



1 Article

# Time-Resolved Spectroscopy Study of the N,N-Di(4 bromo)nitrenium Ions in Acid Solution

# Lili Du <sup>1,2,+</sup>, Zhiping Yan <sup>2,+</sup>, Xueqin Bai <sup>2</sup>, Runhui Liang <sup>2</sup> and David Lee Phillips <sup>2,\*</sup> Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, P.R. China; justailleen@gmail.com (L.D.) Department of Chemistry, The University of Hong Kong, Hong Kong S.A.R., China; mcayzp@gmail.com (Z.Y.); xqbai@hku.hk (X.B.); rhliang5@hku.hk (R.L.)

- 8 \* Correspondence: phillips@hku.hk (D.L.P.); Tel.: +852-2859-2160 (D.L.P.)
- 9 <sup>+</sup> Those authors contribute equally to this work
- 10 Received: date; Accepted: date; Published: date
- 11

## 12 Supplementary material

| 13 | Scheme S1. The generation of DN                                                                                         | .2 |
|----|-------------------------------------------------------------------------------------------------------------------------|----|
| 14 | Figure S1. Shown are fs-TA spectra in obtained in 1:1 MeCN: 1 mM HClO <sub>4</sub> solution after 267 nm irradiation of | of |
| 15 | 1 (left), <mark>and the kinetics at 450 nm and 375 nm (right)</mark>                                                    | 2  |
| 16 | Table S1. Structural parameter for the intermediate 3, intermediate 4 and DN calculated from the DFT                    |    |
| 17 | calculations using the B3LYP methods and a 6-311G(d,p) basis set                                                        | .2 |
| 18 | Cartesian coordinates, total energies, and vibrational zero-point energies                                              | .3 |
|    |                                                                                                                         |    |

19

#### 20 Scheme S1. The generation of DN.







24 1 (left), and the kinetics at 450 nm and 375 nm (right).

### 25 Table S1. Structural parameter for the intermediate 3, intermediate 4 and DN calculated from the DFT

26 calculations using the B3LYP methods and a 6-311G(d,p) basis set.

