Supplementary Materials

Figure S1. Multiple sequence alignment analysis of SIDnaJ20. AtDjA3 (At3g44110) and PeJ3 (XM_002316443.2) are known as type I J-proteins. SIDnaJ20 lacks a glycine- and phenylalaninerich region $(\mathrm{G} / \mathrm{F})$ domain, zinc finger, and C-terminal domain. The protein sequence of PeJ3 and AtDjA3 contains a J-domain (gold box), a proximal G/F domain (blue box), and a distal zinc finger (CxxCxGxG) domain (red box), followed by less conserved C-terminal sequences (green box).

AtDja3		3
PeJ3MFGRAP.RRSCNTKYYEILGVSKSASgDDLEAA	32
Sldnaj20	MCCNSNGVIPTSEPRLPLFSTHPPTISPNPRLFFLNNPSNHGVIRTKFVSYKARSNLNDVVSYTDTGKSFYDLLGIPENGE . .ILELEGA	88
	J-domain G/F-domain	
AtDjA3		19
PeJ3	YRKAAILNHPDKGGDPERFRELACAYEVLSDEDRRDIYDQYCELALKEGMGGGGGGGAHDPFDIEQSFFGGGNPEGGGGSSEGRRQRRGE	22
Sldnaj20		169
	zinc finger (CxxCxGxG) domain	
AtDja3		209
PeJ3		212
SlDnaJ20		196
	conserved C-terminal sequences	
AtDja3		299
PeJ3	CKGERNVQEKKVLEVVVERGMQNACRITFPGEADEAPDTVTGDIVFVLCQRKEHPKFKRRGDDLFVEHTLSLAEALCGFCEILTHLDGRQL	302
SlDnaJ20		196
AtDja3	LIKSNPGEVVKPDSYKA ISDEGMEIYCRRFMKGKLYIHFTVEFFDSLSPDCTKALEAVLPKPSTÄ®ISDMEIDECEETTLHDVNIEDEMR	389
PeJ3	LIKSQPGEVVKPLQFKAINDEGMPMYCRPFMRGKLYIHFTVDFEDSLSLDCXCKALETVLPPRTSAELTDMEIDECEETTLHDVNIEEEMR	392
SlDnaj20		196
AtDjA3	RKACACR. EAYILDDEDLDHFGGACRVCCACQ	420
PeJ3		422
SlDnaJ20		19

Table S1. Prediction of subcellular localization of SIDnaJ20 using software program TargetP
1.1 (http://www.cbs.dtu.dk/services /TargetP/). Sequence is the amino-acid sequence of SIDnaJ20. Length is the length of the submitted sequence. Numbers given under the cTP, $\mathrm{mTP}, \mathrm{SP}$, and other categories represent the probabilities of protein localization in different subcellular regions (cTP, chloroplast transit peptide; mTP, mitochondrial targeting peptide; SP, secretory pathway signal peptide).

Sequence	Length	cTP	mTP	SP	other
SIDnaJ20	196	0.808	0.110	0.048	0.184

Table S2. Prediction of subcellular localization of SIDnaJ20 using software program ChloroP 1.1 (http://www.cbs.dtu.dk/services /ChloroP/). Sequence is the amino-acid sequence of SlDnaJ20. Length is the length of the submitted sequence. Score is the output score for the probability of protein localization in the chloroplast. cTP predicts whether a sequence is a cTP-containing sequence, wherein " Y " signifies that the sequence is predicted to contain a cTP. cTP-length is the predicted length of the presequence. cTP, chloroplast transit peptide.

Sequence	Length	Score	cTP	cTP-length
SIDnaJ20	196	0.531	Y	50

Table S3. The primers used for the qPCR reactions.

Gene name	Sequence (5'-3')	
EF1-1 α	Forward,	GGAACTTGAGAAGGAGCCTAAG
	Reverse,	CAACACCAACAGCAACAGTCT
SlDnaJ20	Forward,	AGATCGGGTTGAAGAGTAT
	Reverse,	ATAGCTGAGACTGCCAACGGT
SlCuZnSOD	Forward,	TCTTCACCACAACCAGCACT
	Reverse,	CAGTAAGGGGTTTAGGGGTAGT
SIFeSOD	Forward,	GGGAAGTATCACAGGGCGTATG
	Reverse,	GGCTCTCCTCCTCCGTTGG
SIAPXI	Forward,	TGCTGGTACCTACGATGTGTG
	Reverse,	CTGGTGGCTCTGGCTTGTC
SlAPX2	Forward,	GGCTGGTGTTGTTGCTGTTG
	Reverse,	TCAGGCAAGCGACCTTCAAC
SltAPX	Forward,	GAATTCATGACTTCCCTCACAGGC
	Reverse,	AATGCTGATATAAAGCGCAC
Hsfal	Forward,	AGACAACAGCAGCAATCCACT
	Reverse,	ATGTCCTGCTTAATCCTTCGT
Hsfa 2	Forward,	AATGTTGGTCAGAGTATGAAT
	Reverse,	ATGGCAATGATCTGATTCCT
$H s f B 1$	Forward,	ACTGACGATGTGATATCTT
	Reverse,	AGTTCTCATTGGCGAATTCCCAT

