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Abstract: The gastric secretory trefoil factor family (TFF) peptides xP1 and xP4 are the Xenopus laevis 
orthologs of mammalian TFF1 and TFF2, respectively. The aim of this study was to analyze the 
molecular forms of xP1 and xP4 in the X. laevis gastric mucosa by FPLC. xP1 mainly occurred in a 
monomeric low-molecular-mass form and only a minor subset is associated with the mucus fraction. 
The occurrence of monomeric xP1 is unexpected because of its odd number of cysteine residues. 
Probably a conserved acidic residue flanking Cys55 allows monomeric secretion. Furthermore, Cys55 
is probably post-translationally modified. For the first time, we hypothesize that the free thiol of 
monomeric xP1-and probably also its mammalian ortholog TFF1-could have a protective scavenger 
function, e.g., for reactive oxygen/nitrogen species. In contrast, xP4 mainly occurs in a high-
molecular-mass form and is non-covalently bound to a mucin similarly as TFF2. In vitro binding 
studies with radioactively labeled porcine TFF2 even showed binding to X. laevis gastric mucin. 
Thus, xP4 is expected to bind as a lectin to an evolutionary conserved sugar epitope of the X. laevis 
ortholog of mucin MUC6 creating a tight mucus barrier. Taken together, xP1 and xP4 appear to have 
different gastric protective functions. 

Keywords: trefoil factor; TFF1; TFF2; lectin; mucin; gastric protection; oxidative stress; thiol; 
cysteine; ROS 

 

1. Introduction 

The peptides xP1 and xP4 are typical secretory products of the frog Xenopus laevis gastric mucosa 
consisting of one or four cysteine-rich trefoil factor family (TFF) domains, respectively (Figure 1) [1].  

 
Figure 1. Schematic representation of the trefoil factor family (TFF) peptides xP1 and xP4 consisting 
of 55 and 207 amino acids, respectively. The conserved cysteine residues including disulfide bridges 
are shown in yellow. The N-glycosylation site in xP4.1 is indicated by a hexagon, which is missing in 
xP4.2. 

xP1 and xP4 belong to the family of TFF peptides, which are known for their mucosal protection 
and healing effects [2,3]. xP1 is synthesized mainly in gastric surface mucous cells and contains an 
odd number of seven cysteine residues (Figure 1) [4,5]; whereas xP4 is expressed mainly in gastric 
mucous neck cells, but also in esophageal goblet cells [2,5]. Because X. laevis is an allotetraploid 
species [6], two xP4 genes exist, which encode different glycosylation variants of xP4, i.e., the 
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glycosylated form xP4.1 and the non-glycosylated form xP4.2 (Figure 1) [7]. Of note, the expression 
profiles of these glycosylation variants differ, xP4.2 being synthesized in the esophagus and with a 
decreasing gradient from the gastric fundus to the antrum [2,5,7]. In contrast, xP4.1 is synthesized in 
the stomach only, with a slightly increasing gradient from the fundus to the antrum [2,5,7]. Based on 
their structures and cellular expression patterns, xP1 is considered the X. laevis ortholog of 
mammalian TFF1; whereas xP4 appears to be the ortholog of mammalian TFF2 [2,8]. 

TFF1 is co-secreted together with the mucin MUC5AC from surface mucous cells and it can form 
heterodimers with gastrokine-2 [9–11]. Tff1-deficient (Tff1KO) mice show pleiotropic effects [12]. They 
obligatory develop antropyloric adenoma and 30% progress to carcinomas [13]. Loss of Tff1 induces 
a pro-inflammatory phenotype and treatment with an anti-inflammatory drug suppressed the tumor 
growth in these mice [14,15]. In addition, Tff1KO mice show dysregulated differentiation of pit and 
parietal cells in the fundic units [16] and of pit and antral gland cells in the antral units [17]. However, 
the molecular function of TFF1 causing this pleiotropic phenotype has not been elucidated thus far. 
Most notably, TFF1 dimers also have a lectin activity and bind Helicobacter pylori lipopolysaccharide 
in a pH-dependent manner [18]. Thus, TFF1 appears to play a role in mediating the tropism of H. 
pylori within the gastric mucus [19]. 

