA editing events
with ADAR1/2 expression, and to characterize A-to-I RNA editing hotspots in microRNAs of various
cancers that correlate with tumor subtype and behavior [136].

Based on the above evidence, it is highly conceivable that alterations of the expression/activity of
editing enzymes in cancer may represent key events contributing to carcinogenesis either by impacting
directly miRNA sequences, or indirectly by modifying the 3′UTR sequences of miRNAs-regulated
cellular factors driving carcinogenesis.

8. Conclusions

Since the discovery of miRNAs in 1993 [137], immense progress has been made in our knowledge
of the regulation and role of these small non-coding RNAs in cell physiology and in a variety of diseases.
The biology of miRNAs is much more complex than initially thought and new tools and approaches
need to be developed in order to further unravel mechanisms regulating their actions. miRNA editing
is a recently discovered mechanism that adds a layer of complexity in the coordinated action of miRNAs
in a myriad of pathophysiological processes. An in-depth understanding of mechanisms regulating
miRNA functions, such as miRNA editing, is a necessary prerequisite to not only comprehend the
overall fundamentals of miRNA biology, but to envision therapeutic targeting of miRNAs in specific
pathologies. Indeed, the degree and specificity of miRNA editing are important parameters to assess
when considering, for example, the clinical use of synthetic nucleotides mimicking or inhibiting specific
miRNAs, since they can impact therapeutic success. Furthermore, miRNA editing may provide us
with important and specific biomarkers, particularly if edited miRNAs are secreted in the blood, for
currently undetectable pathologies or for staging diseases such as cancers.

Author Contributions: Writing—original draft preparation, M.C.d.S., M.G., D.D., C.S. and M.F.; writing—review
and editing, M.C.d.S., C.S., M.G., D.D. and M.F.; funding acquisition, M.F.

Funding: This work was supported by the Swiss National Science Foundation (grants 310030-172862 and
CRSII3-160717).

Acknowledgments: The figures were constructed with images taken from Smart Servier Medical Art collection
(92284 Suresnes – France).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Vasudevan, S.; Tong, Y.; Steitz, J.A. Switching from repression to activation: MicroRNAs can up-regulate
translation. Science 2007, 318, 1931–1934. [CrossRef] [PubMed]

2. Bartel, D.P. MicroRNAs: Target recognition and regulatory functions. Cell 2009, 136, 215–233. [CrossRef]
[PubMed]

3. Nigita, G.; Acunzo, M.; Romano, G.; Veneziano, D.; Lagana, A.; Vitiello, M.; Wernicke, D.; Ferro, A.;
Croce, C.M. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic
Acids Res. 2016, 44, 6298–6308. [CrossRef] [PubMed]

http://dx.doi.org/10.1126/science.1149460
http://www.ncbi.nlm.nih.gov/pubmed/18048652
http://dx.doi.org/10.1016/j.cell.2009.01.002
http://www.ncbi.nlm.nih.gov/pubmed/19167326
http://dx.doi.org/10.1093/nar/gkw532
http://www.ncbi.nlm.nih.gov/pubmed/27298257


Int. J. Mol. Sci. 2019, 20, 6249 16 of 22

4. Turunen, T.A.; Roberts, T.C.; Laitinen, P.; Vaananen, M.A.; Korhonen, P.; Malm, T.; Yla-Herttuala, S.;
Turunen, M.P. Changes in nuclear and cytoplasmic microRNA distribution in response to hypoxic stress. Sci.
Rep. 2019, 9, 10332. [CrossRef] [PubMed]

5. Lee, H.Y.; Zhou, K.; Smith, A.M.; Noland, C.L.; Doudna, J.A. Differential roles of human Dicer-binding
proteins TRBP and PACT in small RNA processing. Nucleic Acids Res. 2013, 41, 6568–6576. [CrossRef]

6. Van den Berg, A.; Mols, J.; Han, J. RISC-target interaction: Cleavage and translational suppression. Biochim.
Biophys. Acta 2008, 1779, 668–677. [CrossRef]

7. Ota, H.; Sakurai, M.; Gupta, R.; Valente, L.; Wulff, B.E.; Ariyoshi, K.; Iizasa, H.; Davuluri, R.V.; Nishikura, K.
ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing.
Cell 2013, 153, 575–589. [CrossRef]

8. Hagan, J.P.; Piskounova, E.; Gregory, R.I. Lin28 recruits the TUTase Zcchc11 to inhibit let-7 maturation in
mouse embryonic stem cells. Nat. Struct. Mol. Biol. 2009, 16, 1021–1025. [CrossRef]

9. Heo, I.; Joo, C.; Kim, Y.K.; Ha, M.; Yoon, M.J.; Cho, J.; Yeom, K.H.; Han, J.; Kim, V.N. TUT4 in concert
with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 2009, 138, 696–708.
[CrossRef]

10. Thornton, J.E.; Chang, H.M.; Piskounova, E.; Gregory, R.I. Lin28-mediated control of let-7 microRNA
expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 2012, 18, 1875–1885. [CrossRef]

11. Nussbacher, J.K.; Yeo, G.W. Systematic Discovery of RNA Binding Proteins that Regulate MicroRNA Levels.
Mol. Cell 2018, 69, 1005–1016.e7. [CrossRef] [PubMed]

12. Yang, W.; Chendrimada, T.P.; Wang, Q.; Higuchi, M.; Seeburg, P.H.; Shiekhattar, R.; Nishikura, K. Modulation
of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol.
2006, 13, 13–21. [CrossRef] [PubMed]

13. Cui, Y.; Huang, T.; Zhang, X. RNA editing of microRNA prevents RNA-induced silencing complex recognition
of target mRNA. Open Biol. 2015, 5, 150126. [CrossRef] [PubMed]

14. Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 2019, 20,
21–37. [CrossRef] [PubMed]

15. Bhaskaran, M.; Mohan, M. MicroRNAs: History, biogenesis, and their evolving role in animal development
and disease. Vet. Pathol. 2014, 51, 759–774. [CrossRef]

16. Sobolewski, C.; Calo, N.; Portius, D.; Foti, M. MicroRNAs in fatty liver disease. Semin. Liver Dis. 2015, 35,
12–25. [CrossRef]

17. O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and
Circulation. Front. Endocrinol. 2018, 9, 402. [CrossRef]

18. Place, R.F.; Li, L.C.; Pookot, D.; Noonan, E.J.; Dahiya, R. MicroRNA-373 induces expression of genes with
complementary promoter sequences. Proc. Natl. Acad. Sci. USA 2008, 105, 1608–1613. [CrossRef]

19. Xiao, M.; Li, J.; Li, W.; Wang, Y.; Wu, F.; Xi, Y.; Zhang, L.; Ding, C.; Luo, H.; Li, Y.; et al. MicroRNAs activate
gene transcription epigenetically as an enhancer trigger. RNA Biol. 2017, 14, 1326–1334. [CrossRef]

