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Abstract: Heart failure (HF) is associated with skeletal muscle wasting and exercise intolerance. This 
study aimed to evaluate the exercise-induced clinical response and histological alterations. One 
hundred and forty-four HF patients were enrolled. The individual training program was 
determined as a workload at or close to the lactate threshold (LT1); clinical data were collected 
before and after 12 weeks/6 months of training. The muscle biopsies from eight patients were taken 
before and after 12 weeks of training: histology analysis was used to evaluate muscle morphology. 
Most of the patients demonstrated a positive response after 12 weeks of the physical rehabilitation 
program in one or several parameters tested, and 30% of those showed improvement in all four of 
the following parameters: oxygen uptake (VO2) peak, left ventricular ejection fraction (LVEF), 
exercise tolerance (ET), and quality of life (QOL); the walking speed at LT1 after six months of 
training showed a significant rise. Along with clinical response, the histological analysis detected a 
small but significant decrease in both fiber and endomysium thickness after the exercise training 
course indicating the stabilization of muscle mechanotransduction system. Together, our data show 
that the beneficial effect of personalized exercise therapy in HF patients depends, at least in part, on 
the improvement in skeletal muscle physiological and biochemical performance. 

Keywords: heart failure; exercise training; skeletal muscle wasting; skeletal muscle histology; lactate 
threshold 

 

1. Introduction 

Heart failure (HF) is one of the most life-threatening conditions in cardiovascular patients in the 
world. In chronic heart failure (CHF), functional and metabolic alterations are detected not only in 
cardiac muscle but also in skeletal muscle tissue [1]. Oxidative stress, systemic inflammation, tissue 
hypoxia, decreased fatty acid oxidation, and mitochondrial dysfunction are the factors contributing 
to HF-induced muscle damage [1–3]. Pathological skeletal muscle changes include a shift in fiber 
type, induction of atrophy, development of insulin resistance, dysregulation of lipid metabolism, and 
ectopic fat deposition. All these factors lead to significant loss of skeletal muscle mass, a decrease in 
quality of life, and poor prognosis in CHF patients.  



Int. J. Mol. Sci. 2019, 20, 5514 2 of 10 

 

The development of preventive and therapeutic strategies against muscle wasting remains an 
unresolved challenge. Physical exercise is one of the most common approaches for the treatment of 
CHF-induced disorders. Currently, aerobic physical training is recognized as an effective and safe 
therapeutic tactic to achieve stabilization of HF, and exercise training alone or with nutritional 
support is the most proven strategy to reduce skeletal muscle wasting in CHF patients and is 
recommended by treatment guidelines [4,5]. Usually, physical training increases the mass of skeletal 
muscle tissue through the contractility-induced satellite cell activation [6]. In our recent work, we 
showed that the regeneration potential of bone marrow and skeletal muscle resident stem cells in 
CHF patients was not severely affected by disease, and under standardized in vitro conditions, these 
cells maintained proliferation activity [7] and differentiated actively into myotubes [8]. This indicates 
that exercise-induced activation of the regeneration potential of skeletal muscle stem cells might 
contribute to muscle tissue restoration and better performance in CHF patients.   

An important issue in the prescription of a therapeutic training program is the determination of 
exercise intensity optimal for an individual patient. Both anaerobic threshold (AT) and peak oxygen 
uptake (VO2) are established parameters of exercise tolerance and are known as indicators of severity 
and prognosis of CHF [9–13] The anaerobic threshold is defined as the exercise intensity before blood 
lactate concentration becomes too high and begins to accumulate faster than the muscles can remove 
it, so the intensity is no longer sustainable. Therefore, the lactate (anaerobic) threshold gives an 
understanding of how the muscles utilize available oxygen, being a more informative indicator of 
overall athletic performance compared to the VO2 peak [13,14]. We have previously shown that VO2 
at lactate threshold and pH threshold might be used as a significant diagnostic and prognostic marker 
in HF patients [15], and that the prescription of individualized aerobic exercise program based on the 
definition of lactate threshold resulted in significantly better therapeutic outcome (VO2 peak, left 
ventricular ejection fraction, exercise tolerance) than in patients who undergo aerobic training 
prescribed based on the estimation of theVO2 peak [16.17]. 