TFF2 is co-secreted together with the mucin MUC6 from mucous neck, antral gland, and 
duodenal Brunner gland cells. TFF2 strongly binds to MUC6 as a lectin, where it effects the 
viscoeleastic properties of gastric mucus in vitro and in vivo [20–24]. There are dramatic diurnal 
variations in the TFF2 concentrations in the gastric juice [25]. Of note, human TFF2 is N-glycosylated 
bearing the rare fucosylated LacdiNAc epitope [26,27]; whereas porcine and murine TFF2 are not 
glycosylated. The TFF2-binding carbohydrate epitope of MUC6 has been narrowed down to the 
GlcNAcα1→4Galβ1→R moiety [28]. The unusual αGlcNAc residue at the non-reducing terminals of 
the O-linked glycans is specifically recognized by the lectin GSA-II from Griffonia simplicifolia and the 
monoclonal antibody HIK1083. This residue is conserved in gastric gland mucins from frog to human 
[29,30]. Remarkably, this αGlcNAc also functions as a natural antibiotic against H. pylori infection 
[31]. Tff2-deficient mice (Tff2KO) show accelerated progression to H. pylori-induced gastritis [32], 
which is in line with the view that TFF2 stabilizes the gastric mucus barrier [24]. 

Here, we systematically investigated xP1 and xP4 from X. laevis gastric mucosa using size 
exclusion chromatography (SEC) and performed first binding studies of X. laevis gastric mucins with 
radioactively labeled porcine TFF2. These studies should mainly answer the following questions: Is 
xP1 associated with mucins and what are the molecular forms of xP1? Is xP4 associated with mucins 
as expected for an ortholog of mammalian TFF2 and do the glycoforms xP4.1 and xP4.2 behave 
differently? This is a further step towards understanding the molecular function(s) of xP1 and xP4, 
as well as of the mammalian ortholog TFF1. 

2. Results 

2.1. Characterzation of xP1 and xP4 in X. Laevis Gastric Extracts by SEC and Western Blot Analysis 

When gastric extracts from X. laevis were subjected to SEC (Figure 2), xP1 and xP4 
immunoreactivities were distributed quite differently. xP1 mainly appeared in the low-molecular-
mass range (about 97%) and only a small portion was associated with the periodic acid-Schiff (PAS)-
positive mucin region (about 3%; Figure 2B). In contrast, xP4 was exclusively associated with high-
molecular-mass mucins (Figure 2B). 
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Figure 2. FPLC purification and analysis of xP1 and xP4 from a X. laevis gastric extract. (A) Elution 
profile after SEC on a Superdex 75 HL column as determined by absorbance at 280 nm (PAS-positive 
mucin fractions: pink). (B) Distribution of the relative xP1 (blue) and xP4 content (red) as determined 
by Western blot analysis under reducing conditions and semi-quantitative analysis of the typical 7k-
and 25–30k double band intensities, respectively. (C) 15% SDS-PAGE and subsequent Western blot 
analysis of the low-molecular-mass fractions D3–D9 and the fractions B8/C10/D5, respectively. 
Samples were analyzed under reducing (R) and non-reducing conditions (NR), respectively, for their 
xP1 immunoreactivity. The molecular mass standard is indicated on the left. (D) 15% SDS-PAGE and 
subsequent Western blot analysis of high-molecular-mass fractions B6/B11. Samples were analyzed 
under reducing (R) and non-reducing conditions (NR), respectively, for their xP4 immunoreactivity. 
The molecular mass standard is indicated on the left. (E) 1% AgGE and subsequent Western blot 
analysis of high-molecular-mass fractions B5–C1. Shown are reactivities for xP1, xP4, GSA-II and (F) 
the hybridization signals (autoradiography) obtained after incubating the blot with 125I-labeled 
porcine pancreatic TFF2 (overlay assay). The start is marked with a dot on the left. 

Under reducing conditions, xP1 appears as a single monomeric band with the expected Mr of 
about 7k (Figure 2C). Under non-reducing conditions, xP1 appeared as two bands, i.e., a 7k- and a 
weak 20k-band (Figure 2C). Of special note, xP1 immunoreactivity was drastically reduced under 
non-reducing conditions when compared to reducing conditions (Figure 2C). 
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xP4 under reducing and non-reducing conditions, respectively, always appeared as a double 
band (i.e., glycoforms xP4.1 and xP4.2) with a Mr of about 30k (Figure 2D). The xP4 immunoreactivity 
was not changed under non-reducing conditions (Figure 2D). 

Analysis of the high-molecular-mass range revealed typical mucus staining with the lectin GSA-
II in fractions B6-B11/B12 (Figure 2E). A similar pattern was obtained for xP4 and also xP1 (Figure 
2E), although the latter signal was considerably weaker.  

2.2. Binding of 125I-Labeled Porcine TFF2 to X. Laevis Gastric Mucin in Vitro (Overlay Assay) 

The high-molecular-mass fractions were also tested for their in vitro binding capacity using 125I-
labeled porcine TFF2 (pTFF2) in an overlay assay (Figure 2F). Clearly, 125I-pTFF2 bound to similar 
entities as the antiserum against xP4. 

