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Abstract: Mesenchymal stem cells (MSCs) are capable of differentiating into multilineage cells,
thus making them a significant prospect as a cell source for regenerative therapy; however,
the differentiation capacity of MSCs into osteoblasts seems to not be the main mechanism responsible
for the benefits associated with human mesenchymal stem cells hMSCs when used in cell therapy
approaches. The process of bone fracture restoration starts with an instant inflammatory reaction,
as the innate immune system responds with cytokines that enhance and activate many cell types,
including MSCs, at the site of the injury. In this review, we address the influence of MSCs on the
immune system in fracture repair and osteogenesis. This paradigm offers a means of distinguishing
target bone diseases to be treated with MSC therapy to enhance bone repair by targeting the crosstalk
between MSCs and the immune system.
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1. Introduction

Bone is one of the few tissues in the human body with the ability to regenerate with a scar-free
healing. Following bone injury, a complex bone healing process aimed to restore bone shape and
function takes place. Defects in one or more stages of bone healing results in impaired bone repair
following injury [1]. The process of bone healing involves three highly integrated and overlapping
stages: inflammation, proliferation, and bone remodeling. Upon injury, the levels of inflammatory
cytokines and the rate of neutrophil, monocyte, lymphocyte infiltration and macrophage polarization
increase. Activated macrophages release inflammatory and chemotactic mediators, thus launching the
induction of mesenchymal stem cells (MSCs) from local niches into the site of injury [2]. However,
the continuous or abnormal boosting of immune cells or releasing of pro-inflammatory molecules is
detrimental to the process of bone regeneration [3]. Through the proliferation phase, re-epithelialization,
angiogenesis, collagen synthesis and extracellular matrix (ECM) formation take place, and, finally in the
remodeling phase, collagen deposition as well as vascular maturation and regression occur [4]. In bone
healing under unimpaired conditions, the immunomodulatory effect of MSCs could be crucial for
establishing novel therapeutic strategies to ameliorate inefficient bone remodeling. Thus, the crosstalk
between MSCs and infiltrated immune cells must be coherently modulated. From this point of view,
it is necessary to understand the mechanisms that govern the relationship between immune cells and
MSCs during bone repair cascades [3].

The strong relationship between the different stages of bone healing and immunity is well
documented within the scope of osteoimmunology. In particular, the early stage of the healing
process, the inflammatory stage, appears to be a vital target for immunomodulatory strategies to
induce bone remodeling [3]. After injury, the pro-inflammatory response initiates the healing process,
but the continuous expression of pro-inflammatory molecules has an overall negative influence on
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it [5]. Indeed, patients affected by chronic inflammatory conditions display an overexpression of
pro-inflammatory cytokines, including tumor necrosis factor alpha (TNF-α) and interleukin-1 (IL-1),
which negatively impact osteogenesis differentiation and bone formation, thus leading to bone loss [6].
Thus, a controlled inflammatory response is essential during the healing process [7], and in fact,
diminishing an excessive, undamped immune response favors bone healing.

MSCs can exert their immunomodulatory properties through two different mechanisms: direct
cell contact with immune cells and by the secretion of regulatory molecules depending on the
microenvironment that they face [8,9]. In the case of bone healing, this secretome can fluctuate in
response to different stages of the process, targeting diverse immune cells and thus coordinating their
migration, proliferation and activation [10]. In vitro experiments have shown that T cell proliferation
can be suppressed by direct contact with MSCs [11]. This inhibition is driven by the interaction
between the inhibitory molecule programmed death 1 (PD-1) to its ligands programmed cell death
1 ligand 1 (PD-L1) and programmed cell death 1 ligand 2 (PD-L2), both of them expressed in MSCs
and in target immune cells. This engagement leads target cells to modify the expression of different
cytokine receptors and signaling molecules [11]. Depending on the ratio between pro-inflammatory
and anti-inflammatory cytokines present in the microenvironment they face, MSCs can secret specific
cytokines such as transforming growth factor beta (TGF-β) which induces the formation of regulatory
T cells (Tregs) [12]. MSCs additionally express TNF-α-stimulated gene/protein 6 (TSG-6), with essential
anti-inflammatory functions through neutrophil migration inhibition by hampering the binding of
C–X–C motif chemokine ligand 8 (CXCL8) to heparin [13].

