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Abstract: Nonalcoholic steatohepatitis (NASH) is becoming a public health problem worldwide. 
While the number of research studies on NASH progression rises every year, sometime their 
findings are controversial. To identify the most important and commonly described findings related 
to NASH progression, we used an original bioinformatics, integrative, text-mining approach that 
combines PubMed database querying and available gene expression omnibus dataset. We have 
identified a signature of 25 genes that are commonly found to be dysregulated during steatosis 
progression to NASH and cancer. These genes are implicated in lipid metabolism, insulin resistance, 
inflammation, and cancer. They are functionally connected, forming the basis necessary for steatosis 
progression to NASH and further progression to hepatocellular carcinoma (HCC). We also show 
that five of the identified genes have genome alterations present in HCC patients. The patients with 
these genes associated to genome alteration are associated with a poor prognosis. In conclusion, 
using an integrative literature- and data-mining approach, we have identified and described a 
canonical pathway underlying progression of NASH. Other parameters (e.g. polymorphisms) can 
be added to this pathway that also contribute to the progression of the disease to cancer. This work 
improved our understanding of the molecular basis of NASH progression and will help to develop 
new therapeutic approaches. 
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1. Introduction 

Liver is a major integrator of metabolism and plays a key role in lipid metabolism including fatty 
acid oxidation, lipogenesis, cholesterol synthesis, and production of triglycerides and lipoproteins 
[1–3]. A variety of conditions result in dysregulation of lipid metabolism which leads to fat 
accumulation in the liver and then to nonalcoholic fatty liver disease (NAFLD). NAFLD is a 
pathological condition, exhibiting a wide range of lesions starting with the accumulation of lipid 
droplets in the liver also known as hepatic steatosis or nonalcoholic fatty liver (NAFL). NAFL may 
progress to nonalcoholic steatohepatitis (NASH) and then to hepatocellular carcinoma (HCC) [4–6]. 
Furthermore, NAFLD is a systemic disease associated with obesity, type 2 diabetes mellitus, and 
metabolic syndrome [7–10] that are dramatically increasing worldwide and currently present a major 
public health problem [11–14]. 

The hallmark of NAFLD is the intra-cellular accumulation of lipids, particularly triglycerides 
cholesteryl esters and phospholipids resulting in the formation of lipid droplets in hepatocytes [15–
17]. Fatty liver is a reversible and asymptomatic lesion that has long been considered benign. 
However, we have previously demonstrated that progressive intrahepatic inflammation could be 
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present from the beginning of the disease, potentially driven by the specific types of accumulated 
lipids [18]. Certain lipids have been shown to be specifically linked to the inflammatory process and 
NASH progression [19–23]. Therefore, the progression of fatty liver to NASH is related to the lipid 
composition [19,24–28]. Our previous studies revealed alterations in homeostasis of triglycerides, 
cholesterol, phospholipids, and long-chain fatty acids during the progression of NASH [19,20]. 
Indeed, an increase in lipid species such as saturated fatty acids and phospholipids, as well as 
disturbances in ceramide-signaling or alterations in cholesterol content are associated with pro-
inflammatory and pro-apoptotic properties [16,19,20,29–34]. Moreover, alterations in lipid 
metabolism during NASH progression have been associated with gene expression changes and single 
nucleotide polymorphisms in genes involved not only in lipid metabolism but also in genes 
associated with inflammatory and cancerous processes [18,19,28,35–46]. 

Since 1980, when Ludwig  and colleagues at Mayo Clinic (Rochester, MN) described NASH for 
the first time [47], NASH and more generally NAFLD have received increasing attention over the 
years. More than 2000 manuscripts on “NASH” and “lipid” have been published in PubMed and the 
number of studies is growing. However, the pathogenesis of NAFLD remains incompletely 
understood, especially the conditions that lead to progression from NAFL to NASH, and then to 
cirrhosis or cancer, but only in a subset of patients. 

Scientific literature has become the key distribution channel for novel findings and hypotheses 
from the exponential number of research studies in this area. As a result of the continuous increase 
in the number of publications, retrieving relevant scientific information and identifying connections 
between pieces of scientific knowledge have become challenging but necessary tasks. As a 
consequence, automated literature analysis is now frequently a part of complex biomedical research 
and often delivers crucial background knowledge [48]. A plethora of publicly available biomedical 
resources do currently exist and are constantly increasing. In parallel, specialized repositories have 
been developed, indexing numerous clinical and biomedical tools. Natural Language Processing 
research in the clinical domain has been active since the 1960s. In addition to maintaining the 
GenBank® nucleic acid sequence database, the National Center for Biotechnology Information 
(NCBI) provides analysis and retrieval resources for the data in GenBank® and other biological data 
made available through the NCBI website [49–54]. 

Here we used text-mining and data-mining bioinformatic approaches by investigating Medical 
Subject Headings (MeSH) and gene expression omnibus dataset (NCBI) combined with different 
databases (e.g. Kyoto Encyclopedia Gene and Genome/KEGG or InnateDB) to determine specific and 
global mechanisms involved in NASH progression. We identified a set of at least twenty-five (n = 25) 
genes that play a role either in lipid synthesis and excretion, inflammatory cells recruitment and 
activation, insulin signaling pathway, or hepatic cancer development. These genes are orchestrated 
by a new player YWHAZ and they are dysregulated in most cases of pathological NAFL progression. 
Importantly, for the first time these combined approaches used together connected mechanisms that 
can be described as the core pathway, the “canonical pathway”, involved in progression of NASH 
from hepatic steatosis and insulin resistance to HCC. 

2. Results 

2.1. A Subset of Lipid-Related Genes is Differentially Expressed in NASH vs Healthy Obese Human Liver 
Samples 

Natural language processing is performed to discover semantic relationships with scientific 
literature [51], and to connect literature to databases like RefSeq gene symbol identifiers [55]. The 
most important resource for text-mining applications is currently the PubMed database developed 
by the National Center for Biotechnology Information (NCBI) at the National Library of Medicine 
(NLM) (https://www.nlm.nih.gov/pubmed) [49,50,52–54,56]. Text-mining analysis by connecting the 
PubMed database using MeSH described by the workflow on Figure 1 allowed us to find 320,794 co-
occurrence connections between gene symbol and lipid-related terms: “Non-esterified Fatty acids” 
(29,003connections), “lipids” (193,087 connections), “cholesterol” (13,680 connections), “ceramides” 
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(18,142 connections), “sphingolipids”(51,827 connections), and “phospholipids” (15,055 connections) 
related to “NASH” (Figure 2A). 

