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Abstract: Increasing evidence implicate altered DNA methylation in the pathophysiology of
gestational diabetes mellitus (GDM). This exploratory study probed the association between GDM
and peripheral blood DNA methylation patterns in South African women. Genome-wide DNA
methylation profiling was conducted in women with (n = 12) or without (n = 12) GDM using the
Illumina Infinium HumanMethylationEPIC BeadChip array. Functional analysis of differentially
methylated genes was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses. A total of 1046 CpG sites (associated with 939 genes)
were differentially methylated between GDM and non-GDM groups. Enriched pathways included
GDM-related pathways such as insulin resistance, glucose metabolism and inflammation. DNA
methylation of the top five CpG loci showed distinct methylation patterns in GDM and non-GDM
groups and was correlated with glucose concentrations. Of these, one CpG site mapped to the
calmodulin-binding transcription activator 1 (CAMTA1) gene, which have been shown to regulate
insulin production and secretion and may offer potential as an epigenetic biomarker in our population.
Further validation using pyrosequencing and conducting longitudinal studies in large sample sizes
and in different populations are required to investigate their candidacy as biomarkers of GDM.

Keywords: gestational diabetes mellitus; molecular biomarkers; DNA methylation; MethylationEPIC
Bead Chip Array; South Africa

1. Introduction

Gestational diabetes mellitus (GDM) is defined as glucose intolerance that arises during pregnancy,
and usually resolves postpartum. The prevalence of GDM is increasing, affecting approximately 14% of
pregnancies globally [1], although rates vary between <1% and 28% according to the diagnostic criteria
employed and population studied [2]. GDM is associated with maternal (preeclampsia, caesarean
section and birth injuries), fetal (macrosomia, shoulder dystocia, hyperinsulinemia, hypoglycemia,
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hyperbilirubinemia) and perinatal (respiratory distress syndrome, metabolic derangements and
jaundice) complications [3–5], while both mothers and their offspring are at an increased risk of
developing metabolic disease in later life [6–8]. Current estimates indicate that more than 50% of
women with GDM develop type 2 diabetes (T2D) within 10 years, making GDM a strong predictor
of T2D [6,9]. The identification of women with GDM who are at risk of developing T2D allows the
introduction of timely measures to prevent or better manage disease progression.

Epigenetic mechanisms are increasingly being implicated in the pathophysiology of metabolic
diseases, including GDM [10]. DNA methylation, the most widely studied and best characterized
epigenetic marker, is a reversible process that refers to the addition of a methyl group to the fifth
carbon position of a cytosine residue within a cytosine-phosphate-guanine (CpG) dinucleotide, and
regulates gene expression through transcriptional mechanisms [11]. Altered global and gene-specific
DNA methylation are observed in the placenta of women with GDM [12,13]. DNA methylation
is a tissue-specific process, although recent evidence suggests that peripheral blood reflects DNA
methylation in tissue [14], while several studies report that maternal blood reflects pregnancy-associated
DNA methylation changes [15–17], supporting its potential as epigenetic biomarkers for GDM.

DNA methylation during GDM has been studied using various techniques such as enzyme-linked
immunosorbent assays, whole-genome bisulfite sequencing, methylated DNA immunoprecipitation
sequencing, liquid chromatography coupled with mass spectrometry, pyrosequencing, bead chip arrays
and methyl light polymerase chain reaction (PCR) [12,15,17–20]. Due to its comparatively low cost
compared to sequencing, reproducibility and high sample throughput, bead chip arrays are currently
the most widely used technique for genome-wide DNA methylation profiling [21,22]. The current
bead chip array version, the HumanMethylationEPIC, allows the interrogation of >850,000 CpG sites
across the genome, enriched for promoters and enhancer sequences, covering 99% of RefSeq genes [23].
Previous versions, the HumanMethylation450 and HumanMethylation27, measured >480,000 and
>27,000 CpG sites, respectively across the genome [21].

In South Africa, the prevalence of GDM has increased from about 1.6–25.8% in recent years [24,25].
The possible increase in future T2D cases will place a major burden on the already overburdened health
system and creates an urgent need to identify preventative strategies. DNA methylation has attracted
considerable interest as biomarkers that could facilitate risk stratification and offer opportunities for
intervention strategies to prevent or delay the development of T2D after pregnancy [26]. The aim of
this study is to explore the potential of DNA methylation to serve as biomarkers of GDM in black
South African women. Genome-wide DNA methylation profiling was conducted in the peripheral
blood of women with (n = 12) or without (n = 12) GDM using the Illumina methylationEPIC Bead
Chip array. Functional analysis of differentially methylated genes was conducted to identify pathways
associated with GDM in the South African population.