2. Inflammation and Impact of Mesenchymal Stem Cells in Bone Healing

Fracture repair is an intricate regenerative process which can be split into direct and secondary
fracture repair. Direct, primary fracture repair involves MSC migration to the site of injury, followed
by their differentiation into osteoblasts and consequent secretion of ECM proteins including type I
collagen, proteoglycans, and γ-carboxylated proteins that boost mineralization [14]. This takes place in
types of fracture healing that occur when the fractured bone-ends are rigidly fixed and lack relative
displacement, leading to little or no inflammatory response. Indirect, secondary bone fracture repair (the
most common) occurs when there is no stabilization and the gap size is moderate. Thus, the repairing
strategy comprises stimulatory responses within the periosteum and surrounding soft tissues, thus
resulting in the formation of an external callus and subsequently stiffness improvement [15]. In this
case, a complete replacing of old and damaged bone via endochondral, intramembranous ossifications,
cartilaginous intermediate inflammation, cartilaginous callus formation, bony callus formation, and
remodeling phase occurs [16].

Modulation in the inflammatory phase is fundamental for ordinary bone repair; conversely,
systemic and maintained inflammation is known to be deleterious for fracture healing outcome [17].
Throughout the inflammation and in coordination with various immune responses, clot formation,
tissue granulation, and cell recruitment take place. Moreover, acute bone injury is accompanied
by vascular and local soft tissue damage. Meanwhile, a hematoma is formed as scaffolding for the
activation of macrophages and polymorphonuclear neutrophils (PMNs) to eliminate dead cells and
debris. PMNs in turn release chemokines such as chemokine ligand-2 (CCL2) and interleukin-6 (IL-6)
to stimulate macrophages. However, the continuous stimulation of PMNs delays fracture repair [7].

During the first steps of bone fracture repair, both locally and systemically infused MSCs migrate
to the site of injury attracted by potent chemokines released at the fracture site [18]. In this scenario,
the chemokine C-X-C motif chemokine ligand 12 (CXCL12) has been found to be up-regulated [18–20],
probably in order to promote the migration of MSCs which express C–X–C motif chemokine receptor
4 (CXCR4), the receptor for CXCL12 [21]. Moreover, recent studies have shown that the exogenous
administration of CXCL12 in mouse models of bone fracture accelerated healing [22] and that migration
of MSCs through the expression of CXCR4 towards the fracture area significantly improved bone
healing [23].
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The use of MSC-embedded porous scaffolds to directly provide cells in the fracture area to enhance
bone repair has also been described; Marcacci and coworkers were the first to report promising results
using autologous in vitro expanded MSCs seeded onto a porous ceramic scaffold of hydroxyapatite
(HA), which perfectly fitted the bone injured areas of four patients suffering from large bone diaphysis
defects [24]. After surgery, the follow up of the patients showed no adverse effects, and a perfect
coupling between the implanted scaffold and the recipient bone occurred approximately half a year
following surgery.

In a model of experimental critical size femoral bone defect, Zwingenberger and colleagues
implanted adenoviral induced fat tissue grafts expressing CXCL12 and/or bone morphogenetic protein
2 (BMP-2) at the site of injury. After 24 hours, MSCs were systemically injected. The migration of
the injected MSCs was detected over 42 days at different times, and a marked enhancement in bone
volume fraction and bone healing were observed relative to the negative control [25]. CXCL12 and
BMP2 enhanced MSCs homing to the site of injury, and, moreover, osteoblasts were shown to prevail
over osteoclasts, reflecting a tendency to improve bone remodeling.

Adipose tissue is an alternate source for the isolation of MSCs. Adipose-derived stem cells (ASCs)
readily provide an abundant supply, and they are safely accessible and widely suggested for tissue
engineering and bone formation [26]. Both allogeneic and autologous ASCs can be successfully used
in tissue remodeling without initiating a lymphocyte reaction, and, upon an appropriate stimulus,
ASCs can differentiate into the osteogenic lineage [26]. ASCs have been shown to hold high osteogenic
potential in experimental animal models. ASCs have shown significant ability in the repair of
critical-sized calvarial defects to enhance bone remodeling in appendicular (bone that support the
appendages) defects [27] and to induce spinal fusion to correct defects in small bones in murine
models [28].

Pericytes (PSCs) are embedded in capillaries and microvasculature, presenting multipotent
differentiation capacity [29,30]. In fact, it has been suggested that all MSCs are derived from PSCs due
to the fact that they share identical cell surface markers [31]. Regarding their osteogenic potential,
several animal models have demonstrated that PSCs can prompt powerful bone formation. Thus, during
mouse incisor trauma, PSCs have been shown to be recruited to the injury site and contribute to
bone repair [32]. Preclinical studies in rat spinal fusion models have shown the successful influence
of delivered PSCs to induce bone regeneration, especially when performed by osteogenesis of host
cells [33]. In addition, a mouse femur fracture model revealed that injected PSCs were directly involved
in callus formation, suggesting that PSCs can differentiate into osteoblasts [34], and human PSCs were
shown to aid bone recovery in a mouse critical-size calvarial defect model [35].