 
Figure 1. Workflow of analysis implemented from text-mining integration in transcriptome to 
pathophysiological hypothesis. CTD: comparative Toxicogenomics database; GEO: gene expression 
omnibus; GSE: genomic spatial event database, MeSH: medical subject headings; NAFLD: 
nonalcoholic fatty liver disease; NASH nonalcoholic steatohepatitis; ROC: receiver operating 
characteristic; SAM: statistical analysis of microarray. 

False discovery rate correction performed on genes selected by text-mining allowed us to find 
87 lipid-related genes that show significant association in scientific literature (Figure 2B and 
Supplementary Datasets Table S1 online). Mathematical dimensional reduction of matrix in 
transcriptome analysis, such as using gene set enrichment analysis (GSEA), allowed us to improve 
discovery by reducing the false positive discovery rate [57]. We applied text-mining dimensional 
reduction on normalized gene expression matrix from dataset GSE61260 in order to find differentially 
expressed lipid-related genes with improved accuracy. Significance Analysis for Microarray (SAM) 
algorithm was employed on reduced matrix (87 genes × 48 samples) between liver samples from 
NASH patients (n = 24) and liver samples from healthy obese (HO) subjects. Twenty-five genes were 
found to be differentially expressed between samples with an FDR threshold set to less than five 
percent (FDR < 5%; Supplementary Datasets Table S2 online). Expression heatmap revealed that 22 
of 25 differentially expressed lipid-related genes were over-expressed in NASH liver samples 
compared to healthy obese liver samples and three were down-regulated (PPARA, PPARGC1A, and 
CNPB) associated with misclassification error rate of 16.6% (Figure 2C). LPL gene encoding for 
lipoprotein lipase was the most over-expressed gene in NASH with a fold change of +1.93, followed 
by chemokine CCL2 (fold change = +1.61) and the enzyme FADS2 (fatty acid desaturase 2, fold change 
= +1.57) as summarized in Supplementary Datasets Table S2 online. 

Transcriptome expression matrix was increased by addition of 25 liver samples of patients with 
NAFL (resulting lipid related matrix dimensions: 87 genes × 73 samples). Principal component 
analysis (PCA) was performed on this increased expression matrix. Text-mining for lipid related 
genes allowed us to significantly and progressively discriminate between liver samples from HO 
subjects, NAFL and NASH patients (p-value = 9.32 × 10-9, Figure 2D) on the first principal axis (i.e., 
first dimension) of the unsupervised analysis.  
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Thus, with this first approach we identified 25 genes that can be used to discriminate between 
three groups of patients: HO subjects, obese with NAFL or NASH patients. Moreover, this analysis 
identified a precancerous pathway led by YWHAZ. 

 
Figure 2. Lipid-related genes differentially expressed between NASH and healthy obese liver 
samples. (A) Text-mining summary of connections observed between genes and lipid terms, number 
of gene co-occurrence of gene symbol with language terms in scientific literature. (B) qqplot of q-
values obtained by false discovery rate correction of text-mining results (87 genes are still significant 
after correction, q-values < 0.05). (C) Expression heatmap of lipid related genes found differential 
expressed between NASH liver samples (n = 24) and Healthy obese liver samples (n = 24) in 
transcriptome dataset GSE21260 (D) unsupervised principal component analysis performed with 
lipid related genes found differentially expressed between NASH and Healthy obese in GSE21260 
and impact of their prediction to predicted NAFL samples (n = 23), p-value was calculated by 
correlation of sample group discrimination on first principal axis. 
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2.2. NASH is Associated with Impaired Function of Genes Implicated in Lipid Metabolism, Insulin-
Resistance, Inflammation and Tumorigenesis 

We further examined the relationship between lipid genes and HCC, and found that 
differentially expressed lipid-related genes (Supplementary Datasets Table S2 online) were enriched 
on the Comparative Toxicogenomics Database which connects genes to disease phenotypes [58]. As 
expected, this enrichment confirmed that these genes have a well association with phenotypic 
manifestations of NASH such as lipid metabolism perturbations linked to fatty liver, 
hypercholesterolemia, and hypertriglyceridemia. They are also associated with Type 1 and Type 2 
diabetes, insulin resistance, and impairment in clinical parameters such as body weight and 
atherosclerosis (Figure 3A). These results suggest that the lipid text-mining approach for analysis of 
the transcriptome that we developed is well adapted to study the altered gene-expression signature 
of NASH (Figure 3B). 

 
Figure 3. Disease enrichment network of lipid related genes deregulated in NASH liver samples. (A) 
Bar plot of functional enrichment performed with lipid related genes deregulated in NASH on CTD 
disease database: red bars represent number of genes implicated by function and blue bars respective 
Z-scores of the enrichments. (B) Functional enrichment network performed with lipid related genes 
deregulated in NASH (CTD disease database). 
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The 25 differentially expressed lipid-related genes identified earlier (Supplementary Datasets 
Table S2 online) were also analyzed by their functionalities using Gene Ontology Biological Process 
database. As expected, functional enrichment in this database revealed that these genes are mostly 
implicated in lipid metabolism, especially cholesterol storage (LPL, CD36, and transcription factor 
SREBF2 were significantly up-regulated), fatty acid oxidation (PPARA and PPARGC1A were down-
regulated), long-chain fatty acid import (transporters SLC27A4 and CD36 were up-regulated), and 
triglyceride biosynthesis (FASN, DGAT1, and LPL were all upregulated) as summarized in Figure 4. 

 

Figure 4. Ontologic functional enrichment network of lipid-related genes deregulated in NASH liver 
samples. (A) Bar plot of functional enrichment performed with lipid related genes deregulated in 
NASH on Gene Ontology Biological Process database: red bars represent number of genes implicated 
by function and blue bars respective Z-scores of the enrichments. (B) Functional enrichment network 
performed with lipid related genes deregulated in NASH (Gene ontology biological process). 

