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Abstract: The nuclei of cells may exhibit invaginations of the nuclear envelope under a variety of
conditions. These invaginations form a branched network termed the nucleoplasmic reticulum (NR),
which may be found in cells in pathological and physiological conditions. While an extensive NR
is a hallmark of cellular senescence and shows associations with some cancers, very little is known
about the formation of NR in physiological conditions, despite the presence of extensive nuclear
invaginations in some cell types such as endometrial cells. Here we show that in these cells the NR is
formed in response to reproductive hormones. We demonstrate that oestrogen and progesterone
are sufficient to induce NR formation and that this process is reversible without cell division upon
removal of the hormonal stimulus. Nascent lamins and phospholipids are incorporated into the
invaginations suggesting that there is a dedicated machinery for its formation. The induction of NR in
endometrial cells offers a new model to study NR formation and function in physiological conditions.
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1. Introduction

The nuclear envelope (NE) constitutes a boundary between two very different compartments
within a cell, the cytoplasm and nucleoplasm. In metazoans, the most prominent structural features
of the NE are the outer nuclear membrane (ONM) and the inner nuclear membrane (INM) with a
perinuclear space (PNS) between them, which ranges from 30 to 50 nm in thickness [1,2]. Underlying the
INM is the nuclear lamina, a proteinaceous meshwork of intermediate filament proteins. The NE is
pierced with highly structured nuclear pore complexes (NPC) spanning across the two membranes.
These structures are involved in trafficking of molecular cargo in and out of the nucleus [3]. The ONM
is connected with the endoplasmic reticulum (ER), thus making the PNS continuous with the ER lumen.
Although the INM and ONM meet at the periphery of each NPC, they each retain a fairly distinctive
protein composition. The ONM, due to its continuity with the ER is enriched in ER components, while
the INM retains its own distinctive array of integral membrane proteins [4]. The NE often shows
multiple invaginations of the nuclear membrane into the nucleus, forming an often elaborate network
of tubules and INM sheets continuous with the NE. This feature is termed nucleoplasmic reticulum
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(NR), so named for its structural resemblance to the ER [5,6]. The NR is a widespread feature of
many cells and tissues, both under normal cellular conditions [5–8] and in pathological states [9,10].
These NR structures are classified into two types: type I invaginations involve only the INM with PNS
core, and type II involve invagination of both the INM and ONM with cytoplasmic core [11].

The NR appears in many cell types with possibly multiple pathways contributing to its formation.
It also occurs as a physiologic cellular response to external stimuli. It has long been recognized that
a structurally advanced system of NE invaginations, referred to as the nucleolar channel system
(NCS), is a hallmark of the postovulation endometrium [12,13]. Its transient presence manifests in
human endometrial cells during a three to four day period during the midluteal, receptive phase of the
menstrual cycle [14]. The NCS structure consists of multilamellar cisternae and tubular membrane
features within the nucleus that are derived from the INM [12,15]. These cisternae exhibit the presence
of NPC proteins and a subset of NE-specific components [14]. The proposed significance of this
apparent complex NR is that it is formed in preparation for blastocyst attachment and implantation
to the endometrium. This hypothesis is supported by several reports demonstrating the absence or
delayed development of NCS in cases of unexplained primary infertility [16,17], further supported by
observations that both intrauterine devices and oral contraceptives interfere with NCS formation [18,19].
It has been demonstrated that the formation of NCS can be elicited by the action of oestrogen and
progesterone at the time of ovulation [20,21]. Whilst NCS is a unique mix of tubular and cisternal
structures, its development from the INM suggests that it may originate as an NR invagination, which,
in response to hormones, gains further complexity, possibly representing an advanced NR.

In this work we investigated formation of the NR in an endometrial cell model in response to
stimulation with hormones. We used Ishikawa cells, a cell line established from an endometrial
adenocarcinoma from a premenopausal patient [22], that express both oestrogen and progesterone
receptors. We established a physiological model for studying NR and determined that similar to
recently reported NR formation in response to pathological stimulus by prelamin A accumulation [23]
the hormonal induction of NR in Ishikawa cells also results in incorporation of newly synthesised
membrane phospholipids as well as newly delivered lamina proteins.