3. Mesenchymal Stem Cells Licensing as an Anti-Inflammatory Tool

The inflammatory environment to which MSCs are exposed is essential for the activation of MSCs
functions. Thus, a crosstalk between MSCs and the immune system, which can be stimulated via
cell–cell contact and/or by increasing the production of soluble immunomodulatory factors, is necessary
to mitigate inflammation [36]. Indeed, MSCs assemble an anti-inflammatory response as result of
the inflammatory cytokines secreted by immune cells [37]. This results in the production of several
chemokines and growth factors by MSCs, modifying immune reactions and co-operating in tissue
repair [38].

Ren and coworkers found that the immunosuppressive properties of MSCs are elicited by
interferon gamma (IFNγ) and other pro-inflammatory cytokines such as TNFα, interleukin-1 alpha
(IL-1α), or interleukin-1 beta (IL-1β) [39]. This cytokine integration induces the expression of inducible
nitric oxide synthase (iNOS), a key immune suppressive molecule, and several chemokines by MSCs.
The absence of the immunosuppression observed in iNOS−/− or in knockout mice for chemokine
receptors such as interferon gamma receptor 1 (IFNγR1−/−) mice [39] has suggested that these
chemokines drive T cell migration to MSCs, where the immune response can be inhibited by nitric
oxide (NO) produced in their proximities [39]. Interestingly, wild-type MSCs have been shown to block
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graft-versus-host disease (GVHD) and delayed-type hypersensitivity in lethally-irradiated recipient
mice but not IFNγR1−/− or iNOS−/− MSCs. In fact, in the case of iNOS−/− MSCs, they have been
shown to aggravate delayed-type hypersensitivity in mice [39]. Therefore, the cytokines involved
in pro-inflammatory processes are essential to motivate MSCs’ immunosuppression effects via the
collective impact of chemokines and NO.

The inflammatory cytokine interleukin 17A (IL-17A) has been shown to promote the
immunosuppressive role of MSCs enhanced by IFNγ and TNFα released by activated T cells. This effect
of IL-17A has been shown to be conditional on the enhanced expression of iNOS, in MSCs [40].
The AU-rich element ARE/poly(U)-binding/degradation factor 1 (AUF1), abundant in lymphoid organs,
takes part in the post-transcriptional damping of inflammation-related mRNAs, a key step to diminish
the immune response [41]. Interestingly, IL-17A can enhance iNOS mRNA stability through minimizing
the levels of the AUF1 protein in MSCs treated with IFNγ and TNFα. Thus, AUF1 functions as a
regulator through which IL-17A boosts its immunosuppressive activity on MSCs in an inflammatory
environment [40].

MSC-induced immunosuppression seems to act in a different way according to the influence of
T-cell-derived cytokines [42]. TNF-α is one such critical cytokine that is known to activate the nuclear
factor kappa B (NF-κB) cascade. TNF-α-mediated NF-κB activation triggers the immune regulatory
aspects of MSCs. As a matter of fact, the inhibition of either NF-κB activation or the expression of the
tumor necrosis factor-alpha receptor (TNFR1) significantly abolishes the MSCs’ regulatory effect [43].
A study by Dorronsoro and coworkers demonstrated that TNF-α is effective in triggering this immune
modulatory potential in human MSCs, which is in accordance with the results reported in mice, where
IFN-γ seems to be a major factor [36]. Thus, the secretion of TNF-α by immune cells has been shown to
induce the anti-inflammatory activity of MSC populations via the activation of NF-κB. Using models
of GVDH, IFN-γ was shown to be effective in enabling MSCs to quell the immune response [44].
Interestingly, IL-1α or IL-1β alone are not able to induce a response from MSCs, but they do so in the
presence of IFN-γ [39].

4. Modulation of Macrophage Polarization and MSCs-Macrophage Crosstalk

Endochondral ossification initiated after injury enhances the expansion of hematopoietic lineage
cells, including macrophages. Hematopoietic cells involved in the differentiation of specific bone cell
types drive MSCs to differentiate into chondrocytes or osteoblasts. Vi and coworkers reported that
a lack of macrophages causes an intense decrease in ossification, suggesting that macrophages are
essential not only for repair but also for normal development as well [45]. Thus, during the first stages
of bone repair, under an inflammatory environment, macrophages are polarized to a pro-inflammatory
M1 phenotype. M1 macrophages enhance the secretion of IL-6, TNF-α, and IFN-γ, which subsequently
activate CD8+ (cytotoxic) T cells obstructing the osteogenic differentiation of MSCs.

