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Abstract: Leaf angle is a key parameter that determines plant architecture and crop yield. Hormonal
crosstalk involving brassinosteroid (BR) plays an essential role in leaf angle regulation in cereals.
In this study, we investigated whether abscisic acid (ABA), an important stress-responsive hormone,
co-regulates lamina joint inclination together with BR, and, if so, what the underlying mechanism is.
Therefore, lamina joint inclination assay and RNA sequencing (RNA-Seq) analysis were performed
here. ABA antagonizes the promotive effect of BR on leaf angle. Hundreds of genes responsive to
both hormones that are involved in leaf-angle determination were identified by RNA-Seq and the
expression of a gene subset was confirmed using quantitative real-time PCR (qRT-PCR). Results from
analysis of rice mutants or transgenic lines affected in BR biosynthesis and signaling indicated that
ABA antagonizes the effect of BR on lamina joint inclination by targeting the BR biosynthesis gene
D11 and BR signaling genes GSK2 and DLT, thus forming a multi-level regulatory module that
controls leaf angle in rice. Taken together, our findings demonstrate that BR and ABA antagonistically
regulate lamina joint inclination in rice, thus contributing to the elucidation of the complex hormonal
interaction network that optimizes leaf angle in rice.

Keywords: abcisic acid; brassinosteroid; hormonal crosstalk; lamina joint inclination; Oryza sativa L.;
RNA-Seq

1. Introduction

Leaf angle, defined as the inclination between the leaf blade midrib and the vertical stem of
a plant, is an essential component of plant architecture and crop yield [1–4]. Under good management
and appropriate environmental conditions, plants with erect leaves (small leaf angle) show enhanced
grain yield per unit area in dense planting populations, due to increased leaf area index (LAI) and
photosynthetic efficiency [5,6]. For example, the grain yields of the brassinosteroid (BR)-deficient
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rice mutant Osdwarf4-1, which has erect leaves, is greater in densely planted populations [7].
Therefore, an increasing number of recent studies have focused on identifying the responsible
genes/quantitative trait loci (QTLs) that control leaf angles in major crop plants, including rice [8–10],
maize [11–13], and wheat [14,15]. Most recently, two novel QTLs, upright plant architecture1 (UPA1)
and UPA2, have been identified to regulate leaf angle in maize, thus providing the potential to enhance
maize yields by increasing planting densities [16].

Leaf angle depends on cell division, expansion, and cell wall composition in the lamina joint [17].
Multiple external and internal factors, including nutrients, carbon dioxide, temperature, phytohormones,
andