1	Supplementary Files
2	Title: Simultaneous enhancement of thermostability and catalytic activity of a
3	metagenome-derived β -glucosidase with directed evolution for biosynthesis of butyl
4	glucoside
5	Authors: Bangqiao Yin ^{1, †} , Qinyan Hui ^{1, †} , Muhammad Kashif ¹ , Ran Yu ¹ , Si Chen ¹ ,
6	Qian Ou ¹ , Bo Wu ^{1, 2} , and Chengjian Jiang ^{1*}
7	Affiliations:
8	¹ State Key Laboratory for Conservation and Utilization of Subtropical
9	Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of
10	Engineering Technology, College of Life Science and Technology, Guangxi University,
11	Nanning 530004, China.
12	² Department of chemical and biological engineering, Guangxi Normal University for
13	Nationalities, Chongzuo 532200, China.
14 15	[†] These authors contributed equally to this work.
16	*Corresponding author:
17	*E-mail: jiangcj0520@vip.163.com
18	*Tel: +86-771-3270736
19	

Substrate	Linkage of glycosyl	Specific activity(U/mg)				
	group	Bgl1D2	Bgl1D6	Bg11D 20	Y82S	W122G
Aryl-glycosides						
ρNP-β-D- glucopyranoside	βGlc	26.43 ± 0.17	16.67 ± 0.11	$\begin{array}{c} 235.88 \\ \pm 0.32 \end{array}$	_c	_c
ρNP-β-D-galactopyranoside	βGal	16.78 ± 0.03	ND^{a}	15.37 ± 4.21	$\begin{array}{c} 14.37 \pm \\ 0.43 \end{array}$	ND ^a
oNP-β-D-galactopyranoside	βGal	8.28 ± 0.12	ND^{a}	6.42 ± 0.22	7.84±0 .21	ND ^a
ρNP-α-D-glucopyranoside	αGlc	ND^{a}	ND ^a	ND^{a}	_c	_c
ρNP-N-acety-β-D-glucosaminid e	βGlc	$\begin{array}{c} 0.23 \ \pm \\ 0.03 \end{array}$	$\begin{array}{c} 0.11 \ \pm \\ 0.02 \end{array}$	$\begin{array}{c} 1.63 \ \pm \\ 0.46 \end{array}$	_ ^c	_ ^c
ρNP-β-D-xylopyranoside	βXyl	ND^{a}	ND ^a	ND ^a	_ ^c	_c
Salicin	βGlc	1.45 ± 0.29	0.99 ± 0.10	29.49 ±4.25	_c	_c
Saccharides					_c	_c
Sophorose	Glcβ(1,2)Gl	ND^{a}	ND ^a	ND ^a	_c	c
Cellobiose	Glcβ(1,4)Gl c	$\begin{array}{c} 56.94 \\ 0.44 \end{array}$	99.58 ± 0.10	181.57 ±3.69	_ ^c	_ ^c
Lactose	Galβ(1,4)Gl c	32.04 ± 2.10	ND ^a	25.32 ±5.28	$\begin{array}{c} 30.24 \pm \\ 0.82 \end{array}$	ND ^a
Trehalose	Glca(1,1)Gl c	ND ^a	ND ^a	ND ^a	_c	_c
Maltose	Glca(1,4)Gl c	ND ^a	ND ^a	ND ^a	_c	_ ^c
Isomaltose	Glca(1,6)Gl c	ND ^a	ND ^a	ND ^a		_c
Mannose	Glca(1,4)Gl c	ND ^a	ND ^a	ND ^a	_ ^c	_ ^c
Sucrose	Glca(1,2)Fr u	ND ^a	ND ^a	ND ^a	_c	_c
Xylan	βXyl	$\begin{array}{c} 10.05 \ \pm \\ 0.50 \end{array}$	8.98 ± 0.31	9.43 ± 3.15	_c	_c
CMC	βGlc	5.12 ± 0.61	$\begin{array}{c} 5.89 \\ \pm \\ 0.40 \end{array}$	15.22 ±4.83	_c	_c
Souble starch	αGlc	ND ^a	ND^{a}	ND ^a	_c	_c
Starch from wheat	αGlc	ND^{a}	ND ^a	ND^{a}	_ ^c	_ ^c
4-Methylumbelliferyl-β-D-gluc opyranoside	βGlc	-b	-b	-b	_c	_c

20 **Table S1** Substrate specificity of Bgl1D2, Bgl1D6, and Bgl1D20 enzymes.