MSCs are known to deploy an anti-inflammatory effect and polarize M1 macrophages into M2
macrophages, thus modulating inflammation and launching bone repair. Maggini and collaborators
indicated that MSCs turn macrophages into a regulatory profile described by a reduced capacity of
inflammatory cytokines secretion and an increased capability to phagocyte apoptotic cells [46].
Anti-inflammatory factors induce bone healing processes; nevertheless, acute inflammation is
remarkable for fracture repair, as it activates angiogenesis and boosts MSC migration to the site
of damage [47]. M1 macrophages are known to enhance the pro-osteogenic effects of MSCs; this effect
is enhanced by the transition of M1 into M2 [48] (Figure 1). Moreover, M2 macrophages are more stable
than M1 macrophages, with a strong ability to modify and curtail the inflammatory response, and
they are essential for tissue regeneration [49]. The activation of macrophages results in lymphocyte
migration to the fracture site, launching the adaptive immune response. The consequence is the
secretion of pro-inflammatory molecules such asIL-1, IL-6 and the receptor activator of nuclear factor
kappa-B ligand (RANKL) among others [17]. The suppression of this inflammatory stage hampers
bone repair and increases the hazard of nonunion. For example, following bone fracture, the high
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expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) participate in the inflammatory
phase of healing, which stimulates the differentiation of MSCs into osteoblasts [50,51]. Therefore,
the inhibition of COX-2 and PGE2 by nonsteroidal anti-inflammatory drugs (NSAIDs) and selective
inhibitors, both in vitro and in vivo, delays bone healing [51].
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Figure 1. Immunomodulatory capacity of mesenchymal stem cells (MSCs) during the bone healing
process. Upon fracture, a hematoma is created, and damaged blood vessels form a clot. Fracture
hematoma boosts innate and adaptive immunity, especially neutrophils, resulting in the activation
of macrophages. Activated M1 macrophages release pro-inflammatory cytokines and promote the
migration of MSCs into hematoma. MSCs release several chemokines (chemokine ligand-2 (CCL2)
and chemokine ligand-4 (CCL4)) to recruit monocytes and macrophages. Pro-inflammatory cytokines
(tumor necrosis factor alpha (TNF-α), interleukin-1 alpha (IL-1α), or interleukin-1 beta (IL-1β)) stimulate
MSC migration into the site of injury. During the fracture repair and remodeling stages, MSCs extremely
increase the secretion of chemokines such as CCL2; mediate macrophage recruitment and polarization
into the M2 phenotype; augment the secretion of vascular endothelial growth factor (VEGF), which
stimulates vascularization; and secrete cytokines (such as IL-10 and transforming growth factor beta
(TGF-β)), which trigger the chondrogenic differentiation of MSCs. The wide range of secretome
accelerates the synthesis of the cartilaginous matrix and induces MSCs into osteogenic lineage, thus
promoting intramembranous ossification at the fracture edges.

5. Paracrine Signaling Molecules of MSCs and Macrophages in Bone Fracture Healing

The interaction between MSCs and immune cells regulates both adaptive and innate immune
reactions via juxtacrine and paracrine signaling [52,53]. When co-cultured with macrophages, MSCs
repress the secretion of pro-inflammatory cytokines by them (TNF-α, IL-1β, and IL-6), favoring the
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production of anti-inflammatory cytokines (IL-10). This observation suggests that MSCs mediate this
immunomodulation via iNOS- and COX-2-dependent pathways to augment PGE2 expression, which
successively raises the levels of IL-10 in macrophages via the binding to prostaglandin E2 receptor
2 (EP2) and prostaglandin E2 receptor 4 (EP4) [51]. The capacity of MSCs to repress inflammatory
macrophage stimulation has also been reported in a murine model, in which MSC treatment had a
prophylactic effect versus lipopolysaccharide (LPS)-induced septic shock through the modulation of
macrophages and neutrophils into a more anti-inflammatory phenotype [54]. MSCs in a transwell
co-culture with macrophages markedly prohibited the polarization of M1 macrophages and motivated
the polarization of M2 macrophages [55]. Comparable findings have been reported with human
peripheral blood monocytes, which have been shown to stimulate the development of M2-like
phenotype macrophages when co-cultured with MSCs [56]. Moreover, the exposure of human MSCs
to IFN-γ and TNF-α has been shown to increased levels of indoleamine 2, 3-dioxygenase (IDO), which
participates in the polarization of monocytes into IL-10-secreting M2 macrophages and indirectly
represses the proliferation of T cell [57].

MSCs also regulate macrophage chemotaxis. Thus, compared to human fibroblasts and mouse
bone marrow MSCs (BM-MSCs), hMSCs secrete a wider range of chemokines, mainly chemo attractants
for monocytes and macrophages such as chemokine C–C ligand 2 (CCL2) and chemokine C–C ligand 4
(CCL4) [58]. The interaction between IFN-γ with other pro-inflammatory cytokines including TNF-α,
IL-1α, and IL-1β stimulates MSCs in injured tissues; activated MSCs enhance the secretion of several
chemokines and mediate the immunomodulation of infiltrated macrophages, potentially reinforcing
tissue regeneration [59].

Vi and coworkers used transgenic mice to deplete macrophages to investigate macrophage
adequacy in bone development, growth, and repair [45]. They showed that bone union was ineffective
when macrophages were depleted—calluses were fibrotic, smaller and contained less bone. This result
demonstrated that macrophages are critical for fracture repair by inducing the osteogenesis of MSCs.
In addition, a previous study demonstrated that osteal macrophages (osteomacs) not only participate
in intra-membranous bone healing but are also targets for primary anabolic bone therapies [60].

Studies in vitro and in vivo have investigated the functions of these bone macrophages in
osteoblast differentiation by producing bone morphogenetic proteins (BMPs) [61] and oncostatin M [62].
In addition, it has been reported that a decrease of bone macrophages prohibits the differentiation
of MSCs into primary osteoblasts [63]. In vivo, the selective removal of osteal macrophages, but not
osteoclasts, has confirmed that the absence of osteal macrophages could be a main cause in the reduction
of bone formation, as well as a cause of defects in bone growth in young mice and osteoporosis [45].
In vivo experimental models of femoral fractures have shown the impact of depleting macrophages by
clodronate liposome treatment during the different bone healing stages [64]. No serious effects derived
from macrophages mitigation were observed on the early fracture healing stage. However, a lack
of macrophages caused delays in the genesis of hard calluses, thus severely altering endochondral
ossification. Treatment with clodronate liposomes caused the late bone unification of cartilage and
promoted periosteal bone formation. During the healing process, Schlundt and collaborators evaluated
M1 and M2 macrophage subsets in non-treated mice, and they noticed that M2 macrophages prevailed
during the ossification stage, suggesting that the boosting of the M2 phenotype in macrophages is
critical in bone healing. In addition, they reported that the induction of the M2 macrophages by
IL-4 and IL-13 markedly stimulated bone formation over 21 days of investigation. Taken together,
it is clear that balance in M1/M2 macrophage function seems compulsory for fracture healing and
successful regeneration.

Seebach and coworkers reported that the implantation of MSCs at the site of experimental bone
defects in a hydrogel induced an increase in the expression of vascular endothelial growth factor
(VEGF). They noticed that the prompt infiltration of M1 macrophages and endothelial cells ameliorated
vascularization and bone remodeling in the area of injury [58]. In accordance with previous results,
it has been reported that MSCs implanted into murine cranial defects differentiated into osteoblasts,
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evoked macrophage polarity, and stimulated repair [65]. These reports suggest that MSCs regulate the
chemotaxis and activities of macrophages. Moreover, MSC-derived factors positively engaged in bone
reconstruction through the modification of the functions of macrophages.

6. Regulatory Effects of MSCs on T Lymphocytes in Bone Fracture Repair

Certain cells of the adaptive immune response, such as CD8+ T cells, can have a detrimental
effect on bone healing if they prolong the secretion of pro-inflammatory factors [66]. On the contrary,
Tregs are known to positively impact on fracture healing due to the fact that they favor the osteoblast
differentiation from MSCs by inhibiting the secretion of pro-inflammatory cytokines via activated T
cells [67]. Through direct cell–cell contact [39] or paracrine secretion [68], MSCs play a dual role in
modulating these different subsets of T cells in bone healing. On one hand, MSCs can inhibit T cell (in
both CD4+ and CD8+ subsets) activation and proliferation, as shown by in vitro mixed lymphocyte
reaction [69,70] by inducing the G0 arrest of the cell cycle [71]. Moreover, MSCs stimulate the apoptosis
of T cells by the Fas/FasL-dependent pathway [72] and by the secretion of PD-L1 [73]. On the other
hand, MSCs can both induce the formation of CD4+CD25+ Foxp3+ Tregs [74,75] and trigger Tregs’
immunosuppressive abilities through the secretion of heme oxygenase-1 (HO-1) and IL-10 and the
upregulation of PD-1 receptors on Tregs [76].

7. MSCs Derived Exosomes in Bone Fracture Repair

Exosomes are tiny (30–120 nm) extracellular vesicles (EVs) originating from the plasma membrane
that are secreted from different cells into most human fluids. They contain a mixture of different
molecules: nucleic acids, proteins, metabolites, and lipids, thus mediating intercellular communication
in both ordinary and pathological conditions [77].