2. Results

2.1. Study Participants

Participant characteristics are presented in Table 1. As expected, no difference in age, gestational
age and body mass index (BMI) was observed between women with or without GDM. Women
with GDM had significantly higher fasting (p < 0.001) and 1 h oral glucose tolerance test (OGTT)
(p < 0.01) glucose concentrations compared to women without GDM, while 2 h OGTT (p = 0.07)
glucose concentrations showed a trend towards significance. In addition, fasting insulin concentrations,
homeostatic model of assessment (HOMA), and c-reactive protein (CRP) levels were higher in women
with GDM compared to women without GDM, although these were not statistically significant.
No difference between groups were observed for HbA1c and adiponectin concentrations, nor for
common risk factors (advanced maternal age (age ≥ 35 years), obesity (BMI ≥ 30 kg/m2), family history
of diabetes mellitus, delivery of a previous baby more than four kg, glucosuria, previous recurrent
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pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities), as well as education and
employment status.

Table 1. Participant characteristics.

Variables Non-GDM
(n = 12) GDM (n = 12) p-Value

Age (years) a 27.3 (0.3) 27.3 (0.3) 1.00

Gestational age (weeks) a 19.3 (1.5) 19.3 (2.0) 1.00

BMI (kg/m2) a 27.1 (1.3) 27.6 (1.1) 0.77

Fasting glucose (mmol/L) a 4.3 (0.1) 5.5 (0.1) <0.001

1hr OGTT (mmol/L) a 5.2 (0.3) 6.6 (0.4) 0.01

2hr OGTT (mmol/L) a 5.2 (0.3) 5.8 (0.3) 0.07

HbA1c (%) a 5.1 (0.1) 5.1 (0.1) 0.85

Fasting insulin (mIU/L) b 8 (7.5-9.0) 10.2 (6.3-12.7) 0.65

HOMA b 1.6 (1.6-1.8) 2.6 (1.5-2.9) 0.31

Adiponectin (µg/mL) b 10.4 (7.3-23.8) 9.7 (4.7-12.0) 0.28

C-reactive protein (mg/L) a 7.1 (1.2) 7.7 (1.1) 0.75

Risk factors: n (%) c
None 10 (83.3) 7 (58.3)

0.37
≥1 risk factor 2 (16.7) 5 (41.8)

* Education: n (%) c
<grade 12 7 (63.6) 5 (41.7)

0.29
≥grade 12 4 (36.4) 7 (58.3)

Employment: n (%) c
None 8 (66.7) 7 (58.3)

1.00Formal/informal
employment 4 (33.3) 5 (41.7)

GDM: gestational diabetes mellitus; BMI: body mass index; OGTT: oral glucose tolerance test; HbA1c: glycated
hemoglobin; HOMA: homeostatic model assessment calculated according to the formula: fasting insulin (mIUL) ×
fasting glucose (mmol/L)/22.5; Risk factors: advanced maternal age (age > 35 years), obesity (BMI > 30 kg/m2), family
history of diabetes mellitus, delivery of a previous baby more than four kilograms, glucosuria, previous recurrent
pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities. * One participant had missing data for
education. Data are expressed as the a mean ± standard error of the mean, as b median (25th–75th percentiles) or as
c count (percentage). p-values for continuous data were calculated using the Mann–Whitney or the unpaired Student
t test. p-values for categorical data were calculated using chi-square test or Fisher’s exact test if frequency was <5.

2.2. Genome-Wide DNA Methylation Profiling

The average detection p-values for all probes were calculated for each sample and are presented in
supplementary Figure S1. Each sample showed p-values below the usual cut-off of 0.01, indicating that
all samples passed the quality control. In addition, box and whisker plots showed concordance across
samples without any outliers, suggesting good quality and consistency of samples (Figure 1). Median
β-values ranged between 0.79 and 0.83 across the 24 samples. A histogram of β-values showing
the frequency distribution of CpG methylation across all samples is illustrated in Figure S2. A clear
separation between GDM and non-GDM groups is evident in the principal component analysis (PCA)
score plot, with characteristic DNA methylation profiles aggregating together within the same group
(Figure 2). The first three PCAs explain 27.6% of the variance observed. The β-values were then
converted to M-values for statistical analysis. To identify differentially methylated CpG sites between
GDM and non-GDM pregnancies, data were filtered using the criteria shown in Figure 3. An M-value
cut-off threshold between >0.4 and >0.6 was explored in this study, which is within the threshold
range suggested by Du et al. [27]. In the first filtering step a M-value difference of >0.4 or <−0.4
and unadjusted p < 0.01 was used, to permit comparison between differentially methylated probes.
Further filtering steps including M-values which ranged between >0.5 or <−0.5 and >0.6 or <−0.6 with
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unadjusted p < 0.01 were assessed. We identified 1046 differentially methylated CpG loci with M-value
differences of >0.6 or <−0.6 and unadjusted p < 0.01 (Table S1). To facilitate a more stringent analysis, a
false discovery rate (FDR) <0.1 was added, which did not identify any significant probes. Hierarchical
clustering was performed to determine whether these methylation patterns could distinguish between
women with or without GDM. The heatmap in Figure 4 illustrates that there are distinct methylation
patterns between the GDM and non-GDM groups.
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Figure 3. Filtering criteria for the identification of CpGs differentially methylated between GDM
and non-GDM groups. A total of 801,236 probes, derived through the removal of polymorphic,
cross-hybridising and non-CpG probes were used for analysis. FDR: false discovery rate; M-values
closest to 0 indicate similar methylation intensities between probes.
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Figure 4. Heatmap showing methylation signatures of 1046 CpG sites in women with/without GDM.
DNA methylation across 1046 CpG sites in each sample was analyzed using Euclidean distance for both
rows (observations) and columns (features) and average linkage criteria. Samples are shown in rows
and are clustered in GDM (green) and non-GDM (orange) groups. Standardized M-values are depicted
using a blue (hypomethylation in GDM) to red (hypermethylation in GDM) methylation gradient.