In the current work, we utilized AT as a key parameter to establish personalized exercise 
intensity for each CHF patient and evaluated the exercise-induced clinical outcome along with 
muscle transcriptome analysis to identify the signaling pathways responsible for modulation of 
skeletal muscle function in CHF patients undergoing a personalized program of physical 
rehabilitation.  

2. Results 

2.1. Description of Patients’ Cohort and the Effects of Personalized Training on Clinical Parameters 

The study included 144 heart failure patients New York Heart Association (NYHA) III class who 
underwent personalized aerobic exercise programs based on the estimation of the lactate threshold. 
The study design is given in Figure 1. Clinical data are presented as metanalysis performed on the 
whole cohort of HF patients, including those described earlier [15–18]. All CHF patients enrolled in 
this project were NYHA class III, in most cases of ischemic etiology, were on stable individually 
adjusted medical therapy regimes, including angiotensin-converting enzyme inhibitors or 
angiotensin II receptor antagonists (100%), diuretics (100%), beta-blockers (100%). None of them was 
diagnosed with diabetes. The baseline clinical characteristics of all patients enrolled in the study are 
summarized in Table 1. The baseline characteristics of patients’ provided biopsy samples are 
presented in Table 2. 
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Figure 1. Study design. Skeletal muscle biopsies were taken twice from a selected group of HF patients 
enrolled in the personalized exercise training program as indicated: Before and after 12 weeks of 
training. The portion of the first biopsy was used to evaluate the regeneration potential of HF-derived 
skeletal muscle progenitor cells as we described recently [8]; the rest was flash frozen and saved for 
further histology analysis. 

Table 1. Baseline characteristics of patients enrolled in the study (n = 144). 

Age, years 53 + 4 
Male/female, n 107/37 

BMI, kg/m2 26.6 + 2.5 
NYHA III, n 144 

LVEF, % 26 + 7 
VO2 peak (ml/kg/min) 12.9 + 3.8 

Disease etiology (DCM/CAD), n (%) 48/96 (67/33) 
ACEI/Beta-blockers/Diuretics (%) 100/100/100 

Cardiac resynchronization therapy, n (%) 31 (22) 
Coronary artery bypass graft, n (%) 43 (30) 

COPD, n (%) 52 (36) 
Atrial fibrillation, n (%) 18 (12) 

Anemia, n (%) 7 (5) 
ACEI, angiotensin-converting enzyme inhibitor; BMI, body mass index; COPD, chronic obstructive 
pulmonary disease; DCM, dilated cardiomyopathy; CAD, coronary artery disease; LVEF, left 
ventricular ejection fraction; NYHA, New York Heart Association. 

Table 2. Baseline characteristics of patients’ provided biopsy samples. 

Donors HF1 HF2 HF3 HF4 HF5 HF6 HF7 HF8 
Age, years 56 48 63 61 56 62 52 54 
BMI, kg/m2 27.07 26.46 24,1 32.87 26.77 23.32 29.5 26.12 

LVEF, % 25 20 11 24 28 40 15 30 
VO2 peak (ml/kg/min) 16.2 13.6 17.3 11 13.1 22.5 14.7 28.2 

Disease etiology (DCM/ICM) DCM DCM CAD CAD CAD CAD CAD DCM 
All patients were males, NYHA III class, were on stable individually adjusted medical therapy 
regimes, including angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists, 
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diuretics, beta-blockers; did not have comorbidities (COPD; CAD; atrial fibrillation; anemia);  LVEF, 
left ventricular ejection fraction; NYHA, New York Heart Association; DCM, dilated cardiomyopathy; 
CAD, coronary artery disease; COPD, chronic obstructive pulmonary disease. 