Interestingly, we observed that some lipid-related genes altered in NASH are also enriched in 
other important biological pathways such as circadian rhythm (Figure 4A) which is represented by 
down-regulation of PPAR pathway (PPARA and PPARGC1A). Down regulation of PPARA and 
PPARGC1A genes also share other functionalities such as response to hypoxia, gluconeogenesis, and 
mitochondrial functions such as regulation of β-oxidation. These analyses also highlighted that lipid 
related genes altered in NASH samples affect processes linked to monocyte/macrophage infiltration 
into the tissue and to inflammation (Figure 4B), especially by up-regulating cytokines/chemokines 
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such as TNF and CCL2. At the same time CD36, a receptor of oxLDL, led to increased flux of 
phospholipids and long-chain fatty acids into the hepatocytes increasing formation of lipid droplets 
and ceramides that are chemo-attractants for macrophages (Figure 3 and Figure 4). 

Thus, this analysis showed the hard connection between early non-specific inflammation 
processes and the progression of NAFL to NASH. 

2.3. Connecting Lipid Related Genes Altered in NASH to Immunity, Inflammation and Liver Pathogenesis 
Progression 

As observed above in functional enrichment performed with Gene Ontology Biological Process, 
lipid-related genes altered in NASH also showed implication of monocyte/macrophage cells and 
inflammation (Figure 4). Responses to hypoxia, gluconeogenesis, and circadian rhythm were also 
found to be affected by down-regulation of PPAR genes. So, these results showed that inflammation 
and progression of liver pathogenesis could be affected by lipid related genes in NASH, as 
demonstrated above. In order to cross-reference this information, we wanted to verify the role these 
molecules may play in immunity, inflammation, and liver pathogenesis progression through the 
PubMed database. Candidate gene prioritization approach allowed to focus on important affected 
genes with literature relevance [59]. Connection with NCBI database allowed to select the 10 best 
lipid-related genes that are important in the liver (Figure 5A and Supplementary Datasets Table S3 
online). 
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Figure 5. Lipid related genes found to be deregulated in NASH liver samples are also implicated in 
inflammation, immunity and liver pathogenesis progression. (A) Bar plot of connection numbers 
obtained by text-mining on first prioritization term: liver. (B) Circoplot representing connection 
numbers during text-mining prioritization between lipid related genes altered in NASH and terms 
around immunity, inflammation and liver disease progression. (C) individual ROC-curves (AUC and 
its confident intervals) testing expression regulation between NASH and healthy obese liver samples 
for lipid related genes and prioritized on inflammation-immunity and liver pathogenesis progression, 
Expression boxplot with inclusion of NAFL samples (p-value was calculated by two-tailed Student t-
test between NASH and Healthy obese liver samples). 

For these 10 liver-related genes, we applied PubMed filtering with secondary terms related to 
immunity, inflammation, and liver pathogenesis progression such as stroma, hepatocellular 
carcinoma, liver cancer, cirrhosis, hepatic macrophage, B-lymphocyte, T-lymphocyte, inflammation, 
and immunomodulation. This analysis showed a good literature prioritization for CD36 and TNF, 
and also highlighted LIPA gene which is well-known to play a role in liver pathophysiology, (Figure 
5B and Supplementary Datasets Table S4 online). Among these 10 prioritized genes, individual ROC-
curves and expression boxplots (Figure 5C) were performed with transcriptome matrix for genes that 
were found also deregulated in NASH liver samples (Supplementary Datasets Table S2 online). One 
of them, PPARA was found to be down-regulated in NASH samples as compared to healthy obese 
samples. PPARA had an area under curve (AUC) of 0.82 (Figure 5C) and a significant individual 
down-regulation in NASH compared to HO subjects (two-tailed Student t-test p-value = 7.46 × 10-5). 
Among up-regulated prioritized genes, we found PLIN1 with an AUC of 0.75 (two-tailed Student t-
test p-value = 0.00017), APP with an AUC of 0.71 (two-tailed Student t-test p-value = 0.014), LPL with 
an AUC of 0.90 (two-tailed Student t-test p-value = 7.51 × 10-7), and FASN with an AUC of 0.65 (two-
tailed Student t-test p-value = 0.038). 

Taken together, depending on the relative contribution of LIPA and the other nine genes’ 
expression levels, the fate of the disease will be inflammatory response associated to CD36, LPL, and 
SCD leading to NASH progression into liver cancer or cirrhosis and HCC as shown in Figure 5B. 

2.4. The 14-3-3 Protein Family is the Cornerstone between Dysregulated Lipid Metabolism, Inflammatory 
and Insulin Pathways during NASH Progression to HCC 

Thus, with the first analysis, genes implicated in inflammation, lipid metabolism, and 
progression to cancer were highlighted, and the second analysis showed connection between lipid 
dysregulation and insulin resistance and inflammation. We then focused on the YWHAZ gene 
identified in Figure 2A, a member of 14-3-3 protein family, which has been associated with liver 
cancer [60]. 

A total of 399 YWHAZ-protein partners were identified based on InnateDB database. 
Significance analysis of microarray (SAM) of the 399 protein partners performed on GSE61260 [61] 
identified 44 genes that discriminated between NAFL patients and NASH patients as shown by the 
heatmap (Figure 6A and Supplementary Datasets Table S5 online) and by PCA analysis (Figure 6B).  
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Figure 6. 14-3-3 protein family is at the center of the metabolic, inflammatory and dysregulated insulin 
pathways. (A) Significance Analysis of Microarray identified 44 genes up-regulated linked with 
YWHAH gene belonging to 14-3-3 protein family and represented by heatmap discriminating NAFL 
and NASH patients with FDR < 5%. (B) Principal component analysis discriminates NAFLD and 
NASH patients based on 44 genes up-regulated with a global p-value of 0.00037. (C) YWHAZ a 14-3-
3 protein family and its protein partners (n = 399) linked to insulin signaling (44 proteins) based on 
Kyoto Encyclopedia Gene and Genome (KEGG) associated to FDR of q-value = 2 × 10-19. Partners of 
YWHAZ up-regulated in NASH based on (D) GO-BP and (E) KEGG pathways. FDR: false discovery 
rate. 

The 44 genes are up-regulated in the group of NASH patients demonstrating their connection 
(Figure 6C) with inflammatory processes, cell proliferation, metabolism, and especially cell–cell 
adhesion based on GO-BP and KEGG pathway analysis (Figure 6D and 6E). One of these 44 genes, 
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YWHAH (Figure 6A and Supplementary Datasets Table S5 online) belongs also to the 14-3-3 proteins 
family and it has also been associated to insulin function [62] and liver cancer [63]. 