|         | Bond length (Å) |         |                |         |       | Bond angles (deg) |                |            |                | Dihedral angles (deg) |       |               |                |               |                |               |        |  |
|---------|-----------------|---------|----------------|---------|-------|-------------------|----------------|------------|----------------|-----------------------|-------|---------------|----------------|---------------|----------------|---------------|--------|--|
| Interm  | Intermediate 3  |         | Intermediate 4 |         | DN    |                   | Intermediate 3 |            | Intermediate 4 |                       | DN    |               | Intermediate 3 |               | Intermediate 4 |               | DN     |  |
| C1-C2   | 1.415           | C1-C2   | 1.431          | C1-C2   | 1.431 | C1-C2-C3          | 119.5          | C1-C2-C3   | 119.7          | C1-C2-C3              | 118.6 | C1-C2-C3-C4   | -2.0           | C1-C2-C3-C4   | -3.0           | C1-C2-C3-C4   | -3.4   |  |
| C2-C3   | 1.413           | C2-C3   | 1.427          | C2-C3   | 1.433 | C2-C3-C4          | 119.9          | C2-C3-C4   | 119.6          | C2-C3-C4              | 120.2 | C2-C3-C4-C5   | 0.2            | C2-C3-C4-C5   | -0.1           | C2-C3-C4-C5   | -0.7   |  |
| C3-C4   | 1.380           | C3-C4   | 1.369          | C3-C4   | 1.374 | C3-C4-C5          | 120.0          | C3-C4-C5   | 120.1          | C3-C4-C5              | 119.4 | C3-C4-C5-C6   | 1.3            | C3-C4-C5-C6   | 2.2            | C3-C4-C5-C6   | 2.6    |  |
| C4-C5   | 1.403           | C4-C5   | 1.422          | C4-C5   | 1.407 | C5-C6-C1          | 119.5          | C5-C6-C1   | 119.4          | C5-C6-C1              | 118.7 | C4-C5-C6-C1   | -0.9           | C4-C5-C6-C1   | -1.1           | C4-C5-C6-C1   | -0.3   |  |
| C5-C6   | 1.404           | C5-C6   | 1.418          | C5-C6   | 1.405 | C2-C1-C6          | 120.5          | C2-C1-C6   | 120.4          | C2-C1-C6              | 120.9 | C2-C1-C6-C5   | -0.9           | C2-C1-C6-C5   | -2.0           | C2-C1-C6-C5   | -3.9   |  |
| C1-C6   | 1.378           | C1-C6   | 1.368          | C1-C6   | 1.374 | C4-C5-Br15        | 119.7          | C4-C5-Br15 | 119.5          | C4-C5-Br15            | 118.9 | Br15-C5-C6-C1 | -179.9         | Br15-C5-C6-C1 | -179.3         | Br15-C5-C6-C1 | -178.3 |  |
| C2-N7   | 1.382           | C2-N7   | 1.364          | C2-N7   | 1.339 | C1-C2-N7          | 117.5          | C1-C2-N7   | 116.5          | C1-C2-N7              | 115.3 | Br15-C5-C4-C3 | -179.7         | Br15-C5-C4-C3 | -179.6         | Br15-C5-C4-C3 | -179.4 |  |
| N7-H24  | 1.015           | N7-H24  | 1.021          | C5-Br15 | 1.883 | N7-C8-C13         | 117.5          | N7-C8-C13  | 116.5          | N7-C8-C13             | 115.3 | C1-C2-N7-C8   | 160.4          | C1-C2-N7-C8   | 164.7          | C1-C2-N7-C8   | 160.8  |  |
| C5-Br15 | 1.882           | C5-Br15 | 1.846          |         |       | C2-N7-C8          | 131.1          | C2-N7-C8   | 133.8          | C2-N7-C8              | 126.1 | C2-N7-C8-C13  | 160.4          | C2-N7-C8-C13  | 164.7          | C2-N7-C8-C13  | 160.8  |  |
|         |                 |         |                |         |       | N7-C8-C9          | 123.0          | N7-C8-C9   | 116.5          | N7-C8-C9              | 126.1 | C2-N7-C8-C9   | -22.3          | C2-N7-C8-C9   | -17.7          | C2-N7-C8-C9   | -22.7  |  |
|         |                 |         |                |         |       |                   |                |            |                |                       |       | C3-C2-N7-C8   | -22.3          | C3-C2-N7-C8   | -17.7          | C3-C2-N7-C8   | -22.7  |  |

27

29 Cartesian coordinates, total energies, and vibrational zero-point energies for the optimized geometry from the

30 (U)B3LYP/6-311G(d,p) calculations for the compounds and intermediates considered in this paper are given