2. Results and Discussion

2.1. Nuclei of Ishikawa Cells Contain NR Structures

Indirect immunofluorescence of fixed Ishikawa cells demonstrated intranuclear foci of both lamin
A/C and B marking the NR tubules (Figure 1A). Higher resolution examination by EM microscopy
showed that the NR channels present in Ishikawa cells are double membraned and often surrounded
by electron dense material including the nuclear lamina and variable amounts of heterochromatin
(Figure 1B). Loading of the cytoplasm with a fluorescent 150kDa IgG that is size excluded from the
nucleoplasm revealed the cytoplasmic core of the invaginations and is consistent with the presence of
INM/ONM double membranes, as is visible in the EM images (Figure 1C).
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Figure 1. Nuclei of Ishikawa cells contain invaginations of the nuclear envelope forming a 
nucleoplasmic reticulum. (A) Ishikawa cells immunostained with anti-Lamin B1 and anti Lamin A/C. 
Scale bar 5 µm. (B) Electron microscopy micrograph of a high-pressure frozen Ishikawa cell. Scale bar 
is 5 µm for low magnification nucleus and 0.5 µm for high magnification insets. N, nucleus; C, 
cytoplasm. (C) Cytoplasmic loading by IgG AF 546 to visualize the cytoplasmic core of the 
invagination. Arrowhead indicates position of orthogonal projection in the panels to the right. Scale 
bar 5 µm. 

2.2. Formation of NR Tubules in Endometrial Cell Line is Responsive to Hormones 

Figure 1. Nuclei of Ishikawa cells contain invaginations of the nuclear envelope forming a nucleoplasmic
reticulum. (A) Ishikawa cells immunostained with anti-Lamin B1 and anti Lamin A/C. Scale bar
5 µm. (B) Electron microscopy micrograph of a high-pressure frozen Ishikawa cell. Scale bar
is 5 µm for low magnification nucleus and 0.5 µm for high magnification insets. N, nucleus; C,
cytoplasm. (C) Cytoplasmic loading by IgG AF 546 to visualize the cytoplasmic core of the invagination.
Arrowhead indicates position of orthogonal projection in the panels to the right. Scale bar 5 µm.
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2.2. Formation of NR Tubules in Endometrial Cell Line Is Responsive to Hormones

Ishikawa cells cultured in oestrogen-depleted medium show an increase in the mean number of
invaginations per nucleus when oestrogen (estradiol) is added to the culture. It is a time-dependent
process, and appears to plateau between three and six hours of estradiol treatment (Figure 2A,B).
Thus, it suggests that a hormone-sensitive mechanism controlling the complexity of NR exists in these
cells and that the effect of oestrogen plateaus by six hours of treatment, with no further NR induction
even after prolonged (48 h) hormone exposure. Since the induction of NCS during the menstrual
cell cycle requires timely cooperation of both oestrogen and progesterone we tested whether these
hormones have added effect in regard to NR formation.
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Figure 2. Formation of NR tubules in endometrial cells is hormone responsive. (A) NR formation
time-course in Ishikawa cells in response to oestrogen. An F-test rejects the null hypothesis (slope = 0)
between t0, t3 and t6 (p = 0.005) while this null hypothesis cannot be rejected for later time-point (t 12 to t
48) (p > 0.5). (B) Immunostained Ishikawa cells imaged at different intervals after addition of oestrogen
to the culture medium. Scale bar 10 µm. (C) NR abundance in Ishikawa cells in response to estradiol
and/or progesterone treatment in medium containing either oestrogen-stripped FBS (oestrogen-depleted
FBS) or regular FBS (oestrogen-containing FBS). (D) NR abundance in Ishikawa cells treated for 72 h
with estradiol or progesterone and their respective antagonists. Data from 2 independent experiments,
100 nuclei each; mean ± SEM; * for p-value < 0.05, ** for p-value < 0.01, ns for non-significant.
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Progesterone added to the cell culture medium, similar to oestrogen, increased the mean number
of NR invaginations per nucleus, however there was no synergistic effect of treatment with both
hormones (Figure 2C).