Taken together, these data show that 14-3-3 protein family has an important role in the 
progression of NAFL to NASH through the dysregulation of metabolism and inflammatory processes 
associated with cell proliferation and dysregulation in cell–cell adhesion, making the link to the 
progression to HCC. 

2.5. Connecting Lipid Dysregulation, Insulin Resistance, Inflammatory Processes and HCC: a NASH 
Canonical Pathway 

The main results of these analyses are summarized in the Figure 7 and connect lipid 
dysregulation, insulin resistance, inflammatory processes, and HCC development based on the 25 
genes found after text-mining and in silico analyses. 

 
Figure 7. NASH canonical pathway defined based on the 25 genes that were found using text-mining 
analysis. Draw of pathophysiologic hypothesis connected to altered-lipid related genes expression in 
liver samples of NASH and associated to immunity, inflammation and liver pathogenesis 
progression. 

A decrease in PPARA leads to an increase in FGF21 [64], PLEK, and IRS2 which will result in the 
increase of FASN, SCD, SLC27A2, and FADS2 all of which participate in de novo fatty acid synthesis. 

At the same time, expression of CNPB, an inhibitor of SREBP2 expression, decreases. This leads 
to an increase in SREBP2 expression and results in increased cholesterol synthesis. 

Also, LPL and VLDR expression are increased (likely due to the lipid-rich diet), leading to an 
accumulation of lipids in the cell. In addition, expression of APP and LIPA is increased, promoting 
triglyceride synthesis and release of cholesteryl ester. Altogether, this leads to an increase in 
expression of genes implicated in the synthesis of droplets such as CIDEC, PLIN1, and PLIN2 to create 
lipid droplets. In parallel, we showed increase in expression of CD36, SMPD2, and CCL2 which 
control phospholipid metabolism and vesicle assembly and are also implicated in inflammatory 
processes and inflammatory cell chemo-attraction. Finally, the down-regulation of PPARA leads to a 
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decrease in PPARG1A that leads to a decrease in PPARGC1A (i.e., PGC1-α), a major player in the β-
oxidation, thus contributing to an increased accumulation of FFA in the cell by disturbing 
mitochondrial function. 

Our analysis also showed an increase in BCL2A1, an anti-apoptotic player, usually implicated in 
cancer progression. In association with an increase in expression of YWHAZ and YWHAH, IRS2 is 
also up-regulated. This group of genes participates in development of the insulin resistance as well 
as hepatocellular carcinoma. 

For the first time, using text-mining, bioinformatics, and statistics, a precise picture of the 
progression of NAFL to NASH and then HCC has been shown, describing a canonical pathway 
shown in Figure 7. 

2.6. Confirmation of the NASH Canonical Pathway Using Independent Illumina Gene Expression Beadchip  

To confirm our findings and demonstrate that the “canonical signature” based on the 25 genes 
identified after the text-mining approach is applicable to other groups of NAFL and NASH patients, 
we used these set of genes to a new group of healthy control subjects, NAFL, and NASH patients, for 
which gene expression analyses were performed using a completely different approach than that 
used to establish this signature. The gene expression analyses were performed in 44 human liver 
surgical samples (normal n = 13; steatosis n = 19; steatohepatitis n = 12), which were processed with 
Illumina HumanWG-6 v3.0 expression beadchip technology and referenced as GSE33814 [65]. Two 
genes, PLIN1 and PLIN2 implicated in lipid droplet synthesis, were not annotated in the Illumina 
beadchip. 

We performed an unsupervised clustering analysis and showed that the three groups of patients 
are perfectly separated (Figure 8A) and from 25 genes in our established gene signature, six are 
significantly differentially expressed between the three groups as shown by the first dimension on 
the PCA analysis (Figure 8B, p-value = 0.29 × 10-6). The six main genes are involved in the cancer and 
inflammatory processes (YWHAZ, CCL2 and SMPD2) and lipid droplet formation and metabolism 
(CIDEC, VLDLR and FASN) and significantly increased in NASH patients compared to control or 
NAFL groups (Figure 8C). 

Then we also looked at the 44 partners of YWHAZ proteins linked to the canonical pathway. 
The unsupervised clustering analysis showed that the three groups of patients are perfectly separated 
(Figure 8D) and that among the 44 genes encoding for YWHAZ partners, five genes significantly 
discriminate among the three groups of patients on the first dimension of the PCA (Figure 8E, p-value 
= 5.3 × 10-6). The five genes emphasized that the cancer pathway is associated with a significant 
increase in YWHAH and BRCA1 expression, as well as an increase in expression of ACLY, a gene 
implicated in the first step of the lipid metabolism. The cancer pathway is also associated with two 
genes implicated in the cytoskeletal remodeling and network, ANXA2 and TUBA1A, linked to HCC 
and cell migration (i.e., metastasis development) as shown previously [66,67], thus predicting the fate 
of the NASH (Figure 8F). 
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Figure 8. The NASH canonical pathway confirmed by independent Illumina gene expression 
beadchip. (A) Heatmap, (B) principal component analysis (PCA) and (C) boxplots of the main genes 
discriminating the three groups of patients of the PCA (B) based on the 25 genes of the canonical 
pathway applied to independent Illumina gene expression beadchip. (D) Heatmap, (E) principal 
component analysis (PCA) and (F) boxplots of the main genes discriminating the three groups of 
patients of the PCA (E) based on the 44 genes partners of the YWHAZ proteins linked to the canonical 
pathway applied to independent Illumina HumanWG-6 v3.0 gene expression beadchip (GSE33814) 
[65]. The groups of healthy control (n = 13), nonalcoholic fatty liver (NAFL, n = 19) and nonalcoholic 
steatohepatitis (NASH, n = 12) patients are significantly different: *p < 0.05; **p < 0.01, ***p < 0.005, ****p 
< 0.0005 based on ANOVA-one-way analysis. 
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In conclusion, we were able to confirm that the pathway that includes 25 dysregulated genes is 
common in patients who developed NAFL and then NASH, leading to the concept of a common 
signature of genes connected together that might seal the fate of NAFL to progress to NASH and then 
insulin-resistance, inflammation, and finally cancer. We also confirm that other genes might 
emphasize the fate of the NASH progression to a worst outcome in some patients. 