21 ND^a: Not detected

22 ^{-b}: Fluorescence can be detected

23 -^c: unknown

Organic solvent	Relative activity (%)					
Bgl1D2	Concentration (%)					
	10	20	30	40	50	
None	100.00±0.09	100.00±0.31	100.00±0.07	100.00±0.20	100.00 ± 0.16	
Methanol	97.84±0.06	69.10±0.19	23.53±0.75	4.00±0.80	3.46 ±0.09	
Ethanol	98.20±0.26	98.61±0.46	93.30±0.44	15.72±0.10	10.85 ± 0.10	
Octanol	105.03±0.22	103.48±0.31	108.03±0.46	104.10±0.08	109.08 ± 0.06	
I-Propanol	96.91±0.23	95.37±0.58	96.89±0.15	16.68±0.19	16.76 ±0.68	
Isopropyl alcohol	96.31±0.43	96.25±0.07	96.71±0.75	93.84±0.42	95.56 ± 0.07	
Glycerol	100.53±0.08	98.02±0.26	38.23±0.22	11.22±0.61	11.46±0.51	
Butanol	103.72±0.72	98.79±0.51	94.78±0.27	94.78±0.51	86.48 ±0.13	
Acetonitrile	95.49±0.23	0.55±0.06	0.83±0.29	0.27±0.10	0.22 ±0.33	
Acetone	76.99±0.83	22.72±0.40	11.97±0.22	2.72±0.34	1.55 ±0.80	
Ethyl acetate	98.85±0.61	85.85±0.54	87.29±0.69	69.99±0.97	60.54±0.04	

Table S2 Effect of various organic solvents on enzyme activity of Bgl1D2.

Organic solvent		R	elative activity (%)				
Bgl1D6	Concentration (%)						
	10	20	30	40	50		
None	100.00±0.00	100.00±0.42	100.00±0.04	100.00±0.04	100.00±0.10		
Methanol	97.37±0.12	80.28±0.35	39.02±0.84	12.05±0.08	1.75±0.40		
Ethanol	80.26±0.70	68.98±0.14	47.26±0.88	43.38±0.08	14.06±0.35		
Octanol	101.24±0.11	103.02±0.66	101.97±0.22	102.75±0.21	105.29±0.10		
I-Propanol	19.74±0.96	18.43±0.14	14.73±0.66	12.61±0.36	2.32±0.29		
Isopropyl alcohol	56.67±0.59	51.46±0.44	24.14±0, 07	8.73±0.71	3.40±0.49		
Glycerol	100.09±0.44	101.51±0.13	101.40±0.59	94.26±0.43	95.20±0.66		
Butanol	37.93±0.64	41.60±0.09	85.04±0.33	97.78±0.22	91.01±0.32		
Acetonitrile	11.26±0.68	6.06±0.95	4.22±0.84	0.47±0.18	1.97±0.49		
Acetone	59.53±0.14	49.83±0.28	12.85±0.17	11.47±0.95	1.58±0.41		
Ethyl acetate	101.30±0.18	95.16±0.29	94.36±0.16	96.15±0.38	82.65±0.85		

Table S3 Effect of various organic solvents on enzyme activity of Bgl1D6.