Of the 1046 differentially methylated CpG loci, 148 CpG sites (14.2%) were hypermethylated
and 898 CpG sites (85.8%) were hypomethylated in women with GDM compared to women without
GDM. To increase the likelihood of identifying differentially methylated promoters, probes located
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5 kbp upstream or up to 3 kbp downstream of the transcription start site were also included as
promoter regions. The frequency of all CpG sites analysed and differentially methylated CpG sites
in relation to their genomic location is shown in Figure 5. Of the differentially methylated CpGs,
16.3% were associated with 5’-untranslated regions (UTR), 49.7% with promoters, 6.2% with coding
domain sequences (CDS), 19.1% with introns, 4.0% with non-coding regions, 2.1% with 3’-UTRs and
4.6% with intergenic regions. Differentially methylated CpG sites were annotated to 939 unique
genes using RefSeq build 87 (Table S2). The top five significantly differentially methylated CpG
sites selected for further analysis, were associated with four unique genes, including Solute Carrier
Family 9 Member A3 (SLC9A3), Male-Enhanced Antigen 1; Kelch domain-containing protein 3
(MEA1;KLHDC3), Calmodulin Binding Transcription Activator 1 (CAMTA1) and RAS P21 Protein
Activator 3 (RASA3), and one unknown gene. The probe ID, location, gene region and direction of
methylation (GDM vs. non-GDM), as well as the nearest gene/regulatory region for the unknown gene
is shown in Table 2. Of the differentially methylated CpG sites, cg22985016 and cg16306629 was shown
to be significantly hypermethylated, while cg21910650, cg23643951 and cg07966372 was significantly
hypomethylated in GDM compared to non-GDM groups. The association between GDM and the top
five CpG sites remained significant for each CpG after linear regression adjusting for age BMI and
gestational age (Table 3). To examine the degree to which DNA methylation levels at these CpGs
are associated with the clinical characteristics of GDM, Pearson’s correlation analysis was performed
(Table 4). For cg22985016 and cg16306629, a positive correlation between DNA methylation and fasting
glucose concentrations was observed, while methylation at cg21910650, g23643951 and cg07966372
was inversely correlated with glucose concentrations. Furthermore, DNA methylation at cg22985016
and cg16306629 was correlated with 1 h glucose, while methylation at cg07966372 was negatively
correlated with fasting insulin concentrations. When adjusting for GDM, the association between the
five CpGs and fasting glucose concentrations and between cg22985016 and cg16306629 and 1 h OGTT
was no longer significant, while the association between cg07966372 and fasting insulin remained
significant (Table S3).
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Table 2. The top five significantly differentially methylated CpG sites between GDM and non-GDM groups.

Probe ID Location Gene Symbol Gene Name Region p-Value Methylation

cg22985016 Chr5:492187–524227 SLC9A3 Solute Carrier Family 9 Member A3 Intron 1.84 × 10−7 ↑

cg21910650 Chr6:42976841–42986722 MEA1; KLHDC3 Male-Enhanced Antigen 1; Kelch
domain-containing protein 3 Promoter/5’UTR 3.23 × 10−6 ↓

g23643951 Chr1:7151432–7309551 CAMTA1 Calmodulin Binding Transcription Activator 1 Intron 4.46 × 10−6 ↓

cg16306629 Chr8:119121060–119129059 COLECT10 * Collectin Subfamily member 10* Enhancer * 9.22 × 10−6 ↑

07966372 Chr13:114782770–114898099 RASA3 RAS P21 Protein Activator 3 5’UTR/Intron 9.75 × 10−6 ↓

* Nearest gene/regulatory region of cg16306629. ↑: hypermethylation and ↓: hypomethylation between GDM vs. non-GDM groups. Significance is shown as p < 0.05.