2.7. Genes Implicated in Progression of NASH are Part of the Progression to Hepatocellular Carcinoma 

We identified 25 genes implicated in the progressions of steatosis to NASH, particularly genes 
implicated in lipid metabolism, inflammation processes, and five more genes implicated in cancer 
development. 

Thus, to dissect the role of these 30 genes in the progression of NASH to HCC, we used the data 
provided by the GSE14323 [68] including biopsies for which gene expression was analyzed from 19 
controls, 41 cirrhosis, and 38 HCC using [HG-U133A] Affymetrix Human Genome U133A Array. 
PCA showed that the three groups of patients separated significantly on the first dimension (p-value 
= 2.255952 × 10-11) and second dimension (p-value = 0.001885) implicating 13 genes (Figure 9A and B). 
These 13 genes include genes involved in regulation of fatty acid and cholesterol metabolism such as 
LPL, VLDLR, LIPA, ANXA2, and PLEK; lipid accumulation (CIDEC, PLIN1); and metabolism (PPARA 
and BCL2A1); and especially genes implicated in inflammatory and cancer processes such as CCL2, 
CD36, TUBA1A, and YWHAZ (Figure 9C). Most of the latter are significantly up-regulated in cirrhosis 
and hepatocellular carcinoma samples, while genes implicated in lipid accumulation such as CIDEC 
and PLIN1 are significantly down-regulated. This may explain changes in the energy metabolism, 
particularly lipid metabolism, that is modified in hepatocellular carcinoma with down-regulation of 
triglycerides and ceramides leading to a decrease in lipid droplets due to the increase in lipid 
metabolism turn-over [69]. This is in concordance with what was shown less than a decade ago about 
hepatocellular carcinoma that can evolve from NASH [70,71]. 
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Figure 9. The genes involved in NASH progression are also involved in hepatocellular carcinoma. (A) 
Principal component analysis (PCA) based on the 30 genes implicated in NASH progression and run 
with the dataset of GSE14323 implicating control (n = 19), cirrhosis (n = 41) and HCC (n = 38) liver 
biopsies separated significantly on the first dimension and second dimension. (B) Venn diagram 
based on the genes (i.e. variables) implicated of the separation of the three groups of patients from 
the PCA (A) leading to a total of 13 genes. (C) Boxplots of the expression of the 13 genes in the in each 
group control, cirrhosis and HCC compared by ANOVA one-analysis. * p < 0.05. 

Thus, we went further to analyze the role that 30 genes found in NASH which may play a role 
in the development of hepatocellular carcinoma. We investigated genomic data of a liver cancer 
cohort from TCGA consortium (http://www.cbioportal.org) [72]. Indeed, we used this approach 
because it is well known that, in cancer progression, genomic instability could affect genes through 
mutation but also through the copy number variation. It is also known that, in liver cancer, mutation 
profile acquired in the tumor tissue is not enough to explain all the classification of the cohort of 
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patients with HCC. The average number of acquired mutations in each HCC patients could range 
from 50 to 60 [73]. 

Among the 353 patients with HCC, 231 patients have genetic alterations (e.g., mutations, fusion, 
deletions, amplifications, or single nucleotide polymorphisms) in 29 genes, but for one gene (BLC2A1) 
no alteration was observed in these patients based on the genomic landscape of liver HCC and 
mutational signatures results (Figure 10A). Interestingly, among the 29 genes, alterations in five genes 
-DGAT1, FASN, YWHAZ, LPL, IRS2- have been found in more than 4% of patients with HCC. The 
data analyses showed that genetic alterations included amplifications, missense mutations, and 
deletions. We showed that presence of mutations in these five genes in patients (n = 9) was associated 
with a higher chance of relapse or progression of the disease compared to patients (n = 89) with fewer 
alterations (less than 4% for the other 24 genes, Figure 10A and B), having a poor prognosis with a 
significantly shorter time without progression or recurrence (11.25 months vs 68.2 months, 
respectively, Figure 10B and C, Kaplan-Meier analysis with log-rank test p-value = 0.0117). 

 

Figure 10. A core of 5 genes involved in NASH progression have alterations found in hepatocellular 
carcinoma which are associated with a very poor outcome. (A) Investigation of the 30 genes involved 
in NASH on genomic data including copy number variations, single nucleotide polymorphism, 
mutation, fusion and deletion of liver cancer cohort from TCGA consortium performed in 353 patients 
(https://www.cbioportal.org/) [72] leading to five genes present in more than 4% of patients. (B) Table 
from (A) recording the total patients with genetic alterations (≥ 4%) in the 5 genes of interest (n = 14) 
and the total patients (n = 217) without genetic alteration (< 4%). Among these patients some patients 
(n = 9 and n = 89, respectively) have been identified with relapse or progression of the liver cancer. (C) 
Kaplan-Meier survival curve between patients (n = 9) with genetic alterations (≥4%) in the five genes 
identified in (A) and patients (n = 89) without (< 4%) genetic alterations in the 24 other genes 
associated with relapsed or progressed cancer. Kaplan-Meier curves were analyzed by log-rank test. 

In summary, we have shown that the genes previously identified as key players in the NASH 
progression were also implicated in liver cancer. These genes were involved in lipid metabolism and 
regulation, inflammation, and cancer development. Changes in expression of these genes are linked 
to the progression of NASH to cancer. Additionally, genetic alterations in these genes are strongly 
involved, especially mutations in five genes (DGAT1, FASN, LPL, IRS2, and YWHAZ), in lipid 
synthesis, insulin resistance, and cancer progression. Therefore, these genomic alterations playing 
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gene regulatory role for driving the progression of HCC has been shown to be significant in NASH 
progression. 

3. Discussion 

Since we began this study, more than 2,550,897 papers have been published in PubMed but only 
4916 new articles about NAFLD were released, and 0.197% of these publications included the 
following fields such as reviews; original articles focused on diagnosis; treatment; new marker(s) and 
cofactors; epidemiology; cause or relationship with other diseases, i.e., cardiovascular disease, 
fibrosis, muscular dysfunction, drug-induced NAFLD; and some articles focused on mechanisms 
(source from https://www.ncbi.nlm.nih.gov/). In general, manuscripts that focused on mechanisms, 
attempt to confirm or disprove previous data leading to controversial results [74,75] while adding 
additional data. However, to date, no comprehensive study, combining all the relevant data to find 
a canonical mechanism implicated in NAFL/NASH progression, has been performed. In the last few 
years, as bioinformatic tools were developed to perform data-mining and text-mining, laboratories 
in NAFLD field have started to use these approaches to develop a diagnostic tool based on a decision 
tree using a machine learning approach [76]. These tools have also been used to develop an algorithm 
that would perform data mining [77] to predict NAFLD-cancer progression, or to find a specific 
signature and mechanism of NASH progression using lipidomic data [19]. 

