Clone	IC50
	(µg/mL)
C-8	6.45
10	9.61
15	2.78
20	3.22
34	4.43
119	9.61
42	4.67
46	4.67
47	3.03
48	2.40
m336	3.71

Table S1. CPE inhibition by scFv clones

Table S2. Degenerate codons used in the randomized libraries

	The first library																					
]	HCD	R1						HCDR2											
Kabat numb er	H2 6	Н 27	н 28	H29	н 30	н 31	Н 32	Н 33		H51	H52	H5 2A	H53	H54	н 55	H5 6	Н 57					
Amin o acid	G	G	Т	F	s	s	Y	Α		Ι	Ι	Р	F	F	G	Т	Α					
Degen erate codon				KW K			K A K			RWK	RWK		KW K	KW K								
Amin o acids encod ed by the degen erate codon				D,E, F,LV ,Y			D, E, Y			I,M,N, K,V,D ,E	I,M,N, K,V,D ,E		F,L,Y ,V,D, E	F,L,Y ,V,D, E								

I he second library

		HCDR2														
Kabat number	H26	H27	H28	H2 9	H30	H31	H3 2	H33	H5 1	H5 2	H52 A	H5 3	H5 4	H55	H56	H57
Amino acid	G	G	Т	E	S	S	E	Α	I	Ι	Р	F	F	G	Т	Α
Degener ate codon	GR K	GR K	RMK		RRK	RRK		GM K						GR K	RMK	GM K
Amino acids encoded by the degener ate codon	G,D ,E	G,D ,E	T,N,K,A, D,E		S,R,K,N,G, D,E	S,R,K,N,G, D,E		A,D ,E						G,D ,E	T,N,K,A, D,E	A,D ,E

									Т	'ne	e thi	ird librai	ry										
				LCDF	LCDR3																		
Kabat numb er	L 2 7	L2 7A	L27B	L27C	L2 7D	L2 7E	L 2 8	L 2 9	L3 0	L 3 1	L3 2	L50	L 5 1	L 5 2	L89	L 9 0	L 9 1	L92	L 9 3	L 9 4	L 9 5	L96	L 9 7
Amin o acid	Q	s	L	L	н	s	N	G	Y	N	Y	L	G	s	М	Q	A	L	Q	Т	Р	L	Т
Dege nerate codon			SWK	SWK					K A K		K A K	SWK			RWK			SWK				SWK	
Amin o acids encod ed by the degen erate codon			L,F,H,Q ,V,D,E	L,F,H,Q ,V,D,E					Y, D, E		Υ, D, E	L,F,H,Q ,V,D,E			M,I,K,N ,V,D,E			L,F,H,Q ,V,D,E				L,F,H,Q ,V,D,E	

Figure S1. Reactivity of scFv clones before and after nebulization. The scFv-hFc fusion protein was nebulized at a concentration of 100 µg/mL, and aerosol was collected. After removing aggregated material by centrifugation, the supernatant and pre-nebulized scFv-hFc fusion proteins were subjected to ELISA using recombinant S glycoprotein-coated microtiter plates. The amount of bound scFv-hFc fusion protein was determined using HRP-conjugated anti-human IgG antibody and ABTS.

Figure S2. Flow cytometry analysis of the inhibition of recombinant S glycoprotein binding to hDPP4-expressing cells. C-8 (A), 48 (B), m336 (C), or negative control (D) scFv-hFc were mixed and incubated with recombinant S glycoprotein fused with a polyhistidine tag at the C-terminus. After incubation with Huh-7 (hDPP4+) cells, the relative amount of bound recombinant S glycoprotein was measured using FITC-conjugated anti-HIS antibody. Per each sample, 10,000 cells were monitored, and the data were analyzed using FlowJo software.

Figure S3. Biophysical characterization of C-8, C-8-2, and C-8-2-4B clones. Following nebulization at a concentration of 100 µg/mL or 300 µg/mL for scFv-hFc or IgG₁, respectively, aerosol was collected and subjected to ELISA (A-C) and flow cytometry (D). C-8-2 scFv-hFc (A), C-8-2-4B scFv-hFc (B), and C-8-2-4B IgG1 (C) were serially diluted and incubated with recombinant S glycoprotein-coated microtiter plates. (D) C-8 IgG1 and C-8-2-4B IgG1 were incubated with recombinant S glycoprotein fused with a polyhistidine tag at the C-terminus, and the complex was allowed to react with hDPP4-expressing cells. The amount of bound recombinant S glycoprotein was measured using FITC-conjugated anti-HIS antibody. representative 10,000 cells each sample. Data are of for

Figure S4. Size-exclusion chromatography of MERS-CoV IgG¹ **antibody before and after nebulization.** Pre-nebulized (dotted lines) and post-nebulized (solid lines) samples were analyzed using Waters e2695 HPLC system. Standard (A), C-8 IgG¹ (B) m336 IgG¹ (C), and C-8-2-4B-10D IgG¹ (D) were injected at a flow rate of 1 mL/min. The mobile phase was PBS (pH 7.4), and UV detection was performed at 280 nm. The molecular weights corresponding to the antibody peaks were calculated with Empower software.

Primer set 1	Forward: 5'- AACTACGCACAGAAGTTCCAGGGCAG-3'
	Reverse: 5'-GGCCGGCCTGAGGAGACGGTGACCGTG-3'
Primer set 2	Forward: 5'- GTGGCTCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
	Reverse: 5'-GGCCGGCCTGGGCCTGAGGAGGCGGTGACCGTG-3'
Primer set 3	Forward: 5'-GGCCCAGGCGGGCCGAGCTCGTGATGACTCAGTCTCCA-3'
	Reverse: 5'-
	CCCACCACCGCCCGAGCCACCGCCACCAGAGGAGGAAGATCTAGAGGAACCACCTTTGATTTCCACCTTGGTCCCTC-

Table S3. Primers used for the generation of the randomized libraries