These observations remain true for Ishikawa cells cultured in medium containing charcoal-stripped
(i.e., hormone-free) FBS to which hormones were then added, and in medium supplemented with
regular FBS that normally contains physiologically relevant levels of sex hormones. To further ensure
that the increased frequency of NR in Ishikawa cells was due to hormone action on cells, we used
tamoxifen and mifepristone that are specific antagonists of oestrogen and progesterone receptors
respectively. As expected, co-treatment with either tamoxifen or mifepristone abolished the effect
oestrogen or progesterone had on NR abundance in endometrial cells (Figure 2D), suggesting that
induction of NR formation was a specific effect of these hormones on the cells.

The data presented here showed that oestrogen or progesterone presence in the culture medium
stimulates NR channel formation in Ishikawa cells. It may therefore be speculated that these hormones
act on the endometrium in vivo to induce NR proliferation, which plausibly in turn could lead to
development of the NCS. This hypothesis could further be supported by the fact that NCS and R-rings
(an NCS like structure) originate as type I NR invaginations [15]. Thus, oestrogen and/or progesterone
secretion during the menstrual cycle may permit formation of the NCS from NR precursors. We failed,
however, to detect any of the more complex structures resembling NCS in our in vitro Ishikawa cell
culture despite trying combinations of varying progesterone and oestrogen concentration over 28 days
as observed in menstrual cell cycle.

Although the exact mechanism by which oestrogen affects NR proliferation remains speculative,
it is possible that the action is mediated through phospholipid synthesis. Oestrogen appears to
stimulate the catalytic activity of the rate-limiting enzyme in the Kennedy pathway for production of
phosphatidylcholine, CCTα, [24,25] and this enzyme has been demonstrated to play a crucial role in
formation of the NR [26,27]. Further work is still needed to fully understand the role of oestrogen in
NR formation, including whether or not this is a common response in all steroid-responsive cells.

We then addressed whether the invaginations that formed under hormonal induction could be
disassembled. We induced NR formation for 24 h with oestrogen and progesterone, then we removed
the hormones and counted NR invaginations 3 h later. We found that after hormone removal NR levels
rapidly returned to basal level seen prior to induction (Figure 3A,B). To ensure that the loss of NR
complexity after hormone removal was not due to cell proliferation, we assessed cell division rates by
flow cytometry after 5(6)-carboxyfluorescein N-hydroxysuccinimidyl ester (CFSE) labelling. A CFSE
pulse stably labels cells and its fluorescence is halved at every cell division. We found that neither the
addition nor the removal of hormones affects the rate of proliferation or the cell cycle stage distribution
(Figure 3C and Figure S1). As CFSE fluorescence is halved every 30 h (Figure 3D), the reduction of
NR abundance within 3 h of stimulus removal is cell division independent. This indicates that the
invaginations of the nuclear envelope are both induced and stabilised during hormone exposure, while
hormone removal rapidly reverses these effects and invaginations disappear.
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division rate. Normalised frequency of CFSE fluorescence of Ishikawa cells measured by flow 
cytometry. Hormones were added for 48 h then removed for another 48 h. Average cell number per 
profile = 28,000. Individual flow cytograms in Supplementary Figure 1. (D) Average CFSE loss over 
time of treated and control samples reveal non-significant difference in cell proliferation rates. 
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B1 synthesised post-photoconversion was imaged in green channel (“new” lamin B1), while 
previously photoconverted protein (“old” lamin B1) was simultaneously recorded in red channel, 
which allowed for measuring the ratio of nascent lamin B1 (expressed within past 25–27 h) relative 
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analysis of pixel intensities that were further normalised to the nuclear rim intensities in that cell. 

Figure 3. NR formation in endometrial cells is reversible and cell cycle independent. (A) NR induction
in Ishikawa cells treated with oestrogen and progesterone for 24h and then subjected to 3 h washout
in hormone-free media. Nuclei immunostained with anti-Lamin B1-Cy5. Scale bar 10 µm. (B) NR
abundance quantification. Three replicates total, n = 242, 262, 203, respectively. ** for p < 0.01; ns
for non-significant. Error bars represent SEM. (C) Hormone addition or removal does not affect cell
division rate. Normalised frequency of CFSE fluorescence of Ishikawa cells measured by flow cytometry.
Hormones were added for 48 h then removed for another 48 h. Average cell number per profile = 28,000.
Individual flow cytograms in Supplementary Figure S1. (D) Average CFSE loss over time of treated
and control samples reveal non-significant difference in cell proliferation rates.