31 Radical cation 3

| 32 | С            | 2.34679200           | 1.78966500      | -0.39710600         |
|----|--------------|----------------------|-----------------|---------------------|
| 33 | С            | 1.25805000           | 0.98475000      | 0.01268000          |
| 34 | С            | 1.49913000           | -0.33168900     | 0.46541600          |
| 35 | С            | 2.78474000           | -0.83443200     | 0.46544600          |
| 36 | С            | 3.85060000           | -0.03773300     | 0.02028500          |
| 37 | С            | 3.62828700           | 1.28199300      | -0.40254500         |
| 38 | Ν            | -0.00001800          | 1.55705900      | 0.00028200          |
| 39 | С            | -1.25805600          | 0.98473800      | -0.01232200         |
| 40 | С            | -1.49900000          | -0.33186700     | -0.46466600         |
| 41 | С            | -2.78461200          | -0.83460200     | -0.46487400         |
| 42 | С            | -3.85060700          | -0.03775300     | -0.02029200         |
| 43 | С            | -3.62841500          | 1.28212700      | 0.40213900          |
| 44 | С            | -2.34692000          | 1.78979300      | 0.39689500          |
| 45 | Br           | -5.59816400          | -0.73669600     | -0.01859100         |
| 46 | Br           | 5.59817000           | -0.73666700     | 0.01832300          |
| 47 | Н            | 2.97439300           | -1.83484100     | 0.83117500          |
| 48 | Н            | 4.45683800           | 1.89427600      | -0.73270400         |
| 49 | Н            | 2.16985900           | 2.80527300      | -0.73437100         |
| 50 | Н            | -2.17009500          | 2.80552200      | 0.73384700          |
| 51 | Н            | -4.45706200          | 1.89452900      | 0.73183600          |
| 52 | Н            | -2.97416100          | -1.83514600     | -0.83029300         |
| 53 | Н            | -0.69399200          | -0.93164300     | -0.86527100         |
| 54 | Н            | 0.69421700           | -0.93130400     | 0.86646600          |
| 55 | Н            | -0.00002100          | 2.57171000      | 0.00037100          |
| 56 | Zero-point c | orrection= 0.17779   | 94 (Hartree/Par | ticle)              |
| 57 | Sum of elect | ronic and thermal Fr | ee Energies= -5 | 5665.472200 Hartree |
| 58 |              |                      |                 |                     |
| 59 | dication 4   |                      |                 |                     |
| 60 | С            | -1.49923             | -0.33209 -0.46  | 5484                |
| 61 | С            | -1.25805             | 0.98451 -0.02   | 1252                |
| 62 | С            | -2.34686             | 1.78967 0.3     | 9673                |
| 63 | С            | -3.62838             | 1.28213 0.4     | 0211                |
| 64 | С            | -3.85078             | -0.03778 -0.02  | 2024                |
| 65 | С            | -2.78489             | -0.8347 -0.46   | 5492                |
| 66 | С            | 1.2581               | 0.9844 0.0      | 1247                |
| 67 | С            | 1.49917              | -0.33217 0.4    | 6466                |
| 68 | С            | 2.78489              | -0.83476 0.4    | 648                 |

| 69 | С               | 3.85075          | -0.03775   | 0.0203                   |
|----|-----------------|------------------|------------|--------------------------|
| 70 | С               | 3.62838          | 1.28213    | -0.40204                 |
| 71 | С               | 2.34682          | 1.78963    | -0.39674                 |
| 72 | Br              | 5.59843          | -0.73645   | 0.01846                  |
| 73 | Br              | -5.5984          | -0.73647   | -0.0184                  |
| 74 | Н               | 2.97451          | -1.83534   | 0.8301                   |
| 75 | Н               | 4.45694          | 1.89467    | -0.73169                 |
| 76 | Н               | 2.16986          | 2.80535    | -0.73365                 |
| 77 | Н               | -2.16994         | 2.80539    | 0.73367                  |
| 78 | Н               | -4.45694         | 1.89463    | 0.73183                  |
| 79 | Н               | -2.97453         | -1.83523   | -0.83035                 |
| 80 | Н               | -0.69436         | -0.93198   | -0.86555                 |
| 81 | Н               | 0.69431          | -0.93217   | 0.86523                  |
| 82 | Ν               | -0.00006         | 1.55666    | -0.00006                 |
| 83 | Н               | 0.00005          | 2.5713     | 0.00021                  |
| 84 | Zero-point corr | ection= 0.1785   | 77 (Hartre | e/Particle)              |
| 85 | Sum of electron | ic and thermal F | ree Energi | es= -5665.055519 Hartree |
| 86 |                 |                  |            |                          |
| 87 |                 |                  |            |                          |
| 88 |                 |                  |            |                          |
| 89 |                 |                  |            |                          |
| 90 |                 |                  |            |                          |
| 91 |                 |                  |            |                          |
| 92 |                 |                  |            |                          |