20. Gjorgjieva, M.; Sobolewski, C.; Dolicka, D.; Correia de Sousa, M.; Foti, M. miRNAs and NAFLD: From
pathophysiology to therapy. Gut 2019. [CrossRef]

21. Leung, A.K.L. The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol. 2015, 25,
601–610. [CrossRef] [PubMed]

22. Bar, C.; Thum, T.; de Gonzalo-Calvo, D. Circulating miRNAs as mediators in cell-to-cell communication.
Epigenomics 2019, 11, 111–113. [CrossRef] [PubMed]

23. Liao, J.Y.; Ma, L.M.; Guo, Y.H.; Zhang, Y.C.; Zhou, H.; Shao, P.; Chen, Y.Q.; Qu, L.H. Deep sequencing of
human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of
miRNAs and tRNA 3’ trailers. PLoS ONE 2010, 5, e10563. [CrossRef] [PubMed]

24. Krutzfeldt, J.; Poy, M.N.; Stoffel, M. Strategies to determine the biological function of microRNAs. Nat. Genet.
2006, 38, S14–S19. [CrossRef] [PubMed]

25. Blanc, V.; Davidson, N.O. APOBEC-1-mediated RNA editing. Wiley Interdiscip. Rev. Syst. Biol. Med. 2010, 2,
594–602. [CrossRef] [PubMed]

26. Krishnan, A.; Iyer, L.M.; Holland, S.J.; Boehm, T.; Aravind, L. Diversification of AID/APOBEC-like deaminases
in metazoa: Multiplicity of clades and widespread roles in immunity. Proc. Natl. Acad. Sci. USA 2018, 115,
E3201–E3210. [CrossRef]

http://dx.doi.org/10.1038/s41598-019-46841-1
http://www.ncbi.nlm.nih.gov/pubmed/31316122
http://dx.doi.org/10.1093/nar/gkt361
http://dx.doi.org/10.1016/j.bbagrm.2008.07.005
http://dx.doi.org/10.1016/j.cell.2013.03.024
http://dx.doi.org/10.1038/nsmb.1676
http://dx.doi.org/10.1016/j.cell.2009.08.002
http://dx.doi.org/10.1261/rna.034538.112
http://dx.doi.org/10.1016/j.molcel.2018.02.012
http://www.ncbi.nlm.nih.gov/pubmed/29547715
http://dx.doi.org/10.1038/nsmb1041
http://www.ncbi.nlm.nih.gov/pubmed/16369484
http://dx.doi.org/10.1098/rsob.150126
http://www.ncbi.nlm.nih.gov/pubmed/26674414
http://dx.doi.org/10.1038/s41580-018-0045-7
http://www.ncbi.nlm.nih.gov/pubmed/30108335
http://dx.doi.org/10.1177/0300985813502820
http://dx.doi.org/10.1055/s-0034-1397345
http://dx.doi.org/10.3389/fendo.2018.00402
http://dx.doi.org/10.1073/pnas.0707594105
http://dx.doi.org/10.1080/15476286.2015.1112487
http://dx.doi.org/10.1136/gutjnl-2018-318146
http://dx.doi.org/10.1016/j.tcb.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26410406
http://dx.doi.org/10.2217/epi-2018-0183
http://www.ncbi.nlm.nih.gov/pubmed/30638052
http://dx.doi.org/10.1371/journal.pone.0010563
http://www.ncbi.nlm.nih.gov/pubmed/20498841
http://dx.doi.org/10.1038/ng1799
http://www.ncbi.nlm.nih.gov/pubmed/16736018
http://dx.doi.org/10.1002/wsbm.82
http://www.ncbi.nlm.nih.gov/pubmed/20836050
http://dx.doi.org/10.1073/pnas.1720897115


Int. J. Mol. Sci. 2019, 20, 6249 17 of 22

27. Qiu, S.; Li, W.; Xiong, H.; Liu, D.; Bai, Y.; Wu, K.; Zhang, X.; Yang, H.; Ma, K.; Hou, Y.; et al. Single-cell RNA
sequencing reveals dynamic changes in A-to-I RNA editome during early human embryogenesis. BMC
Genom. 2016, 17, 766. [CrossRef]

28. Hwang, T.; Park, C.K.; Leung, A.K.; Gao, Y.; Hyde, T.M.; Kleinman, J.E.; Rajpurohit, A.; Tao, R.; Shin, J.H.;
Weinberger, D.R. Dynamic regulation of RNA editing in human brain development and disease. Nat.
Neurosci. 2016, 19, 1093–1099. [CrossRef]

29. Sharma, S.; Patnaik, S.K.; Thomas Taggart, R.; Kannisto, E.D.; Enriquez, S.M.; Gollnick, P.; Baysal, B.E.
APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages. Nat. Commun. 2015,
6, 6881. [CrossRef]

30. Nishikura, K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 2016, 17,
83–96. [CrossRef]

31. Wheeler, E.C.; Washburn, M.C.; Major, F.; Rusch, D.B.; Hundley, H.A. Noncoding regions of C. elegans
mRNA undergo selective adenosine to inosine deamination and contain a small number of editing sites per
transcript. RNA Biol. 2015, 12, 162–174. [CrossRef] [PubMed]

32. Wang, Y.; Liang, H. When MicroRNAs Meet RNA Editing in Cancer: A Nucleotide Change Can Make a
Difference. Bioessays 2018, 40. [CrossRef] [PubMed]

33. Warnefors, M.; Liechti, A.; Halbert, J.; Valloton, D.; Kaessmann, H. Conserved microRNA editing in
mammalian evolution, development and disease. Genome Biol. 2014, 15, R83. [CrossRef] [PubMed]

34. Savva, Y.A.; Rieder, L.E.; Reenan, R.A. The ADAR protein family. Genome Biol. 2012, 13, 252. [CrossRef]
[PubMed]

35. Xu, L.-D.; Öhman, M. ADAR1 Editing and its Role in Cancer. Genes 2018, 10, 12. [CrossRef]
36. Melcher, T.; Maas, S.; Herb, A.; Sprengel, R.; Seeburg, P.H.; Higuchi, M. A mammalian RNA editing enzyme.

