Supplementary materials content:

1. Cloning strategy

2. Supplementary figure 1 - Generation of SLC35A5 gene knock-out cells with details of KO confirmation

3. Supplementary figure 2 - Analysis of N- and O-glycans synthesized by wild type and SLC35A5deficient HepG2 cells using lectins

4. Supplementary figure 3 - FACS analysis of the surface glycoconjugates of HepG2 wild type and SLC35A5-deficient cells

5. Supplementary figure 4 - N-glycan profiles of wild type and SLC35A5-deficient HepG2 cells

6. Supplementary figure 5 - Overexpression of SLC35A5 protein in MDCK-RCAr and CHO-Lec8 cells

7. Supplementary figure 6 - SLC35A5 amino-acid sequence

8. Supplementary table 1 - List of plasmids used in this study

9. Supplementary table 2 - List of lectins used in this study

10. Supplementary table 3 - List of antibodies used in this study

11. Supplementary table 4 - *In vivo* FLIM-FRET analysis of interactions between SLC35A5 protein and other members of SLC35A protein subfamily

1

CLONING STRATEGY

A. Cloning of human SLC35A5 to pSelect and pVitro expressing vectors

The ORF of SLC35A5 was cloned into pSelect-zeo and pVitro-neo plasmids (Invivogen) (in the case of pVitro MCS #1 was used), using BamHI and NheI restrictions sites. The forward primer contained additional Eco3I restriction site to avoid digestion of the SLC35A5 product by BamHI endonuclease. In the reverse primer, the sequence coding HA-tag or c-myc-tag was introduced.

Forward primer: HsA5Eco3_BamH_SE-F

cagt**ggtctcggatcc**ATGGAAAAACAGTGCTGTAG

Eco3I site is marked in yellow, BamHI in green, anealing sequence is underlined.

Reverse primer: HsA5Nhe_HA_R

ctag<mark>gctagcTTA</mark>TGCGTAGTCTGGTACGTCGTATGGGTAGAAAGTATCTTCATCTGACTCATC

NheI site is marked in yellow, STOP codon in blue, anealing sequence is underlined, HA-tag sequence is marked in grey.

Reverse primer: HsA5Nhe_HA_R

ctag*gctagc*TTACAGATCTTCTTCAGAAATAAGTTTTTGTTCTGC<u>GAAAGTATCTTCATCTGACTCATC</u> NheI site is marked in yellow, STOP codon in blue, anealing sequence is underlined, HA-tag sequence is marked in grey.

CAGATCTTCTTCAGAAATAAGTTTTTGTTCTGC

B. Cloning of human SLC35A5 to GFP vector

The same strategy like in [4] was used to insert SLC35A5 ORF into pTagGFP2-C vector (Evrogen)

C. Cloning of Mgat1 with c-myc tag to pSelect plasmid

The strategy was identical to those described in [4], with HA reverse sequence TGCGTAGTCTGGTACGTCGTATGGGTA (in the reverse primer used to amplify the Mgat-tag insert) replaced by c-myc reverse sequence CAGATCTTCTTCAGAAATAAGTTTTTGTTCTGC.

The open reading frame (ORF) of SLC35A5. Sequences used to design guide RNAs for knock-out (CRISPR-Cas) experiments (Santa Cruz Biotechnology) are marked in yellow. Control sequences for knock-out checking used in RT-PCR are marked in green.