Table 3. Linear regression analysis of gestational diabetes mellitus and the top five significantly differentially methylated CpG sites, adjusting for age, body mass index
and gestational age.

CpG Site
a Univariate b Multivariate

Coefficient 95% CI p-Value Coefficient 95% CI p-Value

cg22985016 (SLC93A) 0.028 0.019; 0.037 <0.001 0.028 0.019; 0.037 <0.001
cg21910650 (MEA1;KLHDC3) −0.088 −0.117; −0.058 <0.001 −0.087 −0.118; −0.056 <0.001

cg23643951 (CAMTA1) −0.056 −0.070; −0.042 <0.001 −0.056 −0.071; −0.042 <0.001
cg16306629 (Unknown) 0.274 0.183; 0.366 <0.001 0.275 0.192; 0.359 <0.001
cg07966372 (RASA3) −0.015 −0.025; −0.004 0.006 −0.015 −0.026; −0.004 0.008

a Univariate linear regression: association between CpG-specific methylation and GDM. b Multivariate linear regression: adjusting for age (years), body mass index (kg/m2) and gestational
age (weeks); CI: Confidence interval. Significance is shown as p < 0.05.

Table 4. Correlation analysis showing the association between DNA methylation and fasting plasma, 1 h OGTT, 2 h OGTT and fasting insulin for the top five
differentially methylated CpG sites.

Variable
cg22985016 (SLC93A) cg21910650 (MEA1; KLHDC3) cg23643951 (CAMTA1) cg16306629 (Unknown) cg07966372 (RASA3)

Rho p-Value Rho p-Value Rho p-Value Rho p-Value Rho p-Value

Fasting glucose
(mmol/L) 0.728 <0.001 −0.694 <0.001 −0.735 <0.001 0.724 <0.001 −0.452 0.026

1 h OGTT (mmol/L) 0.502 0.012 −0.377 0.069 −0.399 0.053 0.559 0.004 0.016 0.939
2 h OGTT (mmol/L) 0.297 0.168 −0.249 0.250 −0.338 0.115 0.266 0.219 0.098 0.658

Fasting insulin (mIU/L) −0.037 0.888 −0.103 0.691 −0.204 0.433 0.109 0.674 −0.495 0.043

OGTT: oral glucose tolerance test; SLC93A: Solute Carrier Family 9 Member A3; MEA1; KLHDC3: Male-Enhanced Antigen 1; Kelch domain-containing protein 3; CAMTA1: Calmodulin
Binding Transcription Activator 1; Unknown: gene nearest to this region is called Collectin Subfamily member 10; RASA3: RAS P21 Protein Activator 3. Pearson’s correlation coefficient
(rho) is shown with significance at p < 0.05.
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2.3. Functional Enrichment Analysis

Differentially methylated CpG sites (1046), annotated to 939 unique genes using M-values >0.6
and <–06 with unadjusted p < 0.01 threshold criteria, were selected for functional enrichment analysis.
Functional enrichment analysis identified 261 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways,
including pathways for T2D and insulin signaling (Table S4). Only 50 KEGG pathways were statistically
significantly different between GDM and non-GDM groups (Table S5). Statistically significant pathways
included cancer, brain signaling, cell growth, proliferation, viability and inflammation pathways. The
most significant KEGG pathway was ‘Signaling pathways regulating pluripotency of stem cells’ with
an enrichment score of 10.496, a p-value = 2.76 × 10−5 and 19 differentially methylated associated
genes. In addition, Gene Ontology (GO) terms were enriched by differentially methylated genes,
categorized into 1181 biological processes, 167 molecular functions and 85 cellular components with
a p-value < 0.05 (Table S6). The top 10 GO terms categorized into biological processes, molecular
functions and cellular components are illustrated in Figure 6. Of these, homophilic cell adhesion via
plasma membrane adhesion molecules (biological process), calcium ion binding (molecular function)
and integral component of plasma membrane (cellular component) have the highest ranked enrichment
score and p-value < 0.001.
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function and (c) cellular components. Data are presented as enriched scores expressed as −log10
(p value). Fisher p ≤ 0.001.
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3. Discussion

We report the differential methylation of 1046 CpG sites in the peripheral blood of black South
African women with GDM compared to women with normoglycemic pregnancies. Functional analysis
mapped these CpGs to genes in pathways key to metabolic regulation. Furthermore, differential
methylation of the five CpG loci, within SLC93A was positively correlated with fasting and 1 h glucose,
while CpGs within CAMTA, MEA1;KLHDC3 and RASA3 was inversely correlated to fasting glucose,
with distinct methylation profiles in GDM and non-GDM groups. CAMTA1 is a transcriptional activator
that was previously shown to regulate insulin production and secretion [28]. These results support the
plausibility of the observed DNA methylation differences in GDM pathophysiology and potential as
diagnostic biomarkers of GDM.