Nature 1996, 379, 460–464. [CrossRef]
37. Jain, M.; Mann, T.D.; Stulic, M.; Rao, S.P.; Kirsch, A.; Pullirsch, D.; Strobl, X.; Rath, C.; Reissig, L.; Moreth, K.;

et al. RNA editing of Filamin A pre-mRNA regulates vascular contraction and diastolic blood pressure.
EMBO J. 2018, 37, e94813. [CrossRef]

38. Ishiguro, S.; Galipon, J.; Ishii, R.; Suzuki, Y.; Kondo, S.; Okada-Hatakeyama, M.; Tomita, M.; Ui-Tei, K.
Base-pairing probability in the microRNA stem region affects the binding and editing specificity of human
A-to-I editing enzymes ADAR1-p110 and ADAR2. RNA Biol. 2018, 15, 976–989. [CrossRef]

39. Pestal, K.; Funk, C.C.; Snyder, J.M.; Price, N.D.; Treuting, P.M.; Stetson, D.B. Isoforms of RNA-Editing
Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ
Development. Immunity 2015, 43, 933–944. [CrossRef]

40. Hartner, J.C.; Schmittwolf, C.; Kispert, A.; Muller, A.M.; Higuchi, M.; Seeburg, P.H. Liver disintegration
in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 2004, 279,
4894–4902. [CrossRef]

41. Hartner, J.C.; Walkley, C.R.; Lu, J.; Orkin, S.H. ADAR1 is essential for the maintenance of hematopoiesis and
suppression of interferon signaling. Nat. Immunol. 2009, 10, 109–115. [CrossRef] [PubMed]

42. Deffit, S.N.; Hundley, H.A. To edit or not to edit: Regulation of ADAR editing specificity and efficiency.
Wiley Interdiscip. Rev. RNA 2016, 7, 113–127. [CrossRef] [PubMed]

43. Paul, D.; Sinha, A.N.; Ray, A.; Lal, M.; Nayak, S.; Sharma, A.; Mehani, B.; Mukherjee, D.; Laddha, S.V.; Suri, A.;
et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and
significantly hypoedited in glioblastoma multiforme. Sci. Rep. 2017, 7, 2466. [CrossRef] [PubMed]

44. Catalanotto, C.; Cogoni, C.; Zardo, G. MicroRNA in Control of Gene Expression: An Overview of Nuclear
Functions. Int. J. Mol. Sci. 2016, 17, 1712. [CrossRef]

45. Tomaselli, S.; Galeano, F.; Alon, S.; Raho, S.; Galardi, S.; Polito, V.A.; Presutti, C.; Vincenti, S.; Eisenberg, E.;
Locatelli, F.; et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in
glioblastoma. Genome Biol. 2015, 16, 5. [CrossRef]

46. Sharma, S.; Patnaik, S.K.; Taggart, R.T.; Baysal, B.E. The double-domain cytidine deaminase APOBEC3G is a
cellular site-specific RNA editing enzyme. Sci. Rep. 2016, 6, 39100. [CrossRef]

47. Salter, J.D.; Bennett, R.P.; Smith, H.C. The APOBEC Protein Family: United by Structure, Divergent in
Function. Trends Biochem. Sci. 2016, 41, 578–594. [CrossRef]

48. Lerner, T.; Papavasiliou, F.N.; Pecori, R. RNA Editors, Cofactors, and mRNA Targets: An Overview of the
C-to-U RNA Editing Machinery and Its Implication in Human Disease. Genes 2018, 10, 13. [CrossRef]

http://dx.doi.org/10.1186/s12864-016-3115-2
http://dx.doi.org/10.1038/nn.4337
http://dx.doi.org/10.1038/ncomms7881
http://dx.doi.org/10.1038/nrm.2015.4
http://dx.doi.org/10.1080/15476286.2015.1017220
http://www.ncbi.nlm.nih.gov/pubmed/25826568
http://dx.doi.org/10.1002/bies.201700188
http://www.ncbi.nlm.nih.gov/pubmed/29280160
http://dx.doi.org/10.1186/gb-2014-15-6-r83
http://www.ncbi.nlm.nih.gov/pubmed/24964909
http://dx.doi.org/10.1186/gb-2012-13-12-252
http://www.ncbi.nlm.nih.gov/pubmed/23273215
http://dx.doi.org/10.3390/genes10010012
http://dx.doi.org/10.1038/379460a0
http://dx.doi.org/10.15252/embj.201694813
http://dx.doi.org/10.1080/15476286.2018.1486658
http://dx.doi.org/10.1016/j.immuni.2015.11.001
http://dx.doi.org/10.1074/jbc.M311347200
http://dx.doi.org/10.1038/ni.1680
http://www.ncbi.nlm.nih.gov/pubmed/19060901
http://dx.doi.org/10.1002/wrna.1319
http://www.ncbi.nlm.nih.gov/pubmed/26612708
http://dx.doi.org/10.1038/s41598-017-02397-6
http://www.ncbi.nlm.nih.gov/pubmed/28550310
http://dx.doi.org/10.3390/ijms17101712
http://dx.doi.org/10.1186/s13059-014-0575-z
http://dx.doi.org/10.1038/srep39100
http://dx.doi.org/10.1016/j.tibs.2016.05.001
http://dx.doi.org/10.3390/genes10010013


Int. J. Mol. Sci. 2019, 20, 6249 18 of 22

49. Bennett, R.P.; Diner, E.; Sowden, M.P.; Lees, J.A.; Wedekind, J.E.; Smith, H.C. APOBEC-1 and AID are
nucleo-cytoplasmic trafficking proteins but APOBEC3G cannot traffic. Biochem. Biophys. Res. Commun. 2006,
350, 214–219. [CrossRef]

50. Rosenberg, B.R.; Hamilton, C.E.; Mwangi, M.M.; Dewell, S.; Papavasiliou, F.N. Transcriptome-wide
sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′ UTRs. Nat. Struct. Mol. Biol.
2011, 18, 230–236. [CrossRef]

51. Cole, D.C.; Chung, Y.; Gagnidze, K.; Hajdarovic, K.H.; Rayon-Estrada, V.; Harjanto, D.; Bigio, B.; Gal-Toth, J.;
Milner, T.A.; McEwen, B.S.; et al. Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related
CNS pathophysiology. Proc. Natl. Acad. Sci. USA 2017, 114, 13272–13277. [CrossRef]

52. Sharma, S.; Baysal, B.E. Stem-loop structure preference for site-specific RNA editing by APOBEC3A and
APOBEC3G. PeerJ 2017, 5, e4136. [CrossRef]

53. Liu, C.; Zhang, X.; Huang, F.; Yang, B.; Li, J.; Liu, B.; Luo, H.; Zhang, P.; Zhang, H. APOBEC3G inhibits
microRNA-mediated repression of translation by interfering with the interaction between Argonaute-2 and
MOV10. J. Biol. Chem. 2012, 287, 29373–29383. [CrossRef]

54. Huang, J.; Liang, Z.; Yang, B.; Tian, H.; Ma, J.; Zhang, H. Derepression of microRNA-mediated protein
translation inhibition by apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G)
and its family members. J. Biol. Chem. 2007, 282, 33632–33640. [CrossRef]