3. Discussion 

3.1. xP1 Mainly Occurs in An Unusual Monomeric Form: Possible Functional Implications 

xP1 mainly occurs as a low-molecular-mass form with only about 3% associated with the mucin 
fraction (Figure 2B). This situation is remarkably similar to that of the human ortholog TFF1 [11]. 
Based on the results from the non-reducing SDS-PAGE, the major form of xP1 is a monomer (7k-
band; Figure 2C). Furthermore, a weak 20k-band could be observed, which probably represents a 
xP1-homodimer (similar size as described for TFF3; [33]). Alternatively, the 20k-band might represent 
a xP1 heterodimer with a yet unknown partner. This would be analogous to TFF1, which can form a 
25k heterodimer with GKN-2 [10,11]. 

The occurrence of a xP1 monomer is unusual because the oxidation machinery of the 
endoplasmic reticulum enforces disulfide bond formation in secretory proteins [34]. Thus, xP1 
containing an odd number of cysteine residues should form either a disulfide-linked homodimer or 
a heterodimer, such as TFF1-GKN2 [10,11]. Generally, exposed thiols act as intracellular retention 
signals for unassembled secretory proteins [35]. However, there are examples known where proteins 
are secreted despite the presence of an unpaired cysteine residue, e.g., such as Ig light chains [35]. In 
this case, a flanking acidic amino acid residue (aspartic acid) was shown to mask the retention signal 
allowing transport to the Golgi [35]. Such a case might also occur in xP1 where the C-terminal Cys55, 
expected to be the unpaired cysteine residue (Figure 1), is directly flanked by a glutamic acid residue 
[4]. Of note, an additional gene exists in X. laevis encoding a xP1 homolog, which is expressed during 
the larval stages and in tadpoles only, but not in the adult [36]. The corresponding peptide has been 
designated as xP1-L and it contains even two glutamic acid residues before the 7th cysteine residue 
[36]. Furthermore, mouse and human TFF1 contain even three glutamic acid residues upstream of 
the 7th cysteine residue (and in human TFF1 this 7th cysteine residue is flanked on top by a 
downstream glutamic acid residue). Such flanking amino acids are known to change the pKa of 
cysteine residues [37–39]. This might indicate that there was obviously an evolutionary pressure to 
change the pKa of this highly conserved cysteine residue and this residue probably plays a key role 
for the function of TFF1. 

In addition, such an unpaired cysteine residue might have also a transient function as a chaperon 
for the correct folding of other cysteine-rich proteins secreted by the same cells: in particular, neutral 
mucins are characteristic secretory products of surface mucous cells, similar to mammalian MUC5AC 
[5]. This hypothesis would be in agreement with the observation that in antropyloric tumors of Tff1KO 
mice the unfolded protein response is activated [40]. 

The extremely reduced immunoreactivity of xP1 against the antiserum anti-xP1-1 (generated 
against the very C-terminal of xP1; [5]) under non-reducing conditions (Figure 2C) might be an 
indication for a post-translational modification (PTM) of Cys55. There is an increasing number of 
PTMs known for cysteine residues including sulfenic and sulfinic acids [39]. Generally, thiol groups 
of cysteine residues are particularly susceptible to oxidation by reactive oxygen/nitrogen (ROS/RNS) 
species [39]. Consequently, xP1-and its mammalian ortholog TFF1-could have a protective scavenger 
function, e.g., for extracellular ROS/RNS, via their C-terminal cysteine residues. The apical surface of 
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gastric epithelial cells is well known to release extracellular ROS by dual oxidase (DUOX) in 
particular during bacterial infections and chronic inflammatory diseases [41]. The generation of H2O2 
by the DUOX enzyme restricts microbial colonization [41]. As a consequence, the extracelluar 
compartment is subject to great oxidative stress [42] and effective protection is essential for the 
sensitive gastric mucosa [43]. TFF1, maybe in concert with a secreted form of peroxiredoxins, could 
be part of a protective shield preventing inflammation triggered by ROS. This might also explain, 
why in mammals TFF1 is ectopically expressed during various inflammatory conditions, such as 
duodenal ulcers, Crohn’s disease, pancreatitis, asthma, encephalitis, and in the murine spleen after 
Toxoplasma gondii infection [44–49]. Here, TFF1 could protect from extracellular damages due to the 
oxidative burst, which is generated, e.g., from activated neutrophiles. 

In addition, xP1 could also act as an antimicrobial peptide, maybe after reduction of disulfide 
bridges. Such a case was reported for human β-defensin 1 [50]. 