2.2. Physiological Response To Exercise 

Before the start of the training program, the lactate threshold (LT1) was determined for each 
patient as described [19], and a personalized rehabilitation program was prescribed that included 60 
minutes of walking speed close to the LT1 4 to 5 times a week. At baseline and after 12 weeks of 
personalized exercise program, a substantial increase in VO2 peak (cardiorespiratory test), left 
ventricular ejection fraction (LVEF), exercise tolerance (ET), and quality of life (QOL) were detected 
(Figure 2A–E). Most of the patients (95%) demonstrated a positive response to the physical 
rehabilitation program in one or several parameters tested, and 30% of those showed improvement 
in all four of the following parameters: VO2 peak, LVEF, ET, and QOL. In 11% of patients, LVEF 
increased up to 40% or more; most of those patients were upgraded to the NYHA II class. 

The walking speed at LT1 measured at baseline and after six months of training showed a 
significant rise in the subgroup of patients (Figure 2F), which clearly indicates the long-term positive 
physiological response to exercise training program in this group of patients. 

 

Figure 2. The effects of personalized training on patients’ functional capacity: (A) Left ventricular 
ejection fraction (LVEF) increased significantly after 6 months of personalized training program (*** 
p < 0.0001; n = 144); (B) oxygen uptake (VO2) peak substantially increased after 12 weeks of 
personalized training program while VO2 at lactate threshold remained unchanged (*** p < 0.0001; n 
= 144); (C) the plot of VO2 peak changes versus changes in LVEF after 12 week training course 
indicates that most of the patients in the group demonstrated an improvement in both parameters 
(red square); (D) exercise tolerance (ET) significantly improved (the rise in arbitrary units indicate the 
increase in ET; *** p < 0.0001; n = 46); (E) quality of life questionnaire (QOL) demonstrated QOL 
improvement (the decrease in arbitrary units indicates the increase in QOL; *** p < 0.0001; n = 46); (F) 
speed at lactate threshold increased significantly after 6 months of personalized training; (*** p < 
0.0001; n = 24). 

All patients included in the “muscle biopsy subgroup” also demonstrated substantial 
improvements during 12 weeks of rehabilitation in at least three out of four parameters tested in this 
study: ET, VO2 peak, LVEF, and QOL (Figure 3A−D). All but one (HF8) also demonstrated a rise in 
walking speed at LT1 after 6 months of exercise training (Figure 3E). 
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Figure 3. Physiological parameters of patients who provided skeletal muscle biopsy for histological 
and transcriptome analysis before and after exercise training program: (A) cardiorespiratory test (VO2 
peak), (B) left ventricular ejection fraction (LVEF), (C) exercise tolerance (ET), (D) quality of life test 
(QOL), (E) speed at LT1. The increase in ET value indicates improvement in exercise tolerance; the 
decrease in QOL value indicates the improvement in the quality of life test results. Patient HF8 did 
not show up for the ET test. 

2.3. Muscle Histology 

Using biopsy specimens, we analyzed fiber and endomysium thickness in skeletal muscle before 
and after exercise the rehabilitation program in eight patients comprising the ‘muscle biopsy 
subgroup’. Conventional morphological examination revealed decreased fiber thickness and 
accumulation of fibrotic tissue in skeletal muscle of HF patients before training. In six out of eight 
patients, we detected a significant decrease in muscle fiber thickness after training (Figure 4A,B). The 
patients HF1 and HF7, who did not demonstrate a decrease in muscle fiber thickness, demonstrated 
a substantial increase in BMI (Figure 4C). Furthermore, after the training courses in all patients but 
HF8, a noticeable decrease in the endomysium area was observed (Figure 4A,D). It is important to 
note here that HF8 was the only patient in the biopsy group who demonstrated a decrease in BMI, 
along with a simultaneous decrease in fiber diameter and substantial enlargement of endomysium 
and no effect on speed at LT1 after six months of training. 
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Figure 4. Skeletal muscle histological analysis before and after exercise training. (A) Representative 
histological images before and after exercise training are given for patient HF6. Images of the healthy 
donor are given for reference purposes. Scale bars represent 200 μm; (B) skeletal muscle fiber 
thickness before and after training in patients with HF (n > 60 for each experimental point; * p < 0.001; 
whiskers indicate min and max fiber diameter in the sample; line in the box indicates the median), 
(C) body mass index (BMI) changes after the training course in HF patients in the group; (D) 
individual data for the cross-sectional area of endomysium (n>50 fibers for each experimental point; 
* p < 0.05). 