55. Ding, Q.; Chang, C.J.; Xie, X.; Xia, W.; Yang, J.Y.; Wang, S.C.; Wang, Y.; Xia, J.; Chen, L.; Cai, C.; et al.
APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human
hepatic metastasis. J. Clin. Investig. 2011, 121, 4526–4536. [CrossRef]

56. Blanc, V.; Park, E.; Schaefer, S.; Miller, M.; Lin, Y.; Kennedy, S.; Billing, A.M.; Ben Hamidane, H.; Graumann, J.;
Mortazavi, A.; et al. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA
editing in mouse small intestine and liver. Genome Biol. 2014, 15, R79. [CrossRef]

57. Warf, M.B.; Shepherd, B.A.; Johnson, W.E.; Bass, B.L. Effects of ADARs on small RNA processing pathways
in C. elegans. Genome Res. 2012, 22, 1488–1498. [CrossRef]

58. Kawahara, Y.; Megraw, M.; Kreider, E.; Iizasa, H.; Valente, L.; Hatzigeorgiou, A.G.; Nishikura, K. Frequency
and fate of microRNA editing in human brain. Nucleic Acids Res. 2008, 36, 5270–5280. [CrossRef]

59. Kawahara, Y.; Zinshteyn, B.; Chendrimada, T.P.; Shiekhattar, R.; Nishikura, K. RNA editing of the
microRNA-151 precursor blocks cleavage by the Dicer-TRBP complex. EMBO Rep. 2007, 8, 763–769.
[CrossRef]

60. Li, L.; Song, Y.; Shi, X.; Liu, J.; Xiong, S.; Chen, W.; Fu, Q.; Huang, Z.; Gu, N.; Zhang, R. The landscape of
miRNA editing in animals and its impact on miRNA biogenesis and targeting. Genome Res. 2018, 28, 132–143.
[CrossRef]

61. Iizasa, H.; Wulff, B.E.; Alla, N.R.; Maragkakis, M.; Megraw, M.; Hatzigeorgiou, A.; Iwakiri, D.; Takada, K.;
Wiedmer, A.; Showe, L.; et al. Editing of Epstein-Barr Virus-encoded BART6 MicroRNAs Controls Their
Dicer Targeting and Consequently Affects Viral Latency. J. Biol. Chem. 2010, 285, 33358–33370. [CrossRef]
[PubMed]

62. Garcia-Lopez, J.; Hourcade Jde, D.; Del Mazo, J. Reprogramming of microRNAs by adenosine-to-inosine
editing and the selective elimination of edited microRNA precursors in mouse oocytes and preimplantation
embryos. Nucleic Acids Res. 2013, 41, 5483–5493. [CrossRef] [PubMed]

63. Scadden, A.D. The RISC subunit Tudor-SN binds to hyper-edited double-stranded RNA and promotes its
cleavage. Nat. Struct. Mol. Biol. 2005, 12, 489–496. [CrossRef] [PubMed]

64. Morita, Y.; Shibutani, T.; Nakanishi, N.; Nishikura, K.; Iwai, S.; Kuraoka, I. Human endonuclease V is a
ribonuclease specific for inosine-containing RNA. Nat. Commun. 2013, 4, 2273. [CrossRef] [PubMed]

65. Gallego, A.; Hartasanchez, D.A.; Braso-Vives, M.; Garcia-Ramallo, E.; Lopez-Valenzuela, M.; Baena, N.;
Guitart, M.; Fernandez-Bellon, H.; Kondova, I.; Bontrop, R.; et al. RNA editing independently occurs at
three mir-376a-1 sites and may compromise the stability of the microRNA hairpin. Gene 2017, 628, 109–116.
[CrossRef]

66. Cho, C.J.; Jung, J.; Jiang, L.; Lee, E.J.; Kim, D.S.; Kim, B.S.; Kim, H.S.; Jung, H.Y.; Song, H.J.; Hwang, S.W.; et al.
Combinatory RNA-Sequencing Analyses Reveal a Dual Mode of Gene Regulation by ADAR1 in Gastric
Cancer. Dig. Dis. Sci. 2018, 63, 1835–1850. [CrossRef]

67. Chawla, G.; Sokol, N.S. ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids
Res. 2014, 42, 5245–5255. [CrossRef]

http://dx.doi.org/10.1016/j.bbrc.2006.09.032
http://dx.doi.org/10.1038/nsmb.1975
http://dx.doi.org/10.1073/pnas.1710493114
http://dx.doi.org/10.7717/peerj.4136
http://dx.doi.org/10.1074/jbc.M112.354001
http://dx.doi.org/10.1074/jbc.M705116200
http://dx.doi.org/10.1172/JCI45008
http://dx.doi.org/10.1186/gb-2014-15-6-r79
http://dx.doi.org/10.1101/gr.134841.111
http://dx.doi.org/10.1093/nar/gkn479
http://dx.doi.org/10.1038/sj.embor.7401011
http://dx.doi.org/10.1101/gr.224386.117
http://dx.doi.org/10.1074/jbc.M110.138362
http://www.ncbi.nlm.nih.gov/pubmed/20716523
http://dx.doi.org/10.1093/nar/gkt247
http://www.ncbi.nlm.nih.gov/pubmed/23571754
http://dx.doi.org/10.1038/nsmb936
http://www.ncbi.nlm.nih.gov/pubmed/15895094
http://dx.doi.org/10.1038/ncomms3273
http://www.ncbi.nlm.nih.gov/pubmed/23912718
http://dx.doi.org/10.1016/j.gene.2017.07.032
http://dx.doi.org/10.1007/s10620-018-5081-9
http://dx.doi.org/10.1093/nar/gku145


Int. J. Mol. Sci. 2019, 20, 6249 19 of 22

68. Shoshan, E.; Mobley, A.K.; Braeuer, R.R.; Kamiya, T.; Huang, L.; Vasquez, M.E.; Salameh, A.; Lee, H.J.;
Kim, S.J.; Ivan, C.; et al. Reduced adenosine-to-inosine miR-455-5p editing promotes melanoma growth and
metastasis. Nat. Cell Biol. 2015, 17, 311–321. [CrossRef]

69. Choudhury, Y.; Tay, F.C.; Lam, D.H.; Sandanaraj, E.; Tang, C.; Ang, B.-T.; Wang, S. Attenuated
adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. J. Clin.
Investig. 2012, 122, 4059–4076. [CrossRef]

70. Kume, H.; Hino, K.; Galipon, J.; Ui-Tei, K. A-to-I editing in the miRNA seed region regulates target mRNA
selection and silencing efficiency. Nucleic Acids Res. 2014, 42, 10050–10060. [CrossRef]

71. Gu, T.; Buaas, F.W.; Simons, A.K.; Ackert-Bicknell, C.L.; Braun, R.E.; Hibbs, M.A. Canonical A-to-I and C-to-U
RNA Editing Is Enriched at 3′UTRs and microRNA Target Sites in Multiple Mouse Tissues. PLoS ONE 2012,
7, e33720. [CrossRef] [PubMed]