3.2. xP4 is Mucin-Associated: Interaction with the Ortholog of MUC6 

Here, we show that xP4 is indeed bound to mucin and is comparable with TFF2 from human 
and pig [11,51,52]. Thus, xP4 can now be considered as the functional ortholog of mammalian TFF2 
in spite of a different number of TFF domains (4 versus 2). In particular, the four TFF domains of xP4 
would be perfectly designed to cross-link mucins. Both glycoforms of xP4, i.e., xP4.1 and xP4.2, are 
mucin-bound and completely released by boiling in SDS indicating a non-covalent binding of both 
xP4 forms to a mucin, which has to be considered as the ortholog of mammalian MUC6. Indeed, such 
a mucin has been identified in X. tropicalis [53]. Generally, MUC6 is present early in vertebrates, but 
was lost in teleost fishes [53]. Of special note, glycosylation of xP4 does not appear to influence the 
lectin binding to gastric mucin. First analyses of xP4 with lectins did not show any indication that the 
glycosylated variant xP4.1 bears the fucosylated LacdiNAc epitope (data not shown) as found in 
human TFF2 [27].  

Generally, a protective function can be expected for xP4 as described for mammalian TFF2 [24], 
i.e., lectin binding and possibly cross-linking of the X. laevis ortholog of MUC6. This mucin probably 
bears the characteristic peripheral GlcNAcα1→4Galβ1→R moiety because porcine TFF2 is bound in 
vitro (Figure 2F). It is synthesized together with xP4 in mucous neck cells, and is recognized by the 
lectin GSA-II (Figure 2E) and the antibody HIK1083 [30]. Thus, lectin interaction of TFF2 with MUC6 
seems to be an evolutionary highly conserved principle, which started already early in vertebrates 
[53] and even allows binding of porcine TFF2 to X. laevis gastric mucin (Figure 2F). A key step for this 
mechanism is the synthesis of the evolutionary conserved, unusual peripheral glycan αGlcNAc by 
α1,4-N-acetylglucosaminyltransferase (α4GnT); mice lacking this enzyme spontaneously develop 
adenocarcinoma in the gastric antrum [54]. 

4. Materials and Methods  

4.1. Extraction of Proteins and Purification by SEC 

Proteins were extracted from the stomach (1.6–1.8 g) of X. laevis (purchased from the W. de 
Rover, Herpetological Institute, Belgium) with a 5-fold amount (w/v) of buffer (30 mM NaCl, 20 mM 
Tris-HCl pH 7.0 plus protease inhibitors) in a Precellys®24 lyser/homogenizer analogous as described 
previously in detail [27].  

Then, 8 mL of gastric extracts were fractioned by SEC with the ÄKTATM FPLC system 
(Amersham Biosciences, Freiburg, Germany) as described (fraction numbering: A1-A12, B1-B12, etc.) 
[51]. The following column was used: HiLoad 16/600 Superdex 75 prep grade (S75HL; 20 mM Tris-
HCl pH 7.0, 30 mM NaCl plus protease inhibitors; flow rate: 1.0 mL/min; 2.0 mL fractions). 

4.2. SDS-PAGE, Agarose Gel Electrophoresis, and Western Blot Analysis 

Non-denaturing agarose gel electrophoresis (AgGE; containing 0.1% SDS), denaturing SDS-
PAGE under reducing or non-reducing conditions, and periodic acid-Schiff (PAS) staining for mucins 
(dot blot) were described previously [33,51]. 
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Western blot analyses after SDS-PAGE (electrophoretic transfer) or AgGE (capillary blot) was as 
reported [52]. All gels after non-reducing SDS-PAGE were subjected to post-in-gel reduction with 1% 
mercaptoethanol at 50 °C for 5 min before blotting as described previously [51]. Gels after AgGE were 
directly blotted and for the detection with antisera, the proteins were additionally reduced on the 
membranes in situ with 1% mercaptoethanol at room temperature for 5 min. 

Mucins were detected with the biotinylated lectin GSA-II from G. simplicifolia (2 µg/mL) as 
reported [51]. xP1 was analyzed with the polyclonal antiserum anti-xP1-1 (1:5000 dilution) against 
the C-terminal synthetic peptide FYPRATPEC as described previously [5]. Production of a polyclonal 
antiserum anti-xP4-1 against the C-terminal of xP4 (synthetic peptide CFYPDIEDVTIIE) was reported 
previously [1]. The antiserum anti-xP4-1 was used in a 1:5000 dilution. Bands were visualized with 
the enhanced chemiluminescence (ECL) detection system (using a secondary antibody coupled to 
horseradish peroxidase and luminol/p-Coumaric acid/H2O2) and the signals were recorded with the 
GeneGnome system (Syngene, Cambridge, UK). For semi-quantitative analysis, the relative intensity 
for each band within a given frame was calculated using the GeneTools gel analysis software 
(Syngene, Cambridge, UK) setting the highest intensity in a series to 100%. 