We have recently shown that under pathological conditions, when NR formation is induced
by accumulation of abnormally processed lamin A, the newly induced channels and nuclear
envelope invaginations require incorporation of nascent lamina proteins as well as newly synthesised
phospholipids [23]. We decided to test whether NR formed in Ishikawa cells in response to a
physiological stimulus exhibited the same property. To monitor incorporation of newly synthesised
lamins to the nuclear envelope during NR induction with oestrogen, similar to previous work,
we expressed lamin B1 tagged with photoconvertible fluorescent protein Maple3 in Ishikawa cells.
The lamin B1 Maple3 tag was fully photoconverted from a green into a red fluorescent protein by
exposure to 405 nm monochromatic light and thus marked the pool of “old” lamin B1, pre-existing
in a cell prior to photoconversion (Figure 4A). After a recovery period of 18 h, cell culture medium
was supplemented with oestrogen and induction of NR followed for 7–9 h. Then the pool of lamin
B1 synthesised post-photoconversion was imaged in green channel (“new” lamin B1), while previously
photoconverted protein (“old” lamin B1) was simultaneously recorded in red channel, which allowed
for measuring the ratio of nascent lamin B1 (expressed within past 25–27 h) relative to lamin B1 present
in a cell prior to photoconversion. ROIs were applied to ratiometric images for analysis of pixel
intensities that were further normalised to the nuclear rim intensities in that cell.
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of Ishikawa cells expressing lamin B1- Maple3. Indicated are the “old” (red channel) and “new” (green 
channel) lamin protein pools. Ratiometric image of “New”/”Old” is provided with indication of ratio 
values for selected ROIs around the features arrowed. (B) Evaluation of invagination abundance per 
nucleus in Ishikawa cells with (+ oes) or without oestrogen (-oes) treatment. (C) Pixel intensities of 
the ROIs defined in based on the ratiometric images and normalised to the signal at the nuclear rim 
showing increased incorporation of nascent lamin B1 at the newly forming NR channels; results from 
three independent experiments, 35 cells in total; mean ± SD; ** p-value < 0.001; * p-value < 0.05. (D) An 
example data plot from a single experiment showing distribution of “New”/”Old” lamin B1 ratio at 
different nuclear structures and normalised to the nuclear rim ratio with or without oestrogen. 

As observed earlier, oestrogen treatment for 7–9 h increased number of detected NR channels. 
More importantly though, and similarly to a pathological model we reported earlier, newly formed 
NR in the endometrial cell model showed significant enrichment in nascent lamin B1 (Figure 4B), and 
incorporated newly synthesised protein at much higher rate than the bulk nuclear envelope or pre-
existing NR (Figures 4C,D). Interestingly, a few cells in the control group without hormone 
stimulation also formed new NR tubules enriched in nascent lamin B1 during the experiment (Figure 
4D). Although the majority did not, this is an observation similar to that which we observed in control 
samples in the pathological model of NR induction by prelamin A accumulation [23]. 

Figure 4. Nascent lamin B1 is incorporated in newly formed invaginations. (A) Confocal microscopy
of Ishikawa cells expressing lamin B1- Maple3. Indicated are the “old” (red channel) and “new” (green
channel) lamin protein pools. Ratiometric image of “New”/”Old” is provided with indication of ratio
values for selected ROIs around the features arrowed. (B) Evaluation of invagination abundance per
nucleus in Ishikawa cells with (+ oes) or without oestrogen (-oes) treatment. (C) Pixel intensities of
the ROIs defined in based on the ratiometric images and normalised to the signal at the nuclear rim
showing increased incorporation of nascent lamin B1 at the newly forming NR channels; results from
three independent experiments, 35 cells in total; mean ± SD; ** p-value < 0.001; * p-value < 0.05. (D) An
example data plot from a single experiment showing distribution of “New”/”Old” lamin B1 ratio at
different nuclear structures and normalised to the nuclear rim ratio with or without oestrogen.