72. Wang, Q.; Hui, H.; Guo, Z.; Zhang, W.; Hu, Y.; He, T.; Tai, Y.; Peng, P.; Wang, L. ADAR1 regulates ARHGAP26
gene expression through RNA editing by disrupting miR-30b-3p and miR-573 binding. RNA 2013, 19,
1525–1536. [CrossRef] [PubMed]

73. Zhang, L.; Yang, C.-S.; Varelas, X.; Monti, S. Altered RNA editing in 3’ UTR perturbs microRNA-mediated
regulation of oncogenes and tumor-suppressors. Sci. Rep. 2016, 6, 23226. [CrossRef] [PubMed]

74. Nakano, M.; Fukami, T.; Gotoh, S.; Takamiya, M.; Aoki, Y.; Nakajima, M. RNA Editing Modulates Human
Hepatic Aryl Hydrocarbon Receptor Expression by Creating MicroRNA Recognition Sequence. J. Biol. Chem.
2016, 291, 894–903. [CrossRef]

75. Panda, A.C. Circular RNAs Act as miRNA Sponges. Adv. Exp. Med. Biol. 2018, 1087, 67–79.
76. Cai, Y.; Wan, J. Competing Endogenous RNA Regulations in Neurodegenerative Disorders: Current

Challenges and Emerging Insights. Front. Mol. Neurosci. 2018, 11, 370. [CrossRef]
77. Xu, Z.; Yan, Y.; Zeng, S.; Dai, S.; Chen, X.; Wei, J.; Gong, Z. Circular RNAs: Clinical relevance in cancer.

Oncotarget 2018, 9, 1444–1460. [CrossRef]
78. Liu, L.; Wang, J.; Khanabdali, R.; Kalionis, B.; Tai, X.; Xia, S. Circular RNAs: Isolation, characterization and

their potential role in diseases. RNA Biol. 2017, 14, 1715–1721. [CrossRef]
79. Gao, L.; Ren, W.; Zhang, L.; Li, S.; Kong, X.; Zhang, H.; Dong, J.; Cai, G.; Jin, C.; Zheng, D.; et al. PTENp1,

a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell
carcinoma. Mol. Carcinog. 2017, 56, 1322–1334. [CrossRef]

80. Zhang, R.; Guo, Y.; Ma, Z.; Ma, G.; Xue, Q.; Li, F.; Liu, L. Long non-coding RNA PTENP1 functions as a
ceRNA to modulate PTEN level by decoying miR-106b and miR-93 in gastric cancer. Oncotarget 2017, 8,
26079–26089. [CrossRef]

81. Shi, X.; Tang, X.; Su, L. Overexpression of Long Noncoding RNA PTENP1 Inhibits Cell Proliferation and
Migration via Suppression of miR-19b in Breast Cancer Cells. Oncol. Res. 2018, 26, 869–878. [CrossRef]
[PubMed]

82. Li, R.K.; Gao, J.; Guo, L.H.; Huang, G.Q.; Luo, W.H. PTENP1 acts as a ceRNA to regulate PTEN by sponging
miR-19b and explores the biological role of PTENP1 in breast cancer. Cancer Gene Ther. 2017, 24, 309–315.
[CrossRef]

83. Nigita, G.; Marceca, G.P.; Tomasello, L.; Distefano, R.; Calore, F.; Veneziano, D.; Romano, G.; Nana-Sinkam, S.P.;
Acunzo, M.; Croce, C.M. ncRNA Editing: Functional Characterization and Computational Resources. Methods
Mol. Biol. 2019, 1912, 133–174. [PubMed]

84. Mattick, J.S. The State of Long Non-Coding RNA Biology. Noncoding RNA 2018, 4, 17. [CrossRef] [PubMed]
85. Poria, D.K.; Guha, A.; Nandi, I.; Ray, P.S. RNA-binding protein HuR sequesters microRNA-21 to prevent

translation repression of proinflammatory tumor suppressor gene programmed cell death 4. Oncogene 2016,
35, 1703–1715. [CrossRef] [PubMed]

86. Balkhi, M.Y.; Iwenofu, O.H.; Bakkar, N.; Ladner, K.J.; Chandler, D.S.; Houghton, P.J.; London, C.A.;
Kraybill, W.; Perrotti, D.; Croce, C.M.; et al. miR-29 acts as a decoy in sarcomas to protect the tumor
suppressor A20 mRNA from degradation by HuR. Sci. Signal. 2013, 6, ra63. [CrossRef]

87. Ali, S.; Karki, N.; Bhattacharya, C.; Zhu, R.; MacDuff, D.A.; Stenglein, M.D.; Schumacher, A.J.; Demorest, Z.L.;
Harris, R.S.; Matin, A.; et al. APOBEC3 inhibits DEAD-END function to regulate microRNA activity. BMC
Mol. Biol. 2013, 14, 16. [CrossRef]

88. Wang, I.X.; So, E.; Devlin, J.L.; Zhao, Y.; Wu, M.; Cheung, V.G. ADAR regulates RNA editing, transcript
stability, and gene expression. Cell Rep. 2013, 5, 849–860. [CrossRef]

http://dx.doi.org/10.1038/ncb3110
http://dx.doi.org/10.1172/JCI62925
http://dx.doi.org/10.1093/nar/gku662
http://dx.doi.org/10.1371/journal.pone.0033720
http://www.ncbi.nlm.nih.gov/pubmed/22448268
http://dx.doi.org/10.1261/rna.041533.113
http://www.ncbi.nlm.nih.gov/pubmed/24067935
http://dx.doi.org/10.1038/srep23226
http://www.ncbi.nlm.nih.gov/pubmed/26980570
http://dx.doi.org/10.1074/jbc.M115.699363
http://dx.doi.org/10.3389/fnmol.2018.00370
http://dx.doi.org/10.18632/oncotarget.22846
http://dx.doi.org/10.1080/15476286.2017.1367886
http://dx.doi.org/10.1002/mc.22594
http://dx.doi.org/10.18632/oncotarget.15317
http://dx.doi.org/10.3727/096504017X15123838050075
http://www.ncbi.nlm.nih.gov/pubmed/29212574
http://dx.doi.org/10.1038/cgt.2017.29
http://www.ncbi.nlm.nih.gov/pubmed/30635893
http://dx.doi.org/10.3390/ncrna4030017
http://www.ncbi.nlm.nih.gov/pubmed/30103474
http://dx.doi.org/10.1038/onc.2015.235
http://www.ncbi.nlm.nih.gov/pubmed/26189797
http://dx.doi.org/10.1126/scisignal.2004177
http://dx.doi.org/10.1186/1471-2199-14-16
http://dx.doi.org/10.1016/j.celrep.2013.10.002