4.3. TFF2 Binding Studies 

TFF2 from porcine pancreas (pTFF2) was kindly provided by L. Thim (Novo Nordisk A/S, 
Maaloev, Denmark) [55]. Labeling of pTFF2 with 125I (iodogen method) and overlay assays with 125I-
labeled TFF2 were as described in detail previously [52]. In brief, mucin containing fractions after 
SEC were separated by AgGE, blotted onto nitrocellulose membranes, hybridized with 125I-labeled 
pTFF2 (in 20 mM Tris-HCl pH 7.0, 2.5 mM CaCl2, 500 mM NaCl), and exposed to a film 
(autoradiography).  

5. Conclusions 

Taken together, xP1 and xP4 probably have quite different protective functions for the gastric 
mucosa, which is exposed to extremely harsh conditions (e.g., hydrochloric acid as well as exogenous 
pathogens from the diet). For the first time, we hypothesize that the free thiol of monomeric xP1―and 
probably also its mammalian ortholog TFF1―might act as a scavenger for extracellular ROS/RNS. 
This could open interesting clinical perspectives because TFF1 has therapeutic potential, e.g., by 
reducing mucositis in cancer patients receiving chemotherapy [56]. For example, it could be tested 
whether oral application of short synthetic peptides mimicking the C-terminal end of xP1/TFF1 
prevents formation of adenoma and carcinogenesis in Tff1KO mice. In addition, xP1 could possess an 
antimicrobial activity and have a chaperon function for the secretion of the neutral mucin from 
surface mucous cells. In contrast, xP4 is non-covalently bound to the X. laevis ortholog of MUC6 and 
could perfectly cross-link this mucin creating a tight mucus barrier. 

Author Contributions: Conceptualization, W.H.; investigations, R.S. and J.R.; writing―original draft 
preparation, W.H.; writing―review and editing, R.S., J.R. 

Funding: This research received no external funding. 

Acknowledgments: We thank Daniela Lorenz (Otto-von-Guericke University, Magdeburg) for her help with the 
illustration, Lars Thim (Novo Nordisk A/S, Maaloev, Denmark) for his generous gift of purified TFF2 from 
porcine pancreas, and Jonathan A. Lindquist (Otto-von-Guericke University, Magdeburg) for his comments on 
the manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

Abbreviations 
AgGE Agarose gel electrophoresis 
PAS Periodic acid-Schiff 
SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
SEC Size exclusion chromatography 
TFF Trefoil factor family 



Int. J. Mol. Sci. 2019, 20, 6052 7 of 9 

 

References 

1. Hauser, F.; Hoffmann, W. xP1 and xP4. P-domain peptides expressed in Xenopus laevis stomach mucosa. J. 
Biol. Chem. 1991, 266, 21306–21309. 

2. Hoffmann, W.; Jagla, W. Cell type specific expression of secretory TFF peptides: Colocalization with mucins 
and synthesis in the brain. Int. Rev. Cytol. 2002, 213, 147–181. 

3. Hoffmann, W. Trefoil factor family (TFF) peptides: Regulators of mucosal regeneration and repair, and 
more. Peptides 2004, 25, 727–730. 

4. Hoffmann, W.; Hauser, F. The P-domain or trefoil motif: A role in renewal and pathology of mucous 
epithelia? Trends Biochem. Sci. 1993, 18, 239–243. 

5. Jagla, W.; Wiede, A.; Kolle, S.; Hoffmann, W. Differential expression of the TFF-peptides xP1 and xP4 in 
the gastrointestinal tract of Xenopus laevis. Cell Tissue Res. 1998, 291, 13–18. 

6. Session, A.M.; Uno, Y.; Kwon, T.; Chapman, J.A.; Toyoda, A.; Takahashi, S.; Fukui, A.; Hikosaka, A.; Suzuki, 
A.; Kondo, M.; et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 2016, 538, 336–343. 

7. Botzler, C.; Oertel, M.; Hinz, M.; Hoffmann, W. Structure of the Xenopus laevis TFF-gene xP4.1, differentially 
expressed to its duplicated homolog xP4.2. Biochim. Biophys. Acta 1999, 1489, 345–353. 

8. Hoffmann, W. TFF Peptides. In Handbook of Biologically Active Peptides, 2nd ed.; Kastin, A., Ed.; Elsevier: 
Amsterdam, The Netherlands, 2013; pp. 1338–1345. 