<mark>ATGGAAAAACAGTGCTGTAGTC</mark>ATCCTGTAATATGCTCCTTGTCAACAATGTATACATTCCTGCTAG<mark>GTGCCATA</mark> TTCATTGCTTTAAGCTCAAGTCGCATCTTACTAGTGAAGTATTCTGCCAATGAAGAAAACAAGTATGATTATCTT CCAACTACTGTGAATGTGTGCTCAGAACTGGTGAAGCTAGTTTTCT<mark>GTGTGCTTGTGTCATTCTGTG</mark>TTATAAAG GCCTTTCTTTATTTCCTGGATAACTTGATTGTCTTCTATGTCCTGTCCTATCTTCAACCAGCCATGGCTGTTATC TTCTCAAATTTTAGCATTATAACAACAGCTCTTCTATTCAGGATAGTGCTGAAGAGGCGTCTAAACTGGATCCAG TGGGCTTCCCTCCTGACTTTATTTTTGTCTATTGTGGCCTTGACTGCCGGGACTAAAACTTTACAGCACAACTTG AGAAAAGACAATTGTACAGCAAAGGAATGGACTTTTCCTGAAGCTAAATGGAACACCACAGCCAGAGTTTTCAGT CACATCCGTCTTGGCATGGGCCATGTTCTTATTATAGTCCAGTGTTTTATTTCTTCAATGGCTAATATCTATAAT GAAAAGATACTGAAGGAAGGGAACCAGCTCACTGAAAGCATCTTCATACAGAACAGCAAACTCTATTTCTTTGGC ATTCTGTTTAATGGGCTGACTCTGGGCCTTCAGAGGAGTAACCGTGATCAGATTAAGAACTGTGGATTTTTTTAT GGCCACAGTGCATTTTCAGTAGCCCTTATTTTTGTAACTGCATTCCAGGGCCTTTCAGTGGCTTTCATTCTGAAG AGCAAGCCTCAAGTTCCGGAATACGCACCTAGGCAAGAAAGGATCCGAGATCTAAGTGGCAATCTTTGGGAGCGT TCCAGTGGGGATGGAGAAGAACTAGAAAGACTTACCAAAACCCAAGAGTGATGAGTCAGATGAAGATACTTTCTAA

Human SLC35A5 sequence containing HA-tag at C-terminus (yellow)

MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYLPTTVNVCSELVKLVFCVLVSFCVIK KDHQSRNLKYASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIVLKRRLNWIQ WASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLLFRSECPRKDNCTAKEWTFPEAKWNTTARVFS HIRLGMGHVLIIVQCFISSMANIYNEKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFY GHSAFSVALIFVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLVFDFRPSLEFFLEAPSVLLSIFIYNA SKPQVPEYAPRQERIRDLSGNLWERSSGDGEELERLTKPKSDESDEDTF<mark>YPYDVPDYA</mark>

Human SLC35A5 sequence containing c-myc-tag at C-terminus (yellow)

MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYLPTTVNVCSELVKLVFCVLVSFCVIK KDHQSRNLKYASWKEFSDFMKWSIPAFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIVLKRRLNWIQ WASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLLFRSECPRKDNCTAKEWTFPEAKWNTTARVFS HIRLGMGHVLIIVQCFISSMANIYNEKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFY GHSAFSVALIFVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLVFDFRPSLEFFLEAPSVLLSIFIYNA SKPQVPEYAPRQERIRDLSGNLWERSSGDGEELERLTKPKSDESDEDTF<mark>AEQKLISEEDL</mark> **SUPPLEMENTARY FIGURE 1 Generation of** *SLC35A5* **gene knock-out cells.** Genomic DNA and RNA were isolated from HepG2 wild type cells and several stable transfectants and either PCR (DNA) or RT-PCR (mRNA) reaction was performed using *SLC35A5* gene-specific primers. Products were separated in 2.5 % (w/v) agarose gel and visualized with ethidium bromide.