Int. J. Mol. Sci. 2019, 20, 6249 20 of 22

89. Stellos, K.; Gatsiou, A.; Stamatelopoulos, K.; Perisic Matic, L.; John, D.; Lunella, F.F.; Jae, N.; Rossbach, O.;
Amrhein, C.; Sigala, F.; et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in
atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat. Med. 2016, 22, 1140–1150.
[CrossRef]

90. Anantharaman, A.; Tripathi, V.; Khan, A.; Yoon, J.H.; Singh, D.K.; Gholamalamdari, O.; Guang, S.; Ohlson, J.;
Wahlstedt, H.; Ohman, M.; et al. ADAR2 regulates RNA stability by modifying access of decay-promoting
RNA-binding proteins. Nucleic Acids Res. 2017, 45, 4189–4201. [CrossRef]

91. Anantharaman, A.; Gholamalamdari, O.; Khan, A.; Yoon, J.H.; Jantsch, M.F.; Hartner, J.C.; Gorospe, M.;
Prasanth, S.G.; Prasanth, K.V. RNA-editing enzymes ADAR1 and ADAR2 coordinately regulate the editing
and expression of Ctn RNA. FEBS Lett. 2017, 591, 2890–2904. [CrossRef]

92. Jinnah, H.; Ulbricht, R.J. Using mouse models to unlock the secrets of non-synonymous RNA editing. Methods
2019, 156, 40–45. [CrossRef] [PubMed]

93. Cox, D.B.T.; Gootenberg, J.S.; Abudayyeh, O.O.; Franklin, B.; Kellner, M.J.; Joung, J.; Zhang, F. RNA editing
with CRISPR-Cas13. Science 2017, 358, 1019. [CrossRef] [PubMed]

94. Vogel, P.; Schneider, M.F.; Wettengel, J.; Stafforst, T. Improving site-directed RNA editing in vitro and in
cell culture by chemical modification of the guideRNA. Angew. Chem. Int. Ed. Engl. 2014, 53, 6267–6271.
[CrossRef] [PubMed]

95. Montiel-Gonzalez, M.F.; Vallecillo-Viejo, I.; Yudowski, G.A.; Rosenthal, J.J. Correction of mutations within
the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl. Acad. Sci.
USA 2013, 110, 18285–18290. [CrossRef]

96. Vallecillo-Viejo, I.C.; Liscovitch-Brauer, N.; Montiel-Gonzalez, M.F.; Eisenberg, E.; Rosenthal, J.J.C. Abundant
off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme.
RNA Biol. 2018, 15, 104–114. [CrossRef] [PubMed]

97. Vogel, P.; Moschref, M.; Li, Q.; Merkle, T.; Selvasaravanan, K.D.; Li, J.B.; Stafforst, T. Efficient and precise
editing of endogenous transcripts with SNAP-tagged ADARs. Nat. Methods 2018, 15, 535–538. [CrossRef]

98. Guo, Y.; Yu, H.; Samuels, D.C.; Yue, W.; Ness, S.; Zhao, Y.Y. Single-nucleotide variants in human RNA: RNA
editing and beyond. Brief Funct. Genom. 2019, 18, 30–39. [CrossRef]

99. Giraldez, M.D.; Spengler, R.M.; Etheridge, A.; Godoy, P.M.; Barczak, A.J.; Srinivasan, S.; De Hoff, P.L.;
Tanriverdi, K.; Courtright, A.; Lu, S.; et al. Comprehensive multi-center assessment of small RNA-seq
methods for quantitative miRNA profiling. Nat. Biotechnol. 2018, 36, 746–757. [CrossRef]

100. Ramaswami, G.; Li, J.B. Identification of human RNA editing sites: A historical perspective. Methods 2016,
107, 42–47. [CrossRef]

101. Alon, S.; Mor, E.; Vigneault, F.; Church, G.M.; Locatelli, F.; Galeano, F.; Gallo, A.; Shomron, N.; Eisenberg, E.
Systematic identification of edited microRNAs in the human brain. Genome Res. 2012, 22, 1533–1540.
[CrossRef]

102. Lu, Y.; Baras, A.S.; Halushka, M.K. miRge 2.0 for comprehensive analysis of microRNA sequencing data.
BMC Bioinform. 2018, 19, 275. [CrossRef]

103. Maemura, K.; Watanabe, K.; Ando, T.; Hiyama, N.; Sakatani, T.; Amano, Y.; Kage, H.; Nakajima, J.; Yatomi, Y.;
Nagase, T.; et al. Altered editing level of microRNAs is a potential biomarker in lung adenocarcinoma.
Cancer Sci. 2018, 109, 3326–3335. [CrossRef] [PubMed]

104. Vesely, C.; Tauber, S.; Sedlazeck, F.J.; von Haeseler, A.; Jantsch, M.F. Adenosine deaminases that act on RNA
induce reproducible changes in abundance and sequence of embryonic miRNAs. Genome Res. 2012, 22,
1468–1476. [CrossRef] [PubMed]

105. Qian, K.; Auvinen, E.; Greco, D.; Auvinen, P. miRSeqNovel: An R based workflow for analyzing miRNA
sequencing data. Mol. Cell. Probes 2012, 26, 208–211. [CrossRef] [PubMed]

106. Sablok, G.; Milev, I.; Minkov, G.; Minkov, I.; Varotto, C.; Yahubyan, G.; Baev, V. isomiRex: Web-based
identification of microRNAs, isomiR variations and differential expression using next-generation sequencing
datasets. FEBS Lett. 2013, 587, 2629–2634. [CrossRef] [PubMed]

107. Muller, H.; Marzi, M.J.; Nicassio, F. IsomiRage: From Functional Classification to Differential Expression of
miRNA Isoforms. Front. Bioeng. Biotechnol. 2014, 2, 38. [CrossRef]