As observed earlier, oestrogen treatment for 7–9 h increased number of detected NR channels.
More importantly though, and similarly to a pathological model we reported earlier, newly formed
NR in the endometrial cell model showed significant enrichment in nascent lamin B1 (Figure 4B),
and incorporated newly synthesised protein at much higher rate than the bulk nuclear envelope
or pre-existing NR (Figure 4C,D). Interestingly, a few cells in the control group without hormone
stimulation also formed new NR tubules enriched in nascent lamin B1 during the experiment (Figure 4D).
Although the majority did not, this is an observation similar to that which we observed in control
samples in the pathological model of NR induction by prelamin A accumulation [23].
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Since CCTα, the rate limiting enzyme of phosphatidylcholine production, is oestrogen responsive
and largely if not exclusively confined to the nucleus [28], we next looked into the distribution of
nascent phospholipids during NR induction in our physiological model. Here cells were pulsed with
deuterated choline for 12 h in the presence of estradiol, before being fixed and prepared for NanoSIMS
analysis. Cells were imaged by backscattered electron microscopy and correlated to the NanoSIMS
analysis (Figure 5A,B). While foci of high deuterium incorporation were observed along the walls of
NR channel as seen in the images of individual planes, the highest level of deuterium enrichment was
detected at the blind-ended NR tip where the channel no longer has a lumen. This distribution was
confirmed by measuring the average intensity of deuterium signal at the NE or NR in the depth profile
(Figure 5C,D; Supplementary Movie S1). Similar enrichment of nascent phospholipids at forming NR
was also observed previously in a pathological model of NR induction [23].
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Figure 5. Nascent phospholipids are incorporated in the forming NR during estradiol stimulation.
(A) Representative backscattered electron micrograph of an Ishikawa nucleus pulse labelled with
deuterated choline. Arrow points to an NR channel. Scale bar 5 µm. (B) Overlay of the
electron micrograph and NanoSIMS image showing deuterium enrichment at the invagination.
(C) Quantification of the mean 2H/1H ratio in the NR versus the NE rim for the ion-beam eroded
z-series through this cell. The average 2H/1H ratio for two regions of interest (total NE and NR) are
shown for each z plane. This shows increasing nascent deuterated choline signal in the tip of the NR
invagination where no lumen is visible. See also Supplementary Movie S1. (D) Panel of individual
sections of 3D reconstruction. Color scale of NanoSIMS images 2–20 equals 0.02–0.2% of 2H/1H ratio.

Taken together, the results presented here establish a physiologically relevant model for studying
NR induction and resolution. Moreover, the involvement of nascent protein and lipid in the formation
of hormone-induced NR structures is consistent with a model of NR biogenesis in which the structure
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develops de novo rather than resulting from deformation of a pre-existing NE by external forces,
whether from within or without. This is similar to recent observations on pharmacological induction
of a pathological NR by accumulation of prelamin A [23].

The observation of rapid loss of induced NR after washout implies that a tonic signal from
hormones maintains NR structures, and opens new avenues for analysis of NR regulation. In particular,
these data already confirm that the involution of NR structures may occur physiologically without the
intervention of mitosis, as had already been demonstrated for NR induction [26]. Future experiments
correlating the timing of gene expression, protein delivery and post-translational modification with the
involution of NR structures upon hormone withdrawal offers an avenue further to identify signals
that regulate abundance of this nuclear structure. Furthermore, it is possible that the simple model
described here may recapitulate important features of the hormone-dependent changes that prepare
the endometrium for implantation. If this is the case, NR formation in cultured endometrial cells may
offer a useful surrogate measure in studies of clinical and pharmacological interventions to enhance or
prevent fertility.