Genome-wide DNA methylation differences during GDM have been demonstrated in other
populations. Kang et al. used the Illumina Infinium Human MethylationEPIC Bead Chip array
to investigate DNA methylation in Chinese women with GDM, and showed that the top 200
differentially methylated loci mapped to 151 genes [15]. Of these, 15 genes, CAMTA1, Smad Nuclear
Interacting Protein 1 (SNIP1), Protein-Tyrosine Phosphatase, Receptor-Type, F Polypeptide-Interacting
Protein-Binding Protein 2 (PPFIBP2), Switching B Cell Complex Subunit SWAP70 (SWAP70), Semiphorin
6D (SEMA6D), Cadherin 8 (CDH8), Cytochrome P450 Family 26 Subfamily B Member 1 (CYP26B1),
Wnt Family Member 6 (WNT6), Raftlin, Lipid Raft Linker 1 (RFTN1), Unc-5 Netrin Receptor C
(UNC5C), Nucleoside Diphosphate-Linked Moiety X Motif 6 (NUDT6), Storkhead Box (STOX2), MutS
Protein Homolog 5 (MSH5), KH RNA Binding Domain Containing, Signal Transduction Associated
2 (KHDRBS2), and Neuregulin 1 (NRG1) were similarly shown to be differentially methylated in
our study, and has been illustrated in a venn diagram (Figure S3). Disparities in the number of
differentially methylated CpG sites identified between studies could be due to population differences
such as ethnicity, age and stage of pregnancy, and the data filtering criteria used. Although M-values
were used to measure methylation differences in both studies, Kang et al. used a more stringent FDR
adjusted p-value < 0.05 for their analysis whereas we used an unadjusted p-value < 0.01, since an
FDR of <0.05 did not identify any significantly differentially methylated loci in our analysis. Despite
using a higher FDR than Kang et al., the differential methylation of 15 genes were similar between
studies [15]. Other technical differences between studies which may affect methylation levels include
sample preparation, loading during hybridization and batch effect bias [21,29]. Soriano-Tárraga et
al. reported that the method of DNA extraction affects global DNA methylation levels [29]. Thus,
standardization of analytical methods across laboratories is essential to enable comparison of DNA
methylation patterns between studies. Other studies that used previous versions of the bead chip array
similarly reported DNA methylation differences during GDM in Non-Hispanic Caucasian American
and Caucasian English populations [16,17]. As reported in these studies [15–17,30], the majority of
CpG differences in our study were hypomethylated in women with GDM compared to women without
GDM. However, in contradiction, in our study most of the 1046 differentially methylated CpG sites
occurred in promoter regions, whereas previous studies identified most of the differentially methylated
CpGs in gene body regions [30,31]. Differences could be due to the method of analysis used. Our
analysis included additional CpGs located 5 kbp upstream and 3 kbp downstream of the transcription
start site to increase the probability of detecting differentially methylated promoter regions. Altered
DNA methylation in promoter regions influences the expression of specific genes [13,32,33], which
may enable the identification of genes/pathways involved in metabolic processes during GDM.

Recently, we demonstrated that global DNA methylation is not associated with GDM in South
African women [19]. We hypothesized that the failure to detect DNA methylation differences was
due to technical limitations and that gene-specific methylation analysis would be able to identify
GDM-associated methylation differences. Global DNA methylation quantification is a crude marker
of overall genomic methylation and does not have the resolution to detect gene-specific differences,
as observed in the current study. Similar findings were reported by Matsha et al., who showed
no difference in global DNA methylation between 61 diabetic individuals on treatment and 287
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normoglycemic subjects in a mixed ethnic ancestry South African population [34]. In addition, no
difference in global DNA methylation was observed in peripheral blood mononuclear cells of a Danish
population with obesity or T2D compared to controls [35].

The diagnosis of GDM is contentious and varies across countries and health institutions. Currently
the International Association of Diabetes in Pregnancy Study Group (IADPSG) criteria are advocated
by several international bodies and endorsed by the World Health Organisation (WHO) [36]. However,
concerns that the high costs and increased workload of IADPSG criteria outweigh the clinical effects of
small glucose differences has hampered its universal use. We were able to see altered DNA methylation
patterns despite small glucose differences between women with or without GDM, suggesting that
epigenetic programming is evident even during mild hyperglycemia. Kang et al. also demonstrated
altered DNA methylation in women diagnosed with GDM according to IADPSG diagnostic criteria [15].
These findings support The Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study, which
showed that even mild hyperglycemia is associated with adverse pregnancy outcomes and requires
treatment [37]. Furthermore, several clinical trials have confirmed that treatment of mild hyperglycemia
decreases maternal morbidity and adverse perinatal outcomes [38].