108. Kuenne, C.; Preussner, J.; Herzog, M.; Braun, T.; Looso, M. MIRPIPE: Quantification of microRNAs in niche
model organisms. Bioinformatics 2014, 30, 3412–3413. [CrossRef]

http://dx.doi.org/10.1038/nm.4172
http://dx.doi.org/10.1093/nar/gkw1304
http://dx.doi.org/10.1002/1873-3468.12795
http://dx.doi.org/10.1016/j.ymeth.2018.10.016
http://www.ncbi.nlm.nih.gov/pubmed/30827465
http://dx.doi.org/10.1126/science.aaq0180
http://www.ncbi.nlm.nih.gov/pubmed/29070703
http://dx.doi.org/10.1002/anie.201402634
http://www.ncbi.nlm.nih.gov/pubmed/24890431
http://dx.doi.org/10.1073/pnas.1306243110
http://dx.doi.org/10.1080/15476286.2017.1387711
http://www.ncbi.nlm.nih.gov/pubmed/29099293
http://dx.doi.org/10.1038/s41592-018-0017-z
http://dx.doi.org/10.1093/bfgp/ely032
http://dx.doi.org/10.1038/nbt.4183
http://dx.doi.org/10.1016/j.ymeth.2016.05.011
http://dx.doi.org/10.1101/gr.131573.111
http://dx.doi.org/10.1186/s12859-018-2287-y
http://dx.doi.org/10.1111/cas.13742
http://www.ncbi.nlm.nih.gov/pubmed/30022565
http://dx.doi.org/10.1101/gr.133025.111
http://www.ncbi.nlm.nih.gov/pubmed/22310477
http://dx.doi.org/10.1016/j.mcp.2012.05.002
http://www.ncbi.nlm.nih.gov/pubmed/22609373
http://dx.doi.org/10.1016/j.febslet.2013.06.047
http://www.ncbi.nlm.nih.gov/pubmed/23831580
http://dx.doi.org/10.3389/fbioe.2014.00038
http://dx.doi.org/10.1093/bioinformatics/btu573


Int. J. Mol. Sci. 2019, 20, 6249 21 of 22

109. Shi, J.; Dong, M.; Li, L.; Liu, L.; Luz-Madrigal, A.; Tsonis, P.A.; Del Rio-Tsonis, K.; Liang, C. mirPRo-a novel
standalone program for differential expression and variation analysis of miRNAs. Sci. Rep. 2015, 5, 14617.
[CrossRef]

110. Pantano, L.; Estivill, X.; Marti, E. SeqBuster, a bioinformatic tool for the processing and analysis of small
RNAs datasets, reveals ubiquitous miRNA modifications in human embryonic cells. Nucleic Acids Res. 2010,
38, e34. [CrossRef]

111. Giurato, G.; De Filippo, M.R.; Rinaldi, A.; Hashim, A.; Nassa, G.; Ravo, M.; Rizzo, F.; Tarallo, R.; Weisz, A.
iMir: An integrated pipeline for high-throughput analysis of small non-coding RNA data obtained by
smallRNA-Seq. BMC Bioinform. 2013, 14, 362. [CrossRef] [PubMed]

112. Desvignes, T.; Batzel, P.; Sydes, J.; Eames, B.F.; Postlethwait, J.H. miRNA analysis with Prost!
Reveals evolutionary conservation of organ-enriched expression and post-transcriptional modifications in
three-spined stickleback and zebrafish. Sci. Rep. 2019, 9, 3913. [CrossRef] [PubMed]

113. Wan, C.; Gao, J.; Zhang, H.; Jiang, X.; Zang, Q.; Ban, R.; Zhang, Y.; Shi, Q. CPSS 2.0: A computational platform
update for the analysis of small RNA sequencing data. Bioinformatics 2017, 33, 3289–3291. [CrossRef]
[PubMed]

114. Cho, S.; Jang, I.; Jun, Y.; Yoon, S.; Ko, M.; Kwon, Y.; Choi, I.; Chang, H.; Ryu, D.; Lee, B.; et al. MiRGator v3.0:
A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res. 2013,
41, D252–D257. [CrossRef]

115. Wu, J.; Liu, Q.; Wang, X.; Zheng, J.; Wang, T.; You, M.; Sheng Sun, Z.; Shi, Q. mirTools 2.0 for non-coding
RNA discovery, profiling, and functional annotation based on high-throughput sequencing. RNA Biol. 2013,
10, 1087–1092. [CrossRef]

116. Zhang, Y.; Zang, Q.; Zhang, H.; Ban, R.; Yang, Y.; Iqbal, F.; Li, A.; Shi, Q. DeAnnIso: A tool for online detection
and annotation of isomiRs from small RNA sequencing data. Nucleic Acids Res. 2016, 44, W166–W175.
[CrossRef] [PubMed]

117. Aparicio-Puerta, E.; Lebron, R.; Rueda, A.; Gomez-Martin, C.; Giannoukakos, S.; Jaspez, D.; Medina, J.M.;
Zubkovic, A.; Jurak, I.; Fromm, B.; et al. sRNAbench and sRNAtoolbox 2019: Intuitive fast small RNA
profiling and differential expression. Nucleic Acids Res. 2019, 47, W530–W535. [CrossRef]

118. Wang, N.; Zheng, J.; Chen, Z.; Liu, Y.; Dura, B.; Kwak, M.; Xavier-Ferrucio, J.; Lu, Y.C.; Zhang, M.; Roden, C.;
et al. Single-cell microRNA-mRNA co-sequencing reveals non-genetic heterogeneity and mechanisms of
microRNA regulation. Nat. Commun. 2019, 10, 95. [CrossRef]

119. Chen, G.; Ning, B.; Shi, T. Single-Cell RNA-Seq Technologies and Related Computational Data Analysis.
Front. Genet. 2019, 10, 317. [CrossRef]

120. Nemlich, Y.; Greenberg, E.; Ortenberg, R.; Besser, M.J.; Barshack, I.; Jacob-Hirsch, J.; Jacoby, E.; Eyal, E.;
Rivkin, L.; Prieto, V.G.; et al. MicroRNA-mediated loss of ADAR1 in metastatic melanoma promotes tumor
growth. J. Clin. Investig. 2013, 123, 2703–2718. [CrossRef]

121. Caval, V.; Suspene, R.; Shapira, M.; Vartanian, J.P.; Wain-Hobson, S. A prevalent cancer susceptibility
APOBEC3A hybrid allele bearing APOBEC3B 3’UTR enhances chromosomal DNA damage. Nat. Commun.
2014, 5, 5129. [CrossRef] [PubMed]

122. Ekdahl, Y.; Farahani, H.S.; Behm, M.; Lagergren, J.; Ohman, M. A-to-I editing of microRNAs in the mammalian
brain increases during development. Genome Res. 2012, 22, 1477–1487. [CrossRef] [PubMed]

123. Gan, Z.; Zhao, L.; Yang, L.; Huang, P.; Zhao, F.; Li, W.; Liu, Y. RNA editing by ADAR2 is metabolically
regulated in pancreatic islets and beta-cells. J. Biol. Chem. 2006, 281, 33386–33394. [CrossRef] [PubMed]

124. Yang, L.; Huang, P.; Li, F.; Zhao, L.; Zhang, Y.; Li, S.; Gan, Z.; Lin, A.; Li, W.; Liu, Y. c-Jun amino-terminal
kinase-1 mediates glucose-responsive upregulation of the RNA editing enzyme ADAR2 in pancreatic
beta-cells. PLoS ONE 2012, 7, e48611. [CrossRef]

125. Singh, M.; Kesterson, R.A.; Jacobs, M.M.; Joers, J.M.; Gore, J.C.; Emeson, R.B. Hyperphagia-mediated obesity
in transgenic mice misexpressing the RNA-editing enzyme ADAR2. J. Biol. Chem. 2007, 282, 22448–22459.
[CrossRef]