Thus, in this manuscript we used text-mining and data-mining based approaches and found a 
NAFLD/NASH canonical mechanism summarized in Figure 7. 

Indeed, the text mining approach reduced the transcriptomic matrix to the most important genes 
highlighted by scientific literature. This mathematical approach to reduce the dimension had a major 
advantage as compared to classical analysis which was also to reduce the false discovery error link 
to the high dimension data of the transcriptome. During transcriptome analysis, usual statistical 
approach applied for more than 30,000 variables and for each row is to use 5 percent of false positive 
error of discovery, with some corrections applied like FDR or BH, usually introduced to minimize 
this trouble. By this conventional approach, if the biological information is small and diluted in 
unrelated experimental variance, the biological information could be totally ignored by the statistical 
hypothesis. The advantage of our work is to focus on the statistical hypothesis to a few hundred genes 
and so to considerably reduce the risk to the unseen biological effect, especially in the context of liver, 
in which the biology and the metabolism are very complex. 

For some selected genes, in the case of the gene co-occurrences which were biased in the 
scientific literature, the second step of our workflow was to eliminate these unrelated genes because 
literature information was confirmed in transcriptome data from patients with NAFLD. 

During this work, a protein–protein interaction network was built around significant genes. This 
bioinformatic step enlarged the literature approach by the fact that the initial gene analysis was 
introduced in neighbor molecules which were experimentally connected to the initial selected 
markers from the scientific literature. This original bioinformatic approach allowed identification of 
a canonical mechanism for the progression from NAFL to NASH and then, probably in some patients, 
the progression from NASH to cirrhosis/HCC. 

As expected, four major axes have been identified validating our approach. The first axe 
concerns lipid metabolism dysregulation including increased lipid influx, increased de novo lipid 
synthesis, and decreased mitochondrial function that leads to fat accumulation in the form of 
intracellular lipid droplets. The second pathway includes inflammatory processes implicating lipids 
and chemo-attracting molecules which lead to recruitment of inflammatory cells such as 
macrophages. The third pathway, which is activated as a result of activation of the previous two, is 
the insulin resistance pathway. All these three pathways lead to the development of liver cancer. 
What is interesting in our analysis is that we were able to connect all these pathways together 
showing key genes and pathways that connect all these processes. However, we should consider this 
canonical mechanism as a nucleus and not as a dogma. For instance, recently we and others, using 
different approaches, have shown that FADS1 (i.e., Δ5-desaturase) polymorphism can decrease 
enzyme activity leading to the accumulation of toxic fatty acids upstream in the pathway and 
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decrease the downstream phosphatidylcholine to phosphatidylethanolamine ratio in NASH patients, 
leading to hepatocyte death and release of lipids that are toxic for the surrounding hepatocytes 
[19,20,35]. Thus, FADS1 can be incremented in the canonical pathway summarized in Figure 7. We 
should consider that in all NASH patients, activation of this canonical pathway is a common feature, 
and some of patients can have additional traits (e.g., FADS1 polymorphisms/decrease enzyme 
activity) that increase their risk for a faster progression of the disease from NAFL to NASH and/or 
from NASH to HCC. Thus, each additional trait, such as PNPLA3 and/or FADS1 polymorphisms, can 
be incorporated into the canonical pathway to build a more complex mechanism and then to have a 
larger overview of the mechanism implicated. 

Also, in using this canonical pathway as a main foundation to study NAFLD progression, 
researchers will be able to have a new angle to understand the disease and to find new treatment(s) 
or approaches to treat NASH-patients. Recently, Musso G et al. published an interesting review 
focusing on bioactive lipid species and metabolic pathways implicated in NASH progression based 
on 162 publications. This resulted in description of general mechanisms, but did not identify the most 
critical mechanism among all of these mechanisms or how the connections between these 
mechanisms are made [78]. The general mechanisms described in this review are connected to the 
canonical pathway that we found but with more detail about which partners are important. 

The study by Muss G et al. [78] and our study do not address the assessment of the probability 
weight of the risk of having particular polymorphisms (e.g., FADS2 polymorphisms vs FADS1 
polymorphisms vs PNPLA3 polymorphisms) or to have metabolic dysregulations of lipids from the 
diet, for instance. Defining an odds ratio or risk ratio for each element of the canonical pathway and 
the other pathways will be the next step to understand the imbalance that occurs during NAFLD 
progression. 

This study also showed for the first time the role of proteins YWHAZ and YWHAH which belong 
to the 14-3-3 protein family. Both proteins YWHAZ and YWHAH are implicated in HCC progression 
and metastasis. Indeed, the YWHAZ gene is well known to be up-regulated in HCC patients but now 
YWHAZ is identified as an oncogene based on recent research on Cancer Genome Atlas [60] and 
implicated in mitochondrial function [79]. YWHAH has also been implicated in liver cancer 
depending on regulated c-myc expression [63], in insulin resistance [62] and mitochondrial function 
[80]. 