Functional analysis of differentially methylated CpG sites identified canonical pathways related to
signal transduction, cell growth, proliferation, differentiation and apoptosis, insulin resistance, glucose
metabolism, inflammation, neurological signaling, and oncogenesis. Altered DNA methylation of
two signaling pathways, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase
(PI3K), which play a role in cell growth and differentiation, and the metabolic action of insulin [39],
have previously been reported during GDM in other populations [15], identifying these CpG sites as
likely biomarkers for the development of GDM. Our results demonstrated that pathways associated
with cancer are differentially methylated in women with GDM compared to controls. Several studies
have reported a link between GDM and cancer, particularly breast cancer [40–42], identifying GDM as
a potential risk factor for the development of cancer in later life, Nine of the top 10 GO terms enriched
for biological processes were associated with structural organization and developmental processes,
supporting the influence of GDM on in utero programming of fetal growth and development [43].
As expected, all 10 GO terms enriched for molecular functions were associated with regulatory or
binding activities and offer insight into functions influenced by altered methylation at a molecular
level during GDM.

A strength of our study is that women were matched for age, gestational age and BMI, to
ensure that results were comparable between groups. In addition, DNA methylation analysis was
conducted using the most comprehensive MethylationEPIC Bead Chip array currently available,
which is considered a high-throughput method, that has a lower cost compared to sequencing, and
is reproducible and time-efficient [21,22]. Our study has a number of limitations. The sample size
(n = 24) is small, although, it is larger than previously reported [15–17]. No CpG sites reached FDR
cut-off, suggesting that the study might have been underpowered. However, 15 of the differentially
methylated genes identified in our study were amongst the top 151 identified by Kang et al. Peripheral
blood cells consist of a mixture of different cell types [44], which may confound methylation analysis.
In our study, cell type composition did not differ significantly between GDM and non-GDM groups
and therefore was not adjusted for in further analysis due to the small sample size. Thus, methylation
differences between cell types could have confounded our analysis. Furthermore, physical activity,
diet, smoking and alcohol consumption, which are known to influence DNA methylation patterns, are
not known, and could confound our analysis. However, women in our study were recruited from the
same community and had similar lifestyle behaviours, education and employment status, suggesting
that they had roughly similar environmental influences.

To our knowledge, this exploratory study is the first to profile genome-wide DNA methylation
levels in the peripheral blood of South African women with GDM. We have identified five CpGs which
are associated with GDM and offer potential as epigenetic biomarkers in our population. Further
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validation using pyrosequencing and conducting longitudinal studies in large sample sizes and in
different populations are required to investigate their candidacy as biomarkers of GDM.

4. Materials and Methods

4.1. Study Participants

Ethical approval for this study was granted by the University of Pretoria Health Sciences Ethics
Committee (180/2012: approved on the 26/09/2012). The study was conducted according to the
Declaration of Helsinki and all women gave written informed voluntary consent after the procedures
had been fully explained in the language of their choice. One thousand pregnant women attending
a primary care clinic in Johannesburg, South Africa were enrolled in the study. At recruitment,
demographic and socio-economic data were obtained in the form of a standardized questionnaire and
risk factors for GDM, i.e. advanced maternal age (age ≥ 35 years), obesity (BMI ≥ 30 kg/m2), family
history of diabetes mellitus, delivery of a previous baby more than four kilograms, glucosuria, previous
recurrent pregnancy loss, stillbirth, or birth of a baby with congenital abnormalities) were assessed [25].
Patients with pre-existing diabetes mellitus (Type 1 diabetes (T1D) and T2D) and those who were more
than 26 weeks pregnant were excluded. At their first visit, random glucose and glycated hemoglobin
(HbA1c) concentrations were measured. Women with random glucose and HbA1c concentrations less
than 11.1 mmol/L and 6.5 %, respectively, were requested to fast overnight and return to the clinic
within two weeks. At this time, a 75 g oral glucose tolerance test (OGTT) was conducted, and GDM
was diagnosed if at least one glucose value was met (fasting plasma glucose > 5.1 mmol/L, 1 h OGTT >

10 mmol/L or 2 h OGTT > 8.5 mmol/L), according to the IADPSG criteria [45]. Blood for measurement
of cytokines and DNA methylation was collected and stored at –80 ◦C. For this sub-study, a subset of
women with (n = 12) and without (n = 12) GDM were selected for genome-wide DNA methylation
analysis. The inclusion criteria were pregnant women ≥18 and ≤40 years of age, black ethnicity, human
immunodeficiency virus (HIV) negative and women with a singleton pregnancy. All women were
matched according to age, BMI and gestational age as far as possible.