126. Schmiedel, B.J.; Singh, D.; Madrigal, A.; Valdovino-Gonzalez, A.G.; White, B.M.; Zapardiel-Gonzalo, J.;
Ha, B.; Altay, G.; Greenbaum, J.A.; McVicker, G.; et al. Impact of Genetic Polymorphisms on Human Immune
Cell Gene Expression. Cell 2018, 175, 1701–1715. [CrossRef]

http://dx.doi.org/10.1038/srep14617
http://dx.doi.org/10.1093/nar/gkp1127
http://dx.doi.org/10.1186/1471-2105-14-362
http://www.ncbi.nlm.nih.gov/pubmed/24330401
http://dx.doi.org/10.1038/s41598-019-40361-8
http://www.ncbi.nlm.nih.gov/pubmed/30850632
http://dx.doi.org/10.1093/bioinformatics/btx066
http://www.ncbi.nlm.nih.gov/pubmed/28177064
http://dx.doi.org/10.1093/nar/gks1168
http://dx.doi.org/10.4161/rna.25193
http://dx.doi.org/10.1093/nar/gkw427
http://www.ncbi.nlm.nih.gov/pubmed/27179030
http://dx.doi.org/10.1093/nar/gkz415
http://dx.doi.org/10.1038/s41467-018-07981-6
http://dx.doi.org/10.3389/fgene.2019.00317
http://dx.doi.org/10.1172/JCI62980
http://dx.doi.org/10.1038/ncomms6129
http://www.ncbi.nlm.nih.gov/pubmed/25298230
http://dx.doi.org/10.1101/gr.131912.111
http://www.ncbi.nlm.nih.gov/pubmed/22645261
http://dx.doi.org/10.1074/jbc.M604484200
http://www.ncbi.nlm.nih.gov/pubmed/16956888
http://dx.doi.org/10.1371/journal.pone.0048611
http://dx.doi.org/10.1074/jbc.M700265200
http://dx.doi.org/10.1016/j.cell.2018.10.022


Int. J. Mol. Sci. 2019, 20, 6249 22 of 22

127. Zipeto, M.A.; Court, A.C.; Sadarangani, A.; Delos Santos, N.P.; Balaian, L.; Chun, H.-J.; Pineda, G.; Morris, S.R.;
Mason, C.N.; Geron, I.; et al. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing
Let-7 Biogenesis. Cell Stem Cell 2016, 19, 177–191. [CrossRef]

128. Liu, G.; Ma, X.; Wang, Z.; Wakae, K.; Yuan, Y.; He, Z.; Yoshiyama, H.; Iizasa, H.; Zhang, H.; Matsuda, M.; et al.
Adenosine deaminase acting on RNA-1 (ADAR1) inhibits HBV replication by enhancing microRNA-122
processing. J. Biol. Chem. 2019, 294. [CrossRef]

129. Sharma, S.; Wang, J.; Alqassim, E.; Portwood, S.; Cortes Gomez, E.; Maguire, O.; Basse, P.H.; Wang, E.S.;
Segal, B.H.; Baysal, B.E. Mitochondrial hypoxic stress induces widespread RNA editing by APOBEC3G in
natural killer cells. Genome Biol. 2019, 20, 37. [CrossRef]

130. Forrest, A.R.R.; Kanamori-Katayama, M.; Tomaru, Y.; Lassmann, T.; Ninomiya, N.; Takahashi, Y.; de
Hoon, M.J.L.; Kubosaki, A.; Kaiho, A.; Suzuki, M.; et al. Induction of microRNAs, mir-155, mir-222, mir-424
and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2009, 24, 460.
[CrossRef]

131. Xiao, C.; Rajewsky, K. MicroRNA Control in the Immune System: Basic Principles. Cell 2009, 137, 380.
[CrossRef]

132. Kalla, R.; Ventham, N.T.; Kennedy, N.A.; Quintana, J.F.; Nimmo, E.R.; Buck, A.H.; Satsangi, J. MicroRNAs:
New players in IBD. Gut 2015, 64, 504. [CrossRef] [PubMed]

133. Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [CrossRef]
[PubMed]

134. Tassinari, V.; Cesarini, V.; Silvestris, D.A.; Gallo, A. The adaptive potential of RNA editing-mediated
miRNA-retargeting in cancer. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 291–300. [CrossRef]
[PubMed]

135. Cesarini, V.; Silvestris, D.A.; Tassinari, V.; Tomaselli, S.; Alon, S.; Eisenberg, E.; Locatelli, F.; Gallo, A.
ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Res. 2018, 46, 2045–2059.
[CrossRef] [PubMed]

136. Wang, Y.; Xu, X.; Yu, S.; Jeong, K.J.; Zhou, Z.; Han, L.; Tsang, Y.H.; Li, J.; Chen, H.; Mangala, L.S.; et al.
Systematic characterization of A-to-I RNA editing hotspots in microRNAs across human cancers. Genome
Res. 2017, 27, 1112–1125. [CrossRef]

137. Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell 1993, 75, 843–854. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.stem.2016.05.004
http://dx.doi.org/10.1074/jbc.RA119.007970
http://dx.doi.org/10.1186/s13059-019-1651-1
http://dx.doi.org/10.1038/leu.2009.246
http://dx.doi.org/10.1016/j.cell.2009.03.022
http://dx.doi.org/10.1136/gutjnl-2014-307891
http://www.ncbi.nlm.nih.gov/pubmed/25475103
http://dx.doi.org/10.1056/NEJMra0910283
http://www.ncbi.nlm.nih.gov/pubmed/21323543
http://dx.doi.org/10.1016/j.bbagrm.2018.12.007
http://www.ncbi.nlm.nih.gov/pubmed/30605729
http://dx.doi.org/10.1093/nar/gkx1257
http://www.ncbi.nlm.nih.gov/pubmed/29267965
http://dx.doi.org/10.1101/gr.219741.116
http://dx.doi.org/10.1016/0092-8674(93)90529-Y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	The Complex World of miRNA Biology—From Biogenesis to Action 
	Editing of miRNA 
	ADAR 
	AID/APOBEC 

	Editing in miRNA Biogenesis and Activity 
	miRNA Maturation 
	miRNA–mRNA Interactions 
	miRNA–ceRNA Interactions 
	Regulation of the miRNA Editing Machinery by RNA-Binding Proteins (RBPs) 

	Tools to Study miRNA Editing 
	miRNA-Dependent Regulation of Editing—Closing the Loop 
	miRNA Editing in Pathophysiological Processes 
	Development 
	Obesity and Metabolic Diseases 
	Inflammation and Immunity 
	Cancer 

	Conclusions 
	References