SEQUENCING OF FRAGMENTS AMPLIFIED ON GENOMIC DNA ISOLATED FROM HEPG2 WILD TYPE AND HEPG2 SLC35A5-KO (CLONE #2) CELLS

	1						70
wt1	ATGGAAAAAC	AGTGCTGTAG	TCATCCTGTA	ATATGCTCCT	TGTCAACAAT	GTATACATTC	CTGCTAGGTG
KOA5	ATGGAAAAAC	AGTGCTGTAG	TCATCCTGTA	ATATGCTCCT	TGTCAACAAT	GTATACATTC	CTGCT
	71						140
wt1	CCATATTCAT	TGCTTTAAGC	TCAAGTCGCA	TCTTACTAGT	GAAGTATTCT	GCCAATGAAG	GTAAGTTAAG
KOA5			- <mark>CAAGTCGCA</mark>	TCTTACTAGT	GAAGTATTCT	GCCAATGAAG	GTAAGTTAAG
	141						210
wt1	ACTTGGTATA	TGCATGGAGC	ACTTCCATCT	AATCACACAT	CTCTCTCTTG	CCTTTGGTTC	TGTTATATAT
KOA5	ACTTGGTATA	TGCATGGAGC	ACTTCCATCT	AATCACACAT	CTCTCTCTTG	CCTTTGGTTC	TGTTATATAT
	211						280
wt1	AACATGGAAA	TAATAATGCC	TTTTGCTTCA	TGTGAGTGAT	AAAGCATATT	TAAATTTGAT	TATTTAACCT
KOA5	AACATGGAAA	TAATAATGCC	TTTTGCTTCA	TGTGAGTGAT	AAAGCATATT	TAAATTTGAT	TATTTAACCT
	281						
wt1	TGCATTCCTC	AACAAGA					
KOA5	TGCATTCCTC	AACAAGA					
11 1		7/					

Exon #1 marked in red/yellow, intron #1 printed in blue, 26-bp deletion (-----) is shown in KO-genomic DNA

Potential translation of Slc35A5-KO DNA: MEKQCCSHPVICSLSTMYTFLLKSHLTSEVFCQ- (STOP codon at pos. 34)

4

DNA fragments am	plified on gei	nomic DNA a	and cloned into	pJet1.2 sec	uencing vector
U	1 0			1	0

Genomic DNA cloned into	Total pJet1.2	WT clones	Clones with	% of wt clones
pJet1.2 sequencing vector	sequenced clones		26-bp deletion	
HepG2 WT cells	10	10	0	100
Clone #1	10	2	8	25
Clone #2	10	0	10	0
Clone #3	no PCR product	NA	NA	NA
Clone #4	no PCR product	NA	NA	NA

SUPPLEMENTARY FIGURE 2 Analysis of *N*- and *O*-glycans synthesized by wild type and SLC35A5-deficient HepG2 cells using lectins. *N*- and *O*-glycans were detected after SDS-PAGE separation of the cell lysates using specific lectins. Lectins specificity is listed in supplementary table 2S.

SUPPLEMENTARY FIGURE 3 FACS analysis of the surface glycoconjugates of HepG2 wild type and SLC35A5-deficient cells. Seven different lectins were used to analyze HepG2 wild-type (black) and *SLC35A5* knock-out (grey) cells. The data are presented as a mean fluorescence intensity of two independent biological replicates \pm SEM. Lectins specificity is listed in supplementary table 2S.

SUPPLEMENTARY FIGURE 4 *N*-glycan profiles of wild type and SLC35A5-deficient HepG2 cells. *N*-glycans were enzymatically released from glycoproteins produced by wild type and SLC35A5-deficient HepG2 cells, fluorescently labeled with 2-AB, purified and separated on the GlycoSep N column using HPLC. Representative data from three independent separations with a similar tendency for wild type cells and all clones are shown.

SUPPLEMENTARY FIGURE 5 Overexpression of SLC35A5 protein in MDCK-RCA^r and

CHO-Lec8 cells. Cell lysates were subjected to SDS-PAGE and Western blotting with anti-HA-HRP antibody.

CHO-Lec8

SUPPLEMENTARY FIGURE 6 SLC35A5 amino acid sequence. DXEE, DXXD and DXD motifs

are indicated with black boxes.