9. Ribieras, S.; Tomasetto, C.; Rio, M.C. The pS2/TFF1 trefoil factor, from basic research to clinical applications. 
Biochim. Biophys. Acta 1998, 1378, F61–F77. 

10. Westley, B.R.; Griffin, S.M.; May, F.E. Interaction between TFF1, a gastric tumor suppressor trefoil protein, 
and TFIZ1, a brichos domain-containing protein with homology to SP-C. Biochemistry 2005, 44, 7967–7975. 

11. Kouznetsova, I.; Laubinger, W.; Kalbacher, H.; Kalinski, T.; Meyer, F.; Roessner, A.; Hoffmann, W. 
Biosynthesis of gastrokine-2 in the human gastric mucosa: Restricted spatial expression along the antral 
gland axis and differential interaction with TFF1, TFF2 and mucins. Cell. Physiol. Biochem. 2007, 20, 899–908. 

12. Tomasetto, C.; Rio, M.C. Pleiotropic effects of Trefoil Factor 1 deficiency. Cell. Mol. Life Sci. 2005, 62, 2916–
2920. 

13. Lefebvre, O.; Chenard, M.P.; Masson, R.; Linares, J.; Dierich, A.; LeMeur, M.; Wendling, C.; Tomasetto, C.; 
Chambon, P.; Rio, M.C. Gastric mucosa abnormalities and tumorigenesis in mice lacking the pS2 trefoil 
protein. Science 1996, 274, 259–262. 

14. Soutto, M.; Saleh, M.; Arredouani, M.S.; Piazuelo, B.; Belkhiri, A.; El-Rifai, W. Loss of Tff1 Promotes Pro-
Inflammatory Phenotype with Increase in the Levels of RORγt+ T Lymphocytes and Il-17 in Mouse Gastric 
Neoplasia. J. Cancer 2017, 8, 2424–2435. 

15. Saukkonen, K.; Tomasetto, C.; Narko, K.; Rio, M.C.; Ristimaki, A. Cyclooxygenase-2 expression and effect 
of celecoxib in gastric adenomas of trefoil factor 1-deficient mice. Cancer Res. 2003, 63, 3032–3036. 

16. Karam, S.M.; Tomasetto, C.; Rio, M.C. Trefoil factor 1 is required for the commitment programme of mouse 
oxyntic epithelial progenitors. Gut 2004, 53, 1408–1415. 

17. Karam, S.M.; Tomasetto, C.; Rio, M.C. Amplification and invasiveness of epithelial progenitors during 
gastric carcinogenesis in trefoil factor 1 knockout mice. Cell Prolif. 2008, 41, 923–935. 

18. Reeves, E.P.; Ali, T.; Leonard, P.; Hearty, S.; O’Kennedy, R.; May, F.E.B.; Westley, B.R.; Josenhans, C.; Rust, 
M.; Suerbaum, S.; et al. Helicobacter pylori lipopolysaccharide interacts with TFF1 in a pH-dependent 
manner. Gastroenterology 2008, 135, 2043–2054. 

19. Clyne, M.; May, F.E.B. The Interaction of Helicobacter pylori with TFF1 and Its Role in Mediating the Tropism 
of the Bacteria Within the Stomach. Int. J. Mol. Sci. 2019, 20, 4400. 

20. Thim, L. Trefoil peptides: From structure to function. Cell. Mol. Life Sci. 1997, 53, 888–903. 
21. Thim, L.; Madsen, F.; Poulsen, S.S. Effect of trefoil factors on the viscoelastic properties of mucus gels. Eur. 

J. Clin. Investig. 2002, 32, 519–527. 
22. Kjellev, S.; Nexo, E.; Thim, L.; Poulsen, S.S. Systemically administered trefoil factors are secreted into the 

gastric lumen and increase the viscosity of gastric contents. Br. J. Pharmacol. 2006, 149, 92–99. 
23. Ota, H.; Hayama, M.; Momose, M.; El-Zimaity, H.M.; Matsuda, K.; Sano, K.; Maruta, F.; Okumura, N.; 

Katsuyama, T. Co-localization of TFF2 with gland mucous cell mucin in gastric mucous cells and in 
extracellular mucous gel adherent to normal and damaged gastric mucosa. Histochem. Cell Biol. 2006, 126, 
617–625. 

24. Hoffmann, W. TFF2, a MUC6-binding lectin stabilizing the gastric mucus barrier and more. Int. J. Oncool. 
2015, 47, 806–816. 



Int. J. Mol. Sci. 2019, 20, 6052 8 of 9 

 

25. Semple, J.I.; Newton, J.; Westley, B.; May, F. Dramatic diurnal variation in the concentration of the human 
trefoil peptide TFF2 in gastric juice. Gut 2001, 48, 648–655. 