4.2. DNA Extraction

Genomic DNA was extracted from 2 ml of peripheral blood collected in Ethylenediaminetetraacetic
acid (EDTA) tubes using the QIAamp DNA Blood Midi Kit (Qiagen, Hilden, North Rine-Westphalia,
Germany), as previously described [19]. Briefly, white blood cells were lysed and loaded onto the
QIAamp Midi column, bound DNA was washed and then eluted from the column membrane using
300 µl of elution buffer and centrifuged at 4500× g for 2 mins. DNA concentration was measured using
the Qubit Fluorometer (Invitrogen, Carlsbad, CA, USA) and the Quanti-iT dsDNA Broad Range assay
kit (ThermoFisher, Waltham, MA, USA). One microgram of DNA in a volume of 45 µl was frozen and
shipped on dry ice, as instructed by the University of Southern California Molecular Genomics Core
for genome-wide DNA methylation analysis using the Illumina Infinium HumanMethylationEPIC
BeadChip (USC Molecular Genomics Core, Los Angeles, CA, USA).

4.3. Genome-Wide DNA Methylation Profiling

Genome-wide DNA methylation profiling was conducted using the Illumina’s Infinium
HumanMethylationEPIC Bead Chip (HumanMethylationEPIC, Illumina inc., San Diego, CA, USA)
according to manufacturer’s instructions. Bisulfite conversion of 500 ng genomic DNA was performed
using the Illumina-specific EZ DNA methylation kit (D5001, Zymo Research, Orange, CA, USA),
and quality control was conducted by quantitative real-time polymerase chain reaction (PCR) and
melt curve analysis. Bisulfite converted DNA was amplified up to 1000-fold with DNA polymerase
during the incubation step in the Illumina hybridization oven at 37 ◦C. Amplicons were then
fragmented to 300–600 bp products, precipitated with isopropanol and loaded onto Illumina Infinium
HumanMethylationEPIC Bead Chips prepared for hybridization in the capillary flow-through chamber
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(Human MethylationEPIC, Illumina Inc.), according to the Infinium protocol [46]. After annealing
to locus-specific 50-mer probes, a single base extension occurs at the base immediately adjacent to
the interrogated CpG site. Products were fluorescently labelled with either dinitrophenol-labelled
ddATP/ddTTP or biotin-labelled ddCTP/ddGTP, depending on the methylation state of the interrogated
CpG site. Fluorescence intensity was measured with the Illumina iScan system (iScan Control Software
v.3.3.28) and was based on the ratio of methylated probe intensities and the overall intensity (sum of
methylated and unmethylated probe intensities). The methylation scores were represented as raw beta
(β)-values and were exported as 48 intensity data files (IDAT).

4.4. Processing and Analysis of the Human Methylation EPIC Bead Chip Array

Data analysis was conducted by Partek (Partek, St. Louis, MO, USA). IDAT files were imported to
Partek (R) Genomics Suite (R) v.7.18.0803 software. Functional normalization with normal-exponential
out-of-band (NOOB) background correction and dye correction was used [47]. Quality control was
performed across all imported probes (865,859) for each sample. All samples passed the quality
control, and those with detection p < 0.01 were included in the analysis. Thereafter, β-values for
imported probes were plotted and no outliers were detected, indicating that the data were technically
sound. In addition, a histogram was used to illustrate distribution of methylation β-values across all
CpG sites in each sample. Data filtering was conducted to remove polymorphic probes (n = 22,139),
cross-hybridising probes (n = 40,762), non-CpG probes (n = 1) and probes overlapping both the
polymorphic and cross-hybridising probe lists (n = 1,721) (Figure 3), according to McCartney et al. [23].
The clean data set consisted of 801,236 probes (referred to as CpG sites). Exploratory analysis was
performed using PCA. Cell count estimation was performed empirically using methylation data
from sorted blood cells using the ‘Estimate Cell Count’ function in the minfi package in R [48]. The
function is based on a modification of the original method by Houseman et al. [49] and the R package
FlowSorted.Blood.450k [50]. No differences in cell composition were identified, and cell composition
was deemed unlikely to be a confounder (Figure S4). Therefore, cell composition was not corrected for
in further analysis.

Following data processing, β-values were converted to M-values (log2 ratio [methylated signal
intensity/unmethylated signal intensity]) to account for heteroscedasticity and allow for analyses
assuming a Gaussian distribution [27]. M-values have a range of −∞ to +∞, with a value
close to 0 indicating similar intensities between methylated and unmethylated probes. Positive
M-values represent hyper-, while negative M-values represent hypo-methylation. M-values were then
standardized (converted to Z-scores) to perform hierarchical clustering, using Euclidean distance and
average linkage criteria for visualization of methylation signatures.

4.5. Functional Enrichment Analysis

All differentially methylated CpG sites were annotated to genes using the reference sequence
database (RefSeq) build 87 and were subjected to functional analysis using KEGG pathway analysis and
GO grouping categories (biological process, cellular component, and molecular function). The results
of enriched pathways were ranked by enrichment scores to identify overrepresented pathways and
then sorted by factor score to consider those pathways with the most significant p-value. A high
enrichment score indicates that a significant number of the differentially methylated genes within
a pathway are present, while factor score enables comparison of pathways with similar enrichment
scores between GDM and non-GDM groups.