The output of exosomes from MSCs has been shown to be immense when compared to other
cell types. Additionally, many regenerative characteristics of stem cells have been shown to be
regulated through secreted exosomes [78]. Moreover, MSC-derived exosomes (MSC-DEs) ameliorate
the repair of damaged tissues and are also involved in the modification of immune responses through
differentiation, paracrine signals, and other secreted molecules such as microvesicles [79]. MSCs
express trophic factors including growth factors, cytokines and chemokines that participate in different
cell activities [80]. In fact, MSC paracrine signaling is achieved by cytokines and chemokines with
anti-apoptotic, anti-inflammatory, anti-oxidative, and pro-angiogenic characteristics [81]. Furuta and
coworkers showed that both an MSC-conditioned medium (CM) and MSC-DEs accelerated fracture
healing, not only through the induction of MSCs or progenitor cells by cytokines (CCL2 and CXCL12)
but also through the enhancement of osteogenesis and angiogenesis [82]. Indeed, these mechanisms are
arranged by microRNAs (miRNAs) in exosomes, which control tissue development and homeostasis
via fine-tuning gene expression [82]. In addition, exosomal angiogenic factors (VEGF and IL-6) enhance
bone growth and fracture healing by stimulating endothelial cells [83].

miRNA in MSC-DEs may participate in fracture healing and tissue regeneration [84]; for example,
exosomal miR-21 (anti-apoptotic miRNA) was found to be highly expressed in MSC-DEs [85]. MiR-21
promotes the osteogenic differentiation of MSCs [85], and the local injection of MSCs overexpressing
miR-21 has been shown to improve fracture healing in an experimental rat model [86]. In addition,
three other miRNAs (miR-4532, miR-125b-5p, and miR-338-3p) have been shown to be highly expressed
in MSC-DEs, suggesting that these miRNAs play a critical role in fracture healing [82].

8. Immunomodulation as a Mechanism in MSC-Based Therapies for Bone Diseases

Currently, patients considered for MSCs treatments are typically refractory to all conventional
therapies and/or suffer a low prevalence disease. Consequently, many of these clinical trials are
performed with a small number of patients, making it difficult to reach statistically significant
conclusions. There has been mounting evidence pointing towards the idea that the paracrine secretion
of MSCs mainly orchestrates the beneficial effects observed in cell therapy. In fact, after facing the
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local environment, MSCs secrete a plethora of bioactive factors that affect the biology of host cells [52].
However, the molecular mechanisms responsible for these effects remain elusive. Thus, two scenarios
(not mutually exclusive) are being considered to explain this effect: (1) The improvements of MSC
therapy could be directly induced by their secreted factors, and/or (2) these factors could be the
responsible for the activation/repression of different signaling pathways in the resident cell population
which then stimulates host tissue regeneration (Figure 2). With respect to the immunomodulatory
properties of MSCs, it should be noted that these depend on two factors: the inflammatory environment
to which MSCs are exposed and the tissue of origin of MSCs. These observations imply that before
expecting success with MSC therapies, a suitable inflammatory disease to be treated must be selected,
as should an appropriate source of MSCs [87]. Regarding bone diseases, in this review, we have
focused on bone defects someway connected to an inflammatory process which are currently treated
or suitable to be treated with MSC therapies.
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Figure 2. hMSCs should face an inflammatory microenvironment to exert their benefits in cell therapy
purposes. The paracrine signaling of hMSCs has been postulated to be an essential mechanism in
this healing process. The secretion of factors by MSCs (paracrine signaling) seems to be essential in
this process. However, it is still unknown (dash lines) whether the secreted factors directly induce
the healing or if they induce different signaling pathways in the host cells, thus stimulating then
tissue regeneration.