1	MEKQCCSHPVICSLSTMYTFLLGAIFIALSSSRILLVKYSANEENKYDYL	50
51	PTTVNVCSELVKLVFCVLVSFCVIKKDHQSRNLKYASWKEFSDFMKWSIP	100
101	AFLYFLDNLIVFYVLSYLQPAMAVIFSNFSIITTALLFRIVLKRRLNWIQ	150
151	WASLLTLFLSIVALTAGTKTLQHNLAGRGFHHDAFFSPSNSCLLFRSECP	200
201	RKDNCTAKEWTFPEAKWNTTARVFSHIRLGMGHVLIIVQCFISSMANIYN	250
251	EKILKEGNQLTESIFIQNSKLYFFGILFNGLTLGLQRSNRDQIKNCGFFY	300
301	GHSAFSVALIFVTAFQGLSVAFILKFLDNMFHVLMAQVTTVIITTVSVLV	350
351	FDFRPSLEFFLEAPSVLLSIFIYNASKPQVPEYAPRQERIRDLSGNLWER	400
401	SSG <mark>DGEE</mark> LERLTKPKS <mark>DESDED</mark> TF	424

Plasmid name	Original vector	Insert	Reference
pTag-GFP2-C-A5	pTag-GFP2-C	SLC35A5	This study
pTag-RFP-C-A1	pTag-RFP-C	SLC35A1	[4]
pTag-RFP-C-A2-ER	pTag-RFP-C	SLC35A2-ER	[40]
pTag-RFP-C-A2-Golgi	pTag-RFP-C	SLC35A2-Golgi	[20]
pSelect-RFP-A3	pSelect	RFP- SLC35A3	[40]
pTag-RFP-C-A4	pTag-RFP-C	SLC35A4	[4]
pTag-RFP-C-A5	pTag-RFP-C	SLC35A5	[4]
pVitro-A5-HA	pVitro	SLC35A5-HA	This study
pSelect-A5-HA	pSelect	SLC35A5-HA	This study
pSelect-Mgat1-c-myc	pSelect	Mgat1-c-myc	This study
pSelect-A5-c-myc	pSelect	SLC35A5-c-myc	This study
pSelect-Mgat1-HA	pSelect	Mgat1-HA	[4]

SUPPLEMENTARY TABLE 1 List of plasmids used in this study.

Lectin	Full name	Specificity	Dilution
AAL	Aleuria aurantia lectin	fucose (α -1,6) <i>N</i> -acetylgalactosamine or fucose (α -1,3) <i>N</i> -acetyllactosamine	1:1000
ConA	Canavalia ensiformis agglutinin	α-linked mannose, glucose	1:1000
DSL	Datura stramonium lectin	N-acetylglucosamine	1:1000
ECL	Erythrina cristagalli lectin	galactose, N-acetylgalactosamine, lactose	1:1000
EEL	Euonymus europaeus lectin	galactosyl (α -1,3) galactose	1:250
GNL	Galanthus nivalis lectin	$(\alpha-1,3)$ mannose	1:250
GSL I	Griffonia simplicifolia lectin I	α -N-acetylgalactosamine, α -galactose	1:500
GSL II	Griffonia simplicifolia lectin II	α - or β -linked <i>N</i> -acetylglucosamine	1:250
HHL	Hippeastrum hybrid lectin	α-linked mannose	1:250
Jacalin	-	galactose in O-glycans	1:1000
LCA	Lens culinaris agglutinin	α-linked mannose, glucose	1:1000
L-PHA	Phaseolus vulgaris leucoagglutinin	galactose in complex N-glycans	1:250
LTL	Lotus tetragonolobus lectin	α-linked fucose	1:500
MAL I	Maackia amurensis lectin I	galactose (β -1,4) <i>N</i> -acetylgalactosamine	1:500
MAL II	Maackia amurensis lectin II	$(\alpha-2,3)$ sialic acid	1:250
NPL	Narcissus pseudonarcissus lectin	α-linked mannose	1:500
PNA	Arachis hypogaea agglutinin	galactosyl (β -1,3) <i>N</i> -acetylgalactosamine	1:500
PTL I	Psophocarpus tetragonolobus lectin I	α -linked N-acetylgalactosamine	1:500
RCA I	Ricinus communis agglutinin I	galactose, lactose	1:1000
SNA	Sambucus nigra lectin	$(\alpha-2,6)$ sialic acid	1:1000
sWGA	Wheat germ agglutinin	N-acetylglucosamine and sialic acid	1:500
UEA I	Ulex europaeus agglutinin	$(\alpha-1,2)$ fucose	1:500
VVL	Vicia villosa lectin	α - or β -linked terminal <i>N</i> -acetylgalactosamine	1:250
WGA	succinylated Wheat germ agglutinin	N-acetylglucosamine	1:1000