Finally, to make the final connection between genes implicated in NASH progression and 
hepatocellular carcinoma development, we investigated the genes in two genome datasets including 
normal, cirrhotic, and HCC patients (GSE14323) and also 353 patients with HCC for which copy 
number variations and SNP were identified. We found five genes associated with poor prognosis 
including FASN, DGAT1, LPL, IRS2, and YWHAZ. Four of these genes are implicated in lipid 
metabolism regulation and one in liver cancer. Recently, lipid metabolism reprogramming in 
hepatocellular carcinoma has become the focus of research [81]. Several studies have shown that 
knockdown or pharmacological inhibition of FASN suppressed the growth of HCC in vitro. In vivo, 
genetic ablation of FASN completely suppressed Akt-driven HCC development through the 
inhibition of Rictor/mTORC2 signaling [81,82]. Recently, another in vivo study confirmed the 
previous findings and showed that genetic deletion of FASN totally suppresses hepatocarcinogenesis 
driven by AKT and AKT/c-Met protooncogenes in mice. On the other hand they showed also that 
liver tumor development is completely unaffected by FASN depletion in mice co-expressing β-
catenin and c-Met strongly suggesting that lipid metabolism could play a role not directly in the 
development of the HCC but in the prognosis of the HCC progression [83]. Indeed, it has been shown 
that FASN is frequently up-regulated in various cancers, and its increased expression is associated 
with chemoresistance, metastasis, and poor prognosis[81]. It has been shown that LPL is also up-
regulated in mouse and human HCC associated with up-regulation of FASN [84]. In addition, IRS2 
has been shown to be overexpressed in murine and human HCC and participate in the development 
of the disease with IRS1 through AKT pathway [85,86]. Thus, these five genes make the core of the 
canonical pathway. We also showed that not only dysregulation of their expression but also genetic 
alterations in these genes play an important role in the progression of the disease. 
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Our results are in accordance with a recent discovery showing a twist in lipid metabolism in 
hepatocellular carcinoma [87,88]. Indeed, in this paper they showed that many cancer cells activate 
lipid-synthesis pathways to support their rapid proliferation, especially hepatocellular carcinoma 
implicating two enzymes SCD and FADS2. They showed that some types of cancer cell are insensitive 
to modifications of SCD and continued to grow implicating a second enzyme FADS2. They showed 
that in HCC, FADS2 uses palmitate like SCD but produces sapienate (instead of palmitoleate), a 
monounsaturated fatty acid produced in sebaceous gland that will be incorporated into the 
phospholipids in the membrane of the liver cancer cell to adapt its needs to survive and to proliferate 
[88]. The tumor environment such as fibrosis, hypoxia, dysregulated metabolism might also influence 
the liver cancer cell regulation of SCD and FADS2 enzyme activities especially in the case of HCC 
developed from NASH stage [81]. Indeed, SCD, FADS1, and FADS2 are dysregulated in NASH as 
we showed in this study and previously [19,20,81]. 

Finally, to go further into the understanding of the genes implicated in the canonical pathway 
described in this study, the next step will be first to test this canonical pathway in a different new 
cohort of patients with steatosis and NASH associated to different genetic backgrounds and 
environments in prospective studies. Afterwards, it will be to perform single-cell analysis in different 
liver biopsies from healthy lean and obese patients, lean and obese patients with NAFL, NASH, 
cirrhosis, and HCC developed from NASH. The cells that should be analyzed will be at least 
hepatocytes, cholangiocytes, hepatic stellate cells, endothelial cells, and Kupffer cells. Indeed, in our 
study we used dataset from liver biopsies reflecting the bulk liver RNA. Currently, such single cell 
analyses in the different groups of patients mentioned above have not been performed yet. 

In conclusion, using an original approach based on text-mining and data-mining we were able 
to identify 25 genes implicated in NASH progression and 44 genes/proteins implicated in progression 
of the disease from NASH to HCC (Figure 11). This analysis highlighted genes belonging to the 14-
3-3 protein family YWHAZ and YWHAH. Both proteins YWHAZ and YWHAH are implicated in 
cancer progression, especially in liver cancer. Thus, this might explain why some patients with NASH 
may or may not progress to HCC. 

 

Figure 11. Canonical pathway explaining the NASH progression from steatosis to hepatocellular 
carcinoma. Inside the box the genes identified by text-mining are represented. The toothed wheels 
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represent the connections between the genes working together to accumulate toxic lipids that will 
lead to insulin-resistance and then inflammation and hepatocellular carcinoma (HCC). Thus, the 
steatosis due to an imbalance of lipid metabolism and accumulation of toxic lipids will progress to 
NASH due to the inflammatory processes and insulin resistance leading to expression of genes 
involved in tumor progression such as YWHAZ and YWHAH. Outside the box, other genes with 
specific polymorphisms (e.g. FADS1: fatty acid desaturase 1) or other factors such as 
cytokines/chemokines (e.g. increase of leptin and/or decrease of adiponectin) will accelerate and/or 
exacerbate the progression of the disease leading faster to cirrhosis and then HCC. This representation 
is not frozen but dynamic and can change depending on the future new data. 

Taken together these data led to discovery of a canonical pathway for NASH progression that 
connects together dysregulation of lipid metabolism, inflammatory processes, insulin resistance, and 
cancer progression (Figure 11). In addition, other genes with specific polymorphisms or other factors 
such as cytokines/chemokines could accelerate and/or exacerbate the progression of the disease 
leading to cirrhosis and HCC faster. This canonical pathway is not frozen but dynamic and is likely 
to change depending on the future new data that can be integrated with the pathway. These genes 
should be sought in future prospective clinical studies involving patients with NAFLD. 

4. Material and Methods 

4.1. Bioinformatics and Statistical Analyses 

Text-Mining Approach 

Bioinformatics of gene expression analysis was approached by dimensional reduction of gene 
expression matrix by text-mining approach. Workflow of this analysis is described in Figure 1. Text-
mining based on MeSH, a natural language processing, allowed us to found connections between 
language terms and gene identifiers in scientific literature such as PubMed database. Co-occurrence 
quantification by this approach allowed to connect gene databases to scientific literature and to 
highlighted important scientific relations with small set of molecules [55]. Mathematical dimensional 
reduction of transcriptome matrix was focused on significant genes found connected to literature 
after false discovery rate (FDR) correction in order to minimized false positive discovery and set-up 
below 5% [89]. 

Lipid genes differential expressed between NASH, healthy obese, and NAFL obese liver samples 
were searched with Significance Analysis for Microarray (SAM) algorithm by implementing FDR 
threshold under 5 percent [90]. Unsupervised PCA was performed with “FactoMineR” R-package and 
group discrimination p-value was estimated with variable correlation to the first principal component 
axis [91,92]. 

Functional enrichment analysis was performed with the standalone software GO-Elite version 
1.2 [93] on Gene Ontology-Biological Process (GO-BP) and the Comparative Toxicogenomics 
Database (CTD). Functional enrichment networks were built with Cytoscape software version 3.0. 
[94] with information collected during functional enrichment: the blue edge represents connections 
between genes and functions, blue circle nodes represent enriched genes, and octagon nodes 
represent enriched functions, scale color from yellow to purple in the function nodes is proportional 
to the Z-scores obtained during the enrichment. PubMed gene prioritization by connection to the 
NCBI website was performed with java application Gene Valorization working under Java Virtual 
Machine [95]. Gene prioritization relations with scientific literature were represented as a Circos plot 
with “circlize” R-package [92,96]. 