8.1. Nonunion Bone Fractures

As mentioned previously, fracture healing usually occurs during the first six-to-eight weeks after
an injury and encompasses three stages: inflammation, repair and remodeling [7]. Nonunion fractures
are complications that imply a permanent failure of healing six months after a bone fracture occurs [88].
Though the physiopathology of nonunions remains unclear, there are risk factors associated with this
condition, such as diabetes and age, both of which are considered to be chronic inflammatory stages [7].
In an effort to understand the molecular and cellular mechanisms leading to nonunions, some research
has focused on the in vitro study of the MSCs isolated from affected patients. These studies have
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reported that the osteogenic potential of MSCs from nonunion patients is unaffected [89,90]. However,
a decrease in proliferation has been observed in the case of bone BM-MSCs from these patients [89].
Remarkably, changes in the serum levels of chemokines and growth factors have been described in
nonunion patients, e.g., a significant increase in the expression of IL6, a known pro-inflammatory
cytokine, which stimulates the migration of MSCs to the site of bone injuries [48]. Several studies have
discussed the efficiency of BM-MSCs in augmenting nonunion. Connolly and coworkers percutaneously
injected BM-MSCs into the defect site in 20 patients with tibial nonunion; interestingly, 18 of them
accomplished union in 6–10 months [91]. Similar studies have shown comparable results [92,93].
In addition, Ismael and collaborators compared patients infused with ex vivo expanded autologous
BM-MSCs (14–18 × 106) with those receiving autograft iliac crest transplantation [94]. Though all
the patients showed effective unification within a year, the patients treated with BM-MSCs presented
faster clinical improvements. Thus, BM-MSCs provide an efficient approach for treating nonunion.
As mentioned above, the initial stages of bone healing include an acute inflammatory response in
which mainly macrophages release cytokines, chemokines and growth factors to recruit additional
inflammatory cells and to induce MSC migration to the site of injury. However, if the inflammatory
response becomes chronic, the healing process is hampered [95]. Considering that a risk factor of
suffering nonunions is diabetes or age, both chronic inflammatory conditions, and the increase levels of
IL-6 detected in serum from nonunion patients, it is likely that an increased inflammatory process could
be partially governing the pathophysiology of nonunions. Encouraged by the in vitro finding that
osteogenic capacity of MSCs in nonunions is not affected, a recent prospective study treated nonunion
patients with autologous expanded BM-MSCs [96]. Fracture union was observed in 21 patients from
a total of 35 receiving cell therapy, and a faster in vitro MSC doubling time predicted the positive
outcome of nonunions. Though the authors did not study the pro-inflammatory cytokine levels before
and after the cell therapy, a modulation of macrophage polarization towards an anti-inflammatory
phenotype could be a possible mechanism of MSC therapy in nonunions. Future studies addressing
this observation should clarify the role of an increased inflammatory response in nonunion patients
and the possibility of counteracting it with MSC therapy.

8.2. Osteoporosis

Osteoporosis is a common age-related disorder, resulting from a switch to bone resorption at
the expenses of bone formation, that affects bone remodeling. This hampered bone remodeling
leads to low bone mass and the micro-architectural deterioration of bone, increasing the risk of
fractures. Patients affected by chronic systemic inflammatory diseases such as rheumatoid arthritis,
inflammatory bowel disease or systemic lupus erythematosus also have an increased risk of secondary
osteoporosis [97]. Thus, MSC therapy approaches for these patients suffering chronic inflammatory
diseases and osteoporosis could provide a potential new therapeutic strategy, although so far there
have been no clinical trials of MSC transplantation in osteoporosis. Preclinical studies in animal
models of osteoporosis have shown that MSC administration may improve bone mineral density (the
most reliable predictor of fracture risk), thus suggesting a possible beneficial effect of cell therapy [98].
The immunomodulatory effects of MSCs could be responsible for this positive outcome, but these
studies did not focus on the mechanisms governing MSC effects. While these results are encouraging,
further data from basic research studies as well as from preclinical studies are needed to understand the
mechanisms underlying MSC therapy for osteoporosis before proceeding with human clinical studies.

8.3. Osteogenesis Imperfecta

Osteogenesis imperfecta (OI) is a rare skeletal dysplasia that affects 1 in 20,000 births. Clinically
and genetically highly heterogeneous, it is characterized by a decreased bone mass and altered
microarchitecture that results in an increased bone fragility [99]. OI is usually caused by autosomal
dominant mutations in the genes encoding procollagen alpha chains (COL1A1/COL1A2), which may
cause defects in collagen quantity (a milder form of OI) or in collagen quality due to the abnormal
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assembly of the protein (moderate-to-severe-to-lethal forms of OI) [100]. Other severe forms of
OI are due to recessive mutations in non-collagenous genes that affect collagen post-translational
modifications, bone matrix mineralization, and osteoblast differentiation and function [101]. There are
no curative interventions for OI patients. MSCs have been used as cell therapy for patients affected
by OI, with the expectation of replacing target tissue (bone) with infused MSCs. In 2002, the first
transplantation of allogenic adult MSCs into six OI pediatric patients was performed [102]. Despite the
fact that MSC engraftment was quite low (< 1% in osteoblasts), a short-term improvement of the linear
growth velocity of patients was appreciated. Later, this research group demonstrated chondrocyte
proliferation in mice after infusing secretome from MSCs, thus suggesting that the paracrine secretion
of MSCs could be responsible for the clinical improvement observed in patients [103]. The prenatal
transplantation of human fetal MSCs also has been shown to be safe and effective in two fetuses affected
by OI. The rationale of infusing MSCs intra-utero was that the cell administration before birth should
more effectively alleviate OI symptoms [104]. However, these studies have demonstrated that a single
transplant of MSCs appears to be insufficient; therefore, subsequent MSCs infusions seem to be needed
to maintain the observed clinical benefits. Interestingly, recent works have shown that inflammation
could be present in OI children, a fact unknown until now. Thus, a cohort of children affected by
moderate–severe OI was shown to have increased platelet counts, although no other pro-inflammatory
signs were detected [105]. Interestingly, the fractures were associated with a higher platelet counts
rather than OI illness per se. In line with this observation, increased levels of the C-reactive protein
(C-RP) and erythrocyte sedimentation rate (ESR) have been recently reported in OI type V patients
suffering the typical hyperplastic callus formation, a distinctive clinical manifestation of this type of
OI [106]. Moreover, a whole transcriptome analysis in mice models of OI type V has also suggested the
potential activation of inflammatory pathways in these mice [107]. All in all, these findings point to an
underlying role of inflammation in the pathophysiology of OI and provide an important support of
the rationale of using MSC therapy for OI treatment. Thus, the observed benefits of MSC therapy in
OI could be in part due to the immunomodulatory capacities of the infused MSCs once they face the
inflammatory environment to which they are exposed in OI.