Organic solvent		R	elative activity (%)			
Bgl1D20	Concentration (%)					
	10	20	30	40	50	
None	100.00±0.00	100.00±0.42	100.00±0.04	100.00±0.04	100.00±0.10	
Methanol	97.37±0.12	80.28±0.35	39.02±0.84	12.05±0.08	1.75±0.40	
Ethanol	80.26±0.70	68.98±0.14	47.26±0.88	43.38±0.08	14.06±0.35	
Octanol	101.24±0.11	103.02±0.66	101.97±0.22	102.75±0.21	105.29±0.10	
I-Propanol	19.74±0.96	18.43±0.14	14.73±0.66	12.61±0.36	2.32±0.29	
Isopropyl alcohol	56.67±0.59	51.46±0.44	24.14±0, 07	8.73±0.71	3.40±0.49	
Glycerol	100.09±0.44	101.51±0.13	101.40±0.59	94.26±0.43	95.20±0.66	
Butanol	37.93±0.64	41.60±0.09	85.04±0.33	97.78±0.22	91.01±0.32	
Acetonitrile	11.26±0.68	6.06±0.95	4.22±0.84	0.47±0.18	1.97±0.49	
Acetone	59.53±0.14	49.83±0.28	12.85±0.17	11.47±0.95	1.58±0.41	
Ethyl acetate	101.30±0.18	95.16±0.29	94.36±0.16	96.15±0.38	82.65±0.85	

Table S4 Effect of various organic solvents on enzyme activity of Bgl1D20.

GH family	Clan	3D structure status	Catalytic mechanism	Catalytic nucleophile/ base ^b	Catalytic proton donor ^b	Template	Number of potential subsites
GH1	GH-A	$(\beta/\alpha)_8$	Retaining	Glu	Glu ^c		2
GH2	GH-A	$(\beta/\alpha)_8$	Retaining	Glu	Glu		2
GH3	-	-	Retaining	Asp	Glu ^d	3U48, 5K6M	2
GH5	GH-A	$(\beta/\alpha)_8$	Retaining	Glu	Glu		2
GH9	-	$(\alpha/\alpha)_6$	Inverting	Asp	Glu	3X17, 1JS4	2
GH30	GH-A	$(\beta/\alpha)_8$	Retaining	Glu	Glu ^e		2
GH39	GH-A	$(\beta/\alpha)_8$	Retaining	Glu	Glu		2
GH116	GH-O	$(\alpha/\alpha)_6$	Retaining	Glu	Asp	5BX5	2
$\mathbf{UC^{f}}$	_	_	_	-	_	_	_

34 **Table S5** Information of β -glucosidase (EC#3.2.1.21) divided into families obtained from

35

CAZy database^a

37 The families selected for alignment are shown in **bold**.

 a Information on β -glucosidase (EC#3.2.1.21) is divided into families obtained from CAZy

39 database.

40 ^bResults were measured from the experimental test.

41 ^cGlu (experimental); absent in plant myrosinases.

42 ^dGlu for hydrolases (experimental); histidine for phosphorylases (experimental).

43 ^e Glu(inferred).

44 ^funclassified

Table S6 Sequences of oligonucleotides used for site-directed mutagenesis.

Target sites	Oligonucleotide sequences ^a
S28T	5' CCTAACCATTATCAAAATTAT <u>ACT</u> TGGTGCAATTTTCAAAATG 3'
	5' CATTTTGAAAATTGCACCA <u>AGT</u> ATAATTTTGATAATGGTTAGG 3'
L115N	5' CAAAAAATAGGATTAATA <u>AAC</u> AGAAAATATTTTTTGAGTGG 5'
	5' CCACTCAAAAAAATATTTTCT <u>GTT</u> TATTAATCCTATTTTTG 3'
Y37H	5' TTCAAAATGGAGAT <u>CAC</u> CCTTTTATTGATGGA 3'
	5' TCCATCAATAAAAGG <u>GTG</u> ATCTCCATTTTGAA 3'
D44E	5' TATTGATGGAATAGA <u>A</u> ATAAACCTAATT 3'
	5' AATTAGGTTTAT <u>T</u> TCTATTCCATCAATA 3'
R91G	5' AGTTTATGATTATTTA <u>GGC</u> TTGGAT 3'
	5' ATCCAA <u>GCC</u> TAAATAATCATAAACT 3'
Y82S	5' GTGAAAGTGAAAGAGAT <u>TCT</u> ATAAAAAGAGTTTATG 3'
	5' CATAAACTCTTTTTAT <u>AGA</u> ATCTCTTTCACTTTCAC 3'
W122G	5' CTGAGAAAATATTTTTTTGAG <u>GGG</u> AGTAGCCAAATGACTTATG 3'
	5' CATAAGTCATTTGGCTACT <u>CCC</u> CTCAAAAAAATATTTTCTCAG 3'
D44G	5' CCTTTTATTGATGGAATA <u>GGT</u> ATAAACCTAATTTATCAGG 3'
	5' CCTTTTATTGATGGAATAGGTATAA <u>ACC</u> TAATTTATCAGG 3'