3. Materials and Methods

3.1. Mammalian Cell Culture, Transfection and Treatments

Ishikawa cells (ECACC 99040201) were cultured in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% charcoal stripped foetal calf serum (FCS, F6765, Sigma, Saint Louis, MO, USA),
1% non-essential amino acids, and penicillin and streptomycin antibiotics (100 units/mL). Cells were
transfected with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions. Hormones were added to the media for the time indicated. Estradiol (Sigma) was used at
150 pg/mL and progesterone (Sigma) at 10 ng/mL. Mifepristone (Sigma) and tamoxifen (Sigma) were
used at 1 µM concentration.

3.2. Generation of mNeonGreen-LmnA Cell Line by CRISPR-Cas9

mNeonGreen was inserted after the start codon of LmnA using a double-nicking strategy with the
Cas9 D10A nickase mutant. The donor plasmid for LmnA consisted of the insert enclosed in a 475 bp C
term homology arm and a 483 bp N term homology arm between positions 120 and 121 of the lacZa gene
of pBluescript. The donor plasmids were assembled by isothermal assembly (NEBuilder® HiFi DNA
Assembly, New England BioLabs, Ipswich, MA, USA). gRNA plasmid generation: gRNA and plasmid
design were done following the recommendations of Ran et al. (2013) [29]. Guides were designed with
the MIT design tool (Zhang Lab, MIT, MA, USA): http://crispr.mit.edu/ and inserted into Addgene
Plasmid #48141 pSpCas9n(BB)-2A-Puro (PX462, a gift from Feng Zhang, MIT, MA, USA). Guide RNAs
were 5’-ACGGGGTCTCCATGGCCGGCAGG-3’ and 5’-AGCGGCGCGCCACCCGCAGCGGG-3’.

3.3. Transfection and Cell Sorting

Plasmids containing the guides and donor templates were transfected in HeLa cells using
Lipofectamine 2000 following the manufacturer’s recommendations. Cells were then left to recover
and to express the fusion protein for a week before proceeding with cell sorting. Cell sorting was done
on a BD FACS Aria III (BD Biosciences, San Jose, CA, USA) run with the BD FACSDiva software version
8.0.2 (BD Biosciences); positive cells were sorted if green or red fluorescence was 103 times brighter that
control cells. Positive cells were single cell sorted in an optical 96 well plate containing preconditioned
media and adequate localisation of the fusion protein was confirmed by confocal microscopy and later
by Sanger sequencing to confirm correct insertion of the mNeonGreen cassette (Allele Biotechnology,
San Diego, CA, USA).

http://crispr.mit.edu/
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3.4. Immunofluorescence and Confocal Microscopy

Cells were seeded on glass coverslips in 24 well plates. Cells were fixed in 4% PFA for 10 min
and subsequently permeabilized for 5 min with 0.5% X-100 Triton. Cells were blocked in 0.5% skin
fish gelatine for 1 h. Antibodies were diluted in the blocking solution. Primary antibodies were
goat anti-lamin B1 (C-20, Santa Cruz Biotechnology, Santa Cruz, CA, USA), and mouse anti-lamin
A/C (4C11) Active Motif (Carlsbad, CA, USA). Secondary antibodies used were donkey anti-mouse
and donkey anti-goat conjugated to Alexa Fluor 488 and Alexa Fluor 647 (Invitrogen, Waltham, MA,
USA). Cytoplasmic loading was conducted by permeabilising live cells with a 750 µg/mL solution of
saponin containing a secondary goat anti rabbit IgG Alexa Fluor 546 (80 µL stock solution per 1mL of
detergent solution) at 4 ◦C for 5 min then fixed immediately with cold 4% PFA. Samples were imaged
immediately. Fixed cells were imaged on the LSM5 Zeiss Inverted 510 META laser scanning microscope
(Zeiss, Oberkochen, Germany) using a Plan Apo 63 × 1.4 NA oil immersion lens. Images were acquired
using Zen2009 operating software (Zeiss). Samples of cytoplasmic loading and the hormone removal
experiment were imaged on a Zeiss LSM880 Airyscan using a Plan Apo 40 × 1.3 NA oil immersion lens.
Images were acquired and pre-processed using ZenBlack (Zeiss). Collected images were analysed in
FIJI [30].