26. May, F.E.; Semple, J.I.; Newton, J.L.; Westley, B.R. The human two domain trefoil protein, TFF2, is 
glycosylated in vivo in the stomach. Gut 2000, 46, 454–459. 

27. Hanisch, F.G.; Ragge, H.; Kalinski, T.; Meyer, F.; Kalbacher, H.; Hoffmann, W. Human gastric TFF2 peptide 
contains an N-linked fucosylated N,N’-diacetyllactosediamine (LacdiNAc) oligosaccharide. Glycobiology 
2013, 23, 2–11. 

28. Hanisch, F.G.; Bonar, D.; Schloerer, N.; Schroten, H. Human trefoil factor 2 is a lectin that binds α-GlcNAc-
capped mucin glycans with antibiotic activity against Helicobacter pylori. J. Biol. Chem. 2014, 289, 27363–
27375. 

29. Oinuma, T.; Ide, S.; Kawano, J.; Suganuma, T. Purification and immunohistochemistry of Griffonia 
simplicifolia agglutinin-II-binding mucus glycoprotein in rat stomach. Glycobiology 1994, 4, 469–475. 

30. Ishihara, K.; Kurihara, M.; Goso, Y.; Urata, T.; Ota, H.; Katsuyama, T.; Hotta, K. Peripheral α-linked N-
acetylglucosamine on the carbohydrate moiety of mucin derived from mammalian gastric gland mucous 
cells: Epitope recognized by a newly characterized monoclonal antibody. Biochem. J. 1996, 318, 409–416. 

31. Kawakubo, M.; Ito, Y.; Okimura, Y.; Kobayashi, M.; Sakura, K.; Kasama, S.; Fukuda, M.N.; Fukuda, M.; 
Katsuyama, T.; Nakayama, J. Natural antibiotic function of a human gastric mucin against Helicobacter 
pylori infection. Science 2004, 305, 1003–1006. 

32. Fox, J.G.; Rogers, A.B.; Whary, M.T.; Ge, Z.; Ohtani, M.; Jones, E.K.; Wang, T.C. Accelerated progression of 
gastritis to dysplasia in the pyloric antrum of TFF2-/- C57BL6 x Sv129 Helicobacter pylori-infected mice. Am. 
J. Pathol. 2007, 171, 1520–1528. 

33. Albert, T.K.; Laubinger, W.; Müller, S.; Hanisch, F.G.; Kalinski, T.; Meyer, F.; Hoffmann, W. Human 
intestinal TFF3 forms disulfide-linked heteromers with the mucus-associated FCGBP protein and is 
released by hydrogen sulfide. J. Proteome Res. 2010, 9, 3108–3117. 

34. Riemer, J.; Bulleid, N.; Herrmann, J.M. Disulfide formation in the ER and mitochondria: Two solutions to 
a common process. Science 2009, 324, 1284–1287. 

35. Reddy, P.; Sparvoli, A.; Fagioli, C.; Fassina, G.; Sitia, R. Formation of reversible disulfide bonds with the 
protein matrix of the endoplasmic reticulum correlates with the retention of unassembled Ig light chains. 
EMBO J. 1996, 15, 2077–2085. 

36. Ikuzawa, M.; Yasumasu, S.; Kobayashi, K.; Iuchi, I. Cloning and expression of xP1-L, a new marker gene 
for larval surface mucous cells of tadpole stomach in Xenopus laevis. Gene Expr. Patterns 2007, 8, 12–18. 

37. Gilbert, H.F. Molecular and cellular aspects of thiol-disulfide exchange. In Advances in Enzymology and 
Related Areas of Molecular Biology; Meister, A., Ed.; Wiley & Sons: Hoboken, NJ, USA, 1963; Volume 63, pp. 
69–172. 

38. Poole, L.B. The basics of thiols and cysteines in redox biology and chemistry. Free Radic. Biol. Med. 2015, 80, 
148–157. 

39. Ying, J.; Clavreul, N.; Sethuraman, M.; Adachi, T.; Cohen, R.A. Thiol oxidation in signaling and response 
to stress: Detection and quantification of physiological and pathophysiological thiol modifications. Free 
Radic. Biol. Med. 2007, 43, 1099–1108. 

40. Torres, L.F.; Karam, S.M.; Wendling, C.; Chenard, M.P.; Kershenobich, D.; Tomasetto, C.; Rio, M.C. Trefoil 
factor 1 (TFF1/pS2) deficiency activates the unfolded protein response. Mol. Med. 2002, 8, 273–282. 

41. Grasberger, H.; El-Zaatari, M.; Dang, D.T.; Merchant, J.L. Dual oxidases control release of hydrogen 
peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice. 
Gastroenterology 2013, 145, 1045–1054. 