48 ^aNucleotide changes are underlined.

50 Supplementary figure captions

- 51 Fig. S1 A Functional screening of second round random mutant library. Hydrolyzing zones produced
- 52 by *E.coli* strains harbored positive β -glucosidase genes on agar plates, containing ampicillin, esculin
- 53 hydrate, and ferric ammonium citrate. (a) M2, *E.coli* BL21 (DE3) pLysS contained
- 54 Q25L/S28T/L115Q/K117N/M148K substitutions. (b) M6, *E.coli* BL21 (DE3) pLysS contained
- 55 S28P/I57K/Y82S/W112G/E154G substitutions. (c) M20, E.coli BL21 (DE3) pLysS contained
- 56 Y37H/D44E/F68L/I70M/R91G substitutions. **B** Screening of crude enzyme solution of mutant
- 57 library. White square is as control and it shows the generate amount of pNP. Black square indicates
- 58 that remained ρ NP amount after the enzyme has been treated at 50 °C for 2 h. The experiments were
- 59 repeated three times.
- 60 Fig. S2 SDS-PAGE analysis of the three purified mutant β -glucosidase. Lane 1: protein molecular
- 61 weight ladder on SDS-PAGE; Lane 2: crude extract of the control *E.coli*; Lane 3: crude extract of the
- 62 *E.coli*, harboring the expression plasmid with the *bgl1D*; Lane 4-10: purified recombinant Bgl1D,

63 Bgl1D58, Bgl1D 94, Bgl1D 47, Bgl1D2 and Bgl1D6, Bgl1D20 protein.

- Fig. S3 Enzymatic properties of β-glucosidases of wild type and mutants using ρNPG as the
 substrate. a Effects of pH on enzyme activity. The enzyme activities were measured at 37 °C and pH
 of 3.0–12.0 in 0.1 M of buffer (pH 3.0–8.0, Na₂HPO₄–citric acid buffer; pH 8.6-10.6, glycine–NaOH
 buffer; pH 10.9–12.0, Na₂HPO₄–NaOH buffer). b Effect of pH on enzyme stability. The enzyme was
 mixed with 0.1 M of buffers at pH 3.0–12.0 and incubated at 4 °C for 24 h. c Effects of temperature
 on the enzyme activity. The enzyme activities were measured at 20 °C to 80 °C and pH of 10.0. d
 Effects of temperature on the enzyme stability. The enzyme was incubated at 20 °C to 80 °C for 1 h.
- 71 **Fig. S4** Determination of glucose/cello tolerance of the heat-resistant enzyme Bgl1D187.
- 72 Fig. S5 The transglycosylation HPLC analysis of thermostable mutant enzyme Bgl1D187. a Donor
- 73 is glucose and acceptors is *n*-propanol. Enzyme reaction system of upper figures without
- thermostable mutant Bgl1D187 as control group. Lower figures added with enzyme as experimental
- 75 group. **b** Donor is glucose and acceptors is butanol. **c** Donor is cellobiose and acceptor is n-propanol.
- 76 **d** Donor is glucose and acceptor is butanol.

77 Figure S1

Figure S2

85 Figure S4