3.5. Live Cell Microscopy of Photoconvertible Maple3-Lamin B1

This experiment was conducted as described previously [23]. Briefly, cells were seeded in optical
24 well plates 24 h before transfection. Cells were left for another 24 h to express the fusion protein and
were then imaged on Olympus FV1200 laser scanning microscope (Olympus, Tokyo, Japan) equipped
with temperature and CO2 chamber for live cell work. 60 × 1.4 NA oil objective was used and images
were acquired with Fluoview software (Olympus, Tokyo, Japan). Maple3 photoconversion was done
by exposing cells to UV light for 60 sec at 12% lamp power (U-HGLGPS 100 W mercury lamp). After a
recovery period of 18 h, cell culture medium was supplemented with oestrogen for 7–9 h and cells
were then imaged. Ratiometric images were generated by dividing the green channel intensity (“new
lamin”) by the red channel intensity (“old lamin”).

3.6. Flow Cytometry

Adherent cells were stained with 5 µM CFSE (BioLegend, San Diego, CA, USA) for 15 min.
Excess CFSE was removed by a 2 min wash in PBS. Cells were then trypsinised and reseeded in
10 flasks–one for each time point plus controls. At the appropriate time, cells were harvested by
trypsinisation and fixed in 4% PFA. CFSE fluorescence was measured in a BD Fortessa X20 flow
cytometer (BD Biosciences). Results were analysed with FlowJo software (FlowJo, Ashland, OR, USA).

3.7. Correlative Backscattered Electron Microscopy and NanoSIMS Imaging

Deuterium labelling of phospholipids and sample processing was performed as described
elsewhere [23]. Briefly, prior to labelling Ishikawa cells were cultured in low serum (1%) media
for 24 h. Then deuterated choline chloride d9 (CDN Isotopes, Pointe-Claire, QC, Canada) was
added at 80 mM, together with 150 pg/mL estradiol for 12 h. Upon treatment completion, cells on
coverslips were washed with PBS and fixed in 4% paraformaldehyde and 1% glutaraldehyde in
100 mM PIPES pH 7.4, followed by secondary fixation in 2.5% glutaraldehyde in 100 mM PIPES pH 7.4.
Osmication, dehydration and gradual infiltration with Agar 100 epoxy resin (Agar Scientific, Stansted,
UK) followed. The cells were embedded as a monolayer in the resin and semi-thin sections were cut for
further analysis. Backscattered electron (BSE) imaging was performed using the NVision FIB scanning
electron microscope and BSE images were acquired with a 2 kV incident beam with a standard aperture
(30 µm) and 5-mm working distance.
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Upon the completion of BSE imaging, the sections were coated with 5 nm of platinum in a
Cressington 208HR high-resolution sputter coater (Cressington Scientific Instruments Ltd., Watford,
UK) to provide the surface conductive for Nanoscale Secondary Ion Mass Spectrometry (NanoSIMS)
imaging on Cameca NanoSIMS50 (Cameca, Gennevilliers, France).

First, the Cs+ primary beam was used to remove the platinum on the surface at selected locations,
simultaneously implementing a Cs+ dose of 1.0 × 1017 ions/cm2. Small apertures (D1 = 3 or D1 = 4)
were used for imaging a single cell in order to match the size of primary beam to the pixel size.
The instrument was tuned for 2H– and 1H– to allow calculation of the 2H/1H ratio. The NanoSIMS
images were acquired with a dwell time of 30,000 µs per pixel for 256 × 256 pixel images. A median
filter with radius of 3 pixels was applied to the Hue Saturation Intensity (HSI) image. A single
NanoSIMS image corresponds to ~10 nm specimen thickness. The BSE and NanoSIMS images were
aligned, and the local 2H/1H ratio quantified in FIJI software. Data from ImageJ was then imported to
Excel and GraphPad Prism for further analysis

3.8. Statistics

Unless indicated otherwise, results represent at least three independent biological replicates.
Scatter plots show pooled data, while bar graphs represent the means with standard deviation of the
results from independent repeats. Exact number of repeats and cells in a cohort is indicated in figure
legends. A two-tailed, unpaired Student’s t-test was employed to determine statistical significance of
the results.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/23/
5839/s1.
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