3. Discussion 

Normally, training-induced adaptations in healthy subjects are reflected by changes in 
contractile proteins and function, mitochondrial function, metabolic regulation, intracellular 
signaling, and transcriptional responses (reviewed in [20]). HF patients have reduced maximum 
power output. Therefore, the relative load is higher in HF patients than in healthy donors, and this 
issue should be taken into account when data obtained from healthy donors and HF patients are 
compared [21]. Furthermore, exercise intolerance in HF patients might be a result of reduced 
oxidative metabolism and increased gluconeogenesis in the exercising muscle [22] and/or because of 
low oxygen delivery and physical inactivity of HF patients, or both [21] and these restrictions should 
also be considered. Therefore, to set the correct personalized exercise intensity, we determined the 
LT1 [19] for each patient and prescribed 60 minutes of daily walking at speed close to the LT1. The 
main finding of the present study is that the training-induced health improvements, including the 
significant increase in speed at LT1 and exercise tolerance in heart failure patients (Figures 2F and 
3E), were associated with significant changes in skeletal muscle histology. 
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In our work, the histological analysis detected a small but significant decrease in both fiber and 
endomysium thickness (Figure 4) after the exercise training course. It is known that in CHF 
population, skeletal muscle atrophy is tightly associated with reduced exercise capacity: reduced 
cardiac output (particularly during exercise) results in reduced skeletal muscle blood flow, muscles 
do not receive sufficient nutrient supply including oxygen and are either stressed, reversibly injured, 
or in more extreme conditions undergo apoptotic and/or necrotic cell death [23], resulting in 
decreased fiber thickness and accumulation of fibrotic and adipose tissue. The exercise training 
course was expected to improve the morphological characteristics, and the observed decrease in fiber 
thickness in our patients after exercise training was rather surprising. These observations, however, 
fit well previous findings by Ades et al. [24] who demonstrated the increase in fiber thickness in CHF 
patients after 12 months of training, but not after 12 weeks, and by Larsen et al. who demonstrated 
the improvement in exercise tolerance along with reduction of fiber thickness and increase in 
capillary density in HF patients after 12 weeks exercise training course [25]. Larsen and co-authors 
suggested that fiber diameter did not increase during training to maintain a smaller area for the better 
diffusion of nutrients and gases by capillary networks. Indeed, these cellular changes would result 
in the ability to sustain sufficient levels of muscle contractions for greater periods without fatigue, 
explaining the observed increase in exercise tolerance in patients. 

The training-induced changes in endomysium observed here also deserve some further discussion: 
It was reported previously that the immobilization-induced alterations in the skeletal muscle manifested 
not only in the reduction of fiber length and diameter, but also in the increase and disorganization in the 
intramuscular connective tissue which disturb the normal structure of the endomysium, contribute to the 
decreased function, and diminished biomechanical properties of immobilized/disused skeletal muscles 
[26–28]. We suggest that training-induced decrease in endomysium thickness results in stabilization of 
muscle mechanotransduction system not only at the level of single muscle-fiber but also on the tissue 
level, thus, contributing to the increase in exercise tolerance. 

To summarize, in this work, we have shown that along with clinical response, the personalized 
exercise therapy in HF results in significant histological alterations in skeletal muscle and that the 
training-induced beneficial effect depends, at least in part, on the improvement in skeletal muscle 
physiological and biochemical performance. 

4. Materials and Methods 

4.1. Study Population 

The study was approved by the Ethics Committee of the Almazov National Medical Research 
Centre (Ref. # 54; 14/03/2016) and was conducted in compliance with current Good Clinical Practice 
standards and in accordance with the principles under the Declaration of Helsinki (1989). All patients 
entering the program agreed to and signed an institutional review board-approved statement of 
informed consent. 