8.4. Osteoarthritis

Though not exclusively restricted to bone tissue, osteoarthritis (OA), a complex joint disease, is
characterized first by a loss of cartilage which then, due to abnormal joint loading, leads to subchondral
bone abnormalities driven by excessive bone remodeling. Macrophages are elevated in OA joints,
contributing to synovitis and fibrosis, both hallmarks of OA [108]. As mentioned above, the ability
of MSCs to polarize macrophages into inflammation-resolving subtypes [52] makes OA a potential
candidate to be treated with MSC therapy. Clinical trials using the intra-articular injection of either
allogeneic or autologous bone marrow-derived MSCs in knee OA have reported statistically significant
clinical improvements in terms of pain and reduced synovial inflammation [109,110]. Notably,
a substantial dose-response effect has been detected in the majority of these works, and higher doses
(40–50 × 106 cells) have reported better outcomes. In the case of adipose-derived MSCs, only the
highest doses of cells (100 × 106 MSCs) has shown efficacy, reflecting MSC tissue-specific differences
in dose efficacy [111]. However, in 2016, a study using pooled, allogeneic MSCs showed improved
outcomes in the pain measurement scores in patients receiving a low dose of cells (25 × 106 MSCs),
possibly due to the fact that following cells injection, hyaluronic acid was administered as a supporting
matrix [112]. Regarding the in vivo mechanism of action of MSC cell therapy in OA, a recent study
showed a decrease in pro-inflammatory markers in the synovial fluid from patients (such as the levels of
IL-12p40 and the CD14+CD16+ monocyte/macrophage subsets) three months after BM-MSC injection,
supporting an anti-inflammatory mechanism of action of MSCs [110]. Strikingly, Chahal and coworkers
performed a molecular fingerprinting of the licensed MSCs coming from the 12 patients enrolled
in their study, and they showed that an increased expression of anti-inflammatory and anti-fibrotic
molecules in the MSCs was predicted to produce better clinical outcomes in patients. The relevance of
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this study is twofold: First, an immunomodulatory mechanism of MSCs is suggested to be driving
the beneficial effects of MSC-based therapy, and second, the gene expression profiling of donor MSCs
opens the door to prospective MSC molecular screenings to select the cells with the best potential to
improve the effects of MSC-based cell therapies.

9. Conclusions

Compelling evidence supports an important role for MSCs in the bone healing process, due mainly
to their immunomodulatory abilities through the secretion of paracrine factors. Clinical trials have
validated their safety and effectiveness as well as their potential use with cell therapy purposes for
bone diseases with an underlying inflammatory condition. However, despite the great progress made
since the discovery and characterization of MSCs, it is necessary to evaluate the osteogenic potential
of MSCs for bone recovery and the regulation of inflammation through the selection of those donors
and/or subpopulations of high osteogenic capacity. Additional work will clarify the mechanisms
triggered by the immunomodulation of MSCs to enhance bone repair.
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CCL2 Chemokine ligand-2
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AUF1 ARE-binding protein ARE/poly(U)-binding/degradation factor 1
NFκB Nuclear Factor Kappa B
TNFR1 Tumor necrosis factor-alpha receptor 1
RANKL Receptor activator of nuclear factor kappa-B ligand
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COX-2 Cyclooxygenase-2
PGE2 Prostaglandin E2
IL-10 Interleukin 10
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IDO Indoleamine 2,3-dioxygenase
BM-MSCs Bone marrow-derived mesenchymal stem cells
VEGF Vascular endothelial growth factor
HO-1 Heme oxygenase-1
EVs Extracellular vesicles
MSC-Des Mesenchymal stem cell-derived exosomes
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LD linear dichroism
miRNA Micro RNA
OI Osteogenesis imperfecta
C-RP C-reactive protein
ESR Erytrocyte sedimentation rate
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