4.6. Statistical Analysis

Participant characteristics were tested for normality using the Shapiro-Wilk test in STATA 14
(StataCorp, College Station, USA). Normally distributed data are expressed as the mean± standard error
of the mean (SEM), or as the median and interquartile range (25th and 75th percentiles) for data that were
not normally distributed. An unpaired t-test or the Mann–Whitney test was used to compare variables
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across GDM groups. Categorical variables were analysed using the chi-square test or the Fisher’s exact
test if the frequency was <5. A p ≤ 0.05 was considered statistically significant. Due to the matched case
control study design, a two-way analysis of variance (ANOVA, one factor was the GDM status and
the other was the pairing ID), was used to identify differentially methylated sites. To investigate the
association between GDM and differentially methylated CpGs, univariate and multivariate generalised
linear regression models were tested and adjust for confounding factors. Pearson’s rank correlation
(r) was used to evaluate the relationship between specific CpG DNA methylation (β-values; 0–1, as
a percentage of methylated to unmethylated) states and clinical parameters. Pathway enrichment
was based on the current publicly available human database, GRCh38, and statistical significance was
calculated using Fisher’s exact test. An enrichment score ≥3 was considered significant (p < 0.05).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/23/
5828/s1: Figure S1: Average detection p-values per sample, Figure S2: Histogram of β-values showing frequency
distribution, Figure S3: Venn diagram illustrating comparison of differentially methylated genes, Figure S4:
Comparison of six major peripheral blood cell components in GDM and non-GDM women, Table S1: Genome-wide
DNA methylation profiling identified 1046 differentially methylated CpG loci, Table S2: Differentially methylated
CpG sites annotated to 939 unique genes, Table S3: Univariate and multivariate linear regression analysis,
Table S4: Functional enrichment analysis identified 261 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways, Table S5: Statistically significant KEGG pathways associated with GDM, Table S6: GO terms enriched
by differentially methylated genes, categorized into 1181 biological processes, 167 molecular functions and 85
cellular components.

Author Contributions: Conceptualization of study and methodology, C.P. and S.A.; data curation and formal
analysis, S.D.; funding acquisition, S.D., J.L. and C.P.; project administration, S.A. and P.R.; supervision, S.A., P.R.
and C.P.; validation, C.P.; writing—original draft preparation, S.D.; writing—review and editing, S.A., P.R., J.L.
and C.P. All authors read and approved the final version to be published.

Funding: This research was funded by the National Research Foundation, South Africa (Unique Grant no. 99391),
and the South African Medical Research Council.

Acknowledgments: The authors are grateful to the study subjects who voluntarily participated in this study, and
would like to thank Ria Laubscher, a statistician in the Biostatistics Unit at the South African Medical Research
Council, for her assistance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analysis, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

GDM Gestational diabetes mellitus
CAMTA1 Calmodulin binding transcription activator 1
MAPK Mitogen activated protein kinase
PI3K Phosphoinositide 3-kinase
T2D Type 2 diabetes
CpG Cytosine-phosphate-guanine
OGTT Oral glucose tolerance test
HIV Human immunodeficiency virus
BMI Body mass index
HOMA Homeostatic model of assessment
CRP c-Reactive protein
HbA1c Glycated hemoglobin
PCA Principal component analysis
FDR False discovery rate
UTR Untranslated regions
CDS Coding domain sequences
KEGG Kyoto Encyclopedia of Genes and Genomes
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NRG1 Neuregulin 1
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SNIP1 smad Nuclear Interacting Protein 1
PPFIBP2 Protein-tyrosine phosphatase, receptor-type, f polypeptide-interacting protein-binding protein 2
SWAP70 Switching b cell complex subunit swap70
SEMA6D Semiphorin 6d
CDH8 Cadherin 8
WNT6 Wnt family member 6
RFTN1 Raftlin, lipid raft linker 1
UNC5C Unc-5 netrin receptor c
NUDT6 Nucleoside diphosphate-linked moiety x motif 6
STOX2 Storkhead box
MSH5 Muts protein homolog 5
KHDRBS2 KH RNA binding domain containing, signal transduction associated 2
NRG1 Neuregulin 1
SLC9A3 Solute carrier family 9 member a3
MEA1 Male-enhanced antigen 1
KLHDC3 Kelch domain-containing protein 3
RASA3 RAS p21 protein activator 3
CYP26B1 Cytochrome p450 family 26 subfamily b member 1
IADPSG International association of diabetes in pregnancy study group
WHO World Health Organisation
HAPO Hyperglycemia and adverse pregnancy outcomes
T1D Type 1 diabetes
EDTA Ethylenediaminetetraacetic acid
NOOB Normal-exponential out-of-band
SEM Standard error of the mean
ANOVA One-way analysis of variance
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