4.2. Transcriptome Dataset Analysis Narrowing Text-Mining Discovery 

Transcriptome dataset of liver samples included HO subjects (n = 24), NAFL obese patients (n = 
23), and samples of patients affected by NASH (n = 24) [61]; it was downloaded from Gene Expression 
Omnibus database under accession number GSE61260 
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(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE61260). These experiments were 
performed with Affymetrix technology and microarray version Human Gene 1.1 ST array. 
Normalized matrix by robust multi-array average (RMA) algorithm [97] was merged on identifier 
column with corresponding annotation platform GPL11532 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL11532) to create an in silico experimental 
matrix. This matrix comprises 71 patients divided in three groups for which each liver sample 
hybridized array comprised more than 750,000 unique 25-mer oligonucleotide probes that interrogate 
more than 28,000 genes. 

Then, receiver operating characteristic (ROC) curves with area under the curve (AUC) 
performed on altered lipid genes were done with “pROC” and “Epi” R-packages [98,99]. Boxplots, 
Kruskal-Wallis test, and Student t-test were performed in R software environment version 3.4.3 [92]. 

The patient sample characteristics from GSE61260 dataset can be found in the paper published 
by Horvath et al. on the Supplementary Information of the paper [61]. 

Briefly, patients were only Caucasians from Germany. RNA was extracted from human liver 
samples and analyzed as described above. 

Patients were divided in different groups such as NAFL (n = 23), NASH (n = 24), HO subjects (n 
= 24) based on the results of the histology analysis performed by a pathologist. Liver samples were 
obtained percutaneously for patients undergoing liver biopsy for suspected NAFLD or 
intraoperatively for assessment of liver histology.  

The three groups of patients were clustered based on the total NAFLD Activity Score (NAS) 
[21,100]. Briefly, the total NAS represents the sum of scores for steatosis, lobular inflammation, and 
hepatocyte ballooning, and ranges from 0 to 8 [21,100]. After diagnosis, NASH or fatty liver not 
diagnostic of NASH, the total NAS is used to grade activity. NAS scores of 0–2 typically occur in 
cases largely considered not diagnostic of NASH, whereas scores of 5–8 usually occurs in cases that 
are considered diagnostic of NASH. Steatosis: ordinal variable that relates to the amount of surface 
area involved by steatosis as evaluated on medium power examination. Minimal steatosis (<5%) 
receives a score of 0. 5–33% (score of 1), 33–66% (score 2), and >66% (score 3). Liver inflammation: 
ordinal variable: 0 corresponds to no foci, 1 (<2 foci/200×), 2 (2–4 foci/200×), 3 (>4 foci/200×). Fibrosis: 
ordinal variable that takes on (half) integer values between 0 and 4: 0 (none), 2 (perisinusoidal and 
portal/periportal), 3 (bridging fibrosis), 4 (cirrhosis). The fibrosis stage is evaluated separately from 
the total NAFLD score. 

Hepatocyte ballooning was measured in each biopsy as follow: ballooning: 0 (none), 1 (few 
balloon cells). Here “few” means rare but definite ballooned hepatocytes as well as cases that are 
diagnostically borderline, 2 (many cells/prominent ballooning). 

Patients were also checked for free-hepatitis B or C virus infections. 
All patients provided written, informed consent. The study protocol was approved by the 

institutional review board (“Ethics commission of the Medical Faculty, University of Kiel”, project 
identification: D425/07, A111/99) before the commencement of the study, as published in the original 
paper [61]. 

4.3. Confirmation of NASH Canonical Pathway by Using an Independent Validation Cohort and a Different 
Transcriptome Technology Analysis 

An independent transcriptome series was process in order to validate the inflammatory/lipid 
gene expression profile of the NASH canonical pathway using a published GSE33814 [65] including 
44 human liver tissue surgical samples (normal n = 13; steatosis n = 19; steatohepatitis n = 12) which 
was process with Illumina HumanWG-6 v3.0 expression beadchip technology. Normalized dataset 
was annotated with corresponding Gene Expression Omnibus platform GPL6884. Annotated matrix 
was restricted to inflammatory lipidic signature by SQL querying and process to perform supervised 
expression heatmap with “made4” R-package/Bioconductor repository [101] and unsupervised PCA 
with “FactoMineR” R-package [91]. ANOVA-One way with Tukey post Hoc test was done on 
highlighted biomarkers in R software environment version 3.4.3 [92]. The study was approved by the 
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ethical review committee at the University of Graz (EK number: 20-119 ex 08/09), as published in the 
original paper [65]. 

4.4. Genes Implicated in NASH Progression Involved in Progression to Hepatocellular Carcinoma: Liver 
Cancer Genomic Data 

To assess the play of the genes implicated in NASH progression, we investigate the gene profile 
of GSE14323 [68]. Liver tissue samples were obtained from patients waiting for liver transplantation 
at one of the GR2HCC Centers. Additionally, normal liver and tumor samples were also obtained 
from the Liver Tissue Cell Distribution System. For each sample, RNA was extracted and hybridized 
to an Affymetrix GeneChip ([HG-U133A] Affymetrix Human Genome U133A Array) including 19 
controls, 41 HCV-cirrhosis and 38 HCV-advanced hepatocellular carcinoma patients.  

In the second way, we investigated genomic data (copy number variations: CNV and single 
nucleotide polymorphism: SNP) of liver cancer cohort from The Cancer Genome Atlas (TCGA) 
consortium [72] through cbioportal web application (https://www.cbioportal.org/) [102,103]. This 
dataset contained Tumor Samples with sequencing and CNA data (353 patients/samples). Oncoprint 
of the CNV and SNP comprised in this dataset for the 30 lipid-related genes were performed. The 
number of patients who relapsed or progressed based on their cancer genetic profile (i.e. free 
survival) was assessed over the time using Kaplan-Meier analysis with “survival” R-package and 
analyzed using stratified log-rank survival test. The research protocol was approved by the respective 
institutional review boards, and informed consent was obtained in all cases, as published in the 
original paper [68]. 
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