42. Kennett, E.C.; Chuang, C.Y.; Degendorfer, G.; Whitelock, J.M.; Davies, M.J. Mechanisms and consequences 
of oxidative damage to extracellular matrix. Biochem. Soc. Trans. 2011, 39, 1279–1287. 

43. Suzuki, H.; Nishizawa, T.; Tsugawa, H.; Mogami, S.; Hibi, T. Roles of oxidative stress in stomach disorders. 
J. Clin. Biochem. 2012, 50, 35–39. 

44. Wright, N.A.; Poulsom, R.; Stamp, G.W.H.; Hall, P.A.; Jeffery, R.E.; Longcroft, J.M.; Rio, M.-C.; Tomasetto, 
C.; Chambon, P. Epidermal growth factor (EGF/URO) induces expression of regulatory peptides in 
damaged human gastrointestinal tissues. J. Pathol. 1990, 162, 279–284. 

45. Rio, M.-C.; Chenard, M.-P.; Wolf, C.; Marcellin, L.; Tomasetto, C.; Lathe, R.; Bellocq, J.-P.; Chambon, P. 
Induction of pS2 and hSP genes as markers of mucosal ulceration of the digestive tract. Gastroenterology 
1991, 100, 375–379. 



Int. J. Mol. Sci. 2019, 20, 6052 9 of 9 

 

46. Ebert, M.P.A.; Hoffmann, J.; Haeckel, C.; Rutkowski, K.; Schmid, R.M.; Wagner, M.; Adler, G.; Schulz, H.U.; 
Roessner, A.; Hoffmann, W.; et al. Induction of TFF1 gene expression in pancreas overexpressing 
transforming growth factor α. Gut 1999, 45, 105–111. 

47. Kouznetsova, I.; Chwieralski, C.E.; Bälder, R.; Hinz, M.; Braun, A.; Krug, N.; Hoffmann, W. Induced trefoil 
factor family 1 expression by trans-differentiating Clara cells in a murine asthma model. Am. J. Respir. Cell 
Mol. Biol. 2007, 36, 286–295. 

48. Znalesniak, E.B.; Fu, T.; Guttek, K.; Händel, U.; Reinhold, D.; Hoffmann, W. Increased cerebral Tff1 
expression in two murine models of neuroinflammation. Cell. Physiol. Biochem. 2016, 39, 2287–2296. 

49. Znalesniak, E.B.; Fu, T.; Salm, F.; Händel, U.; Hoffmann, W. Transcriptional responses in the murine spleen 
after Toxoplasma gondii infection: Inflammasome und mucus-associated genes. Int. J. Mol. Sci. 2017, 18, 1245. 

50. Schroeder, B.O.; Wu, Z.; Nuding, S.; Groscurth, S.; Marcinowski, M.; Beisner, J.; Buchner, J.; Schaller, M.; 
Stange, E.F.; Wehkamp, J. Reduction of disulphide bonds unmasks potent antimicrobial activity of human 
β-defensin 1. Nature 2011, 469, 419–423. 

51. Stürmer, R.; Müller, S.; Hanisch, F.G.; Hoffmann, W. Porcine gastric TFF2 is a mucus constituent and differs 
from pancreatic TFF2. Cell. Physiol. Biochem. 2014, 33, 895–904. 

52. Stürmer, R.; Harder, S.; Schlüter, H.; Hoffmann, W. Commercial Porcine Gastric Mucin Preparations, also 
Used as Artificial Saliva, are a Rich Source for the Lectin TFF2: In Vitro Binding Studies. ChemBioChem 2018, 
19, 2598–2608. 

53. Lang, T.; Klasson, S.; Larsson, E.; Johansson, M.E.V.; Hansson, G.C.; Samuelsson, T. Searching the 
evolutionary origin of epithelial mucus protein components—mucins and FCGBP. Mol. Biol. Evol. 2016, 33, 
1921–1936. 

54. Nakayama, J. Dual roles of gastric gland mucin-specific O-glycans in prevention of gastric cancer. Acta 
Histochem. Cytochem. 2014, 47, 1–9. 

55. Jørgensen, K.H.; Thim, L.; Jacobsen, H.E. Pancreatic spasmolytic polypeptide (PSP): I. Preparation and 
initial chemical characterization of a new polypeptide from porcine pancreas. Regul. Pept. 1982, 3, 207–219. 

56. Braga Emidio, N.; Hoffmann, W.; Brierly, S.M.; Muttenthaler, M. Trefoil factor family: Unresolved 
questions and clinical perspectives. Trends Biochem. Sci. 2019, 44, 387–390. 

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