A total of 144 patients (107 male, 37 female) with HF NYHA III class was enrolled. The design 
of the study is presented in Figure 1. All patients performed a cardiopulmonary exercise test (CPX) 
and echocardiography and blood sampling. Clinical and laboratory characteristics of all patients and 
hemodynamic conditions were collected before the beginning of the physical rehabilitation program. 
Biopsy specimens were collected from a subset of patients (n = 8) twice: at the time of enrollment and 
after 12 weeks of exercise program. The obtained biopsy samples were immediately snap-frozen, 
placed in liquid nitrogen until final analysis. Three healthy donors were enrolled for reference 
measurements in histology analysis. 

4.2. Cardiopulmonary Exercise Testing and Lactate Threshold Determination 

A cardiorespiratory test was performed on a treadmill model Охусоn Pro (Erich Jaeger 
GmbH&Co KG, Friedberg, Germany) using a 7 Watt/30 sec ramp protocol [13] for all 144 patients at 
baseline and after 12 weeks of training. Gas exchange data were collected continuously with an 
automated breath-by-breath system. During the test, a 12-lead electrocardiogram (ECG) was 
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continuously recorded, and blood pressure was measured every two minutes. Physical activity was 
stopped if the subject had shortness of breath, fatigue, leg pain at the level of 8 out of 10 on the Borg 
scale, if blood pressure decreased by 25%, if the patient reported the development of severe weakness, 
dizziness, or at any other patient request. Blood samples were taken at baseline and then every one 
minute during the test. To determine AT, the lactate concentration was estimated using analyzer i-
STAT, cartridge CG4 (Abbot, Princeton, NJ, USA), as described [29]. 

4.3. Echocardiography 

Resting two-dimensional and tissue Doppler echocardiography was performed for all 144 
patients at baseline and after 12 weeks of training according to the guidelines of the American Society 
of Echocardiography 2015 to assess LVEF, morphology, and function.  

4.4. Quality of Life and Exercise Tolerance Tests 

Quality of life (QOL) and exercise tolerance (ET) were estimated at the baseline and after 12 
weeks of physical rehabilitation. Forty-six patients completed both questionnaires successfully. QOL 
was evaluated by using the Minnesota life heart failure questionnaire (MLHFQ), and ET with the 
international physical activity questionnaire (IPAQ). 

4.5. Exercise Therapy Protocol 

An individual physical rehabilitation program for HF patients included 1hour of walking at 90% 
of load intensity at the lactate threshold level (estimated as speed, km/h) for at least 4 to 5 times a 
week; patients were required to have a diary of self-control (evaluated monthly); the correction of the 
training load was done on the second outpatient visit; all patients were observed by a cardiologist in 
the outpatient department. Twenty-four patients, including those who provided biopsy samples, 
came to estimate the progress in load intensity at LT1 after 6 months of training. 

4.6. Histology 

Histology was assessed on muscle specimens after hematoxylin and eosin staining. Myofiber 
cross-sectional area was analyzed as described [25]: imaging was acquired using light microscope 
Axio Observer.Z1 (Carl Zeiss Microscopy GmbH, Jena, Germany) and ZEN Pro/desk software with 
final magnification × 100. For analysis, only myofibers with symmetrical shape and distinct 
boundaries were chosen. Size was quantified by measuring the minimal diameter of elliptical-shaped 
fibers in the transverse section. Diameters were evaluated for 50 ± 20 fibers from at least five 
microphotographs of an individual sample using AxioVision software. The analysis was performed 
in a blind manner.  

4.7. Determination of Endomysium Area 

Within the fascicle, the endomysium is defined as the connective tissue surrounding single 
myofibers. The endomysium area was calculated as described earlier [30] with some modifications: 
In the images, we selected areas containing only myofibers and endomysium. For image 
segmentation and analysis ZEN Intellesis module was used that employs a deep learning platform 
for image segmentation and analysis. The endomysium area was normalized to the total area of the 
selected region and presented in percent. The example of images prepared for analysis is given in 
Figures S1 and S2. 

4.8. Statistical Analysis 

The GraphPad Prism program was used to analyze data; to evaluate the training effects, we used 
the paired t-test. All further details are given in the figure’s legends. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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