SUPPLEMENTARY TABLE 2 List of lectins used in this study.

Antibody	Clonality	Dilution IF	Dilution WB	Host	Company
anti-HA	Polyclonal	1:500	1:5000	Rabbit	Abcam
anti-c-myc	Polyclonal	1:1000	-	Chicken	Abcam
anti-calnexin	Polyclonal	1:100	1:2500	Rabbit	Abcam
anti-syntaxin 16	Monoclonal	1:500	1:2500	Rabbit	Abcam
anti-β-tubulin	Monoclonal	1:200	-	Mouse	Sigma Aldrich
anti-HA-Alexa Fluor 647	Monoclonal	1:100	-	Mouse	BioLegend
anti-mouse Alexa Fluor 633	Polyclonal	1:200	-	Goat	Molecular Probes
anti-rabbit Alexa Fluor 555	Polyclonal	1:200	-	Goat	Molecular Probes
anti-chicken Alexa Fluor 488	Polyclonal	1:200	-	Goat	Molecular Probes
anti-SLC35A2	Polyclonal	-	1:1000	Rabbit	Abcam
anti-GM130	Monoclonal	-	1:1000	Mouse	BD Biosciences
anti-Mgat1	Polyclonal	-	1:1000	Rabbit	Abcam
anti-keratan sulfate (MAB2022)	Monoclonal	-	1:5000	Mouse	Merck Millipore
anti-chondroitin-4-sulfate (MAB2030)	Monoclonal	-	1:5000	Mouse	Merck Millipore
anti-chondroitin sulfate A (2H6)	Monoclonal	-	1:1000	Mouse	AMS Biotechnology
anti-heparan sulfate (F69-3G10)	Monoclonal	-	1:1000	Mouse	AMS Biotechnology
anti-HA-HRP	Monoclonal	-	1:500	Rat	Sigma Aldrich
anti-mouse HRP	Polyclonal	-	1:10000	Goat	Promega
anti-rabbit HRP	Polyclonal	-	1:10000	Goat	Sigma Aldrich

SUPPLEMENTARY TABLE 3 List of antibodies used in this study. IF – immunofluorescence; WB – Western blotting.

FRET combination	n	$\tau_{average} (ns)$	$\tau_{short}(ns)$	$\tau_{\text{long}}(ns)$	χ^2
A5-eGFP alone	19	2.70±0.04			1.02 ± 0.06
A5-eGFP + mRFP-A1	29	2.29±0.14	1.15±0.32	2.70	0.99 ± 0.06
A5-eGFP + mRFP-A2-Golgi	34	2.24±0.12	1.35±0.13	2.70	$0.98 {\pm} 0.06$
A5-eGFP + mRFP-A2-ER	29	2.31 ± 0.20	1.20 ± 0.38	2.70	1.02 ± 0.08
A5-eGFP + mRFP-A3	34	2.35 ± 0.09	$1.54{\pm}0.09$	2.70	1.03 ± 0.07
A5-eGFP + mRFP-A4	32	2.39±0.12	1.20 ± 0.21	2.70	1.01 ± 0.06
A5-eGFP + A5-mRFP	38	2.51±0.09	1.15±0.34	2.70	1.00±0.05

SUPPLEMENTARY TABLE 4 In vivo FLIM-FRET analysis of interactions between SLC35A5 protein and other members of SLC35A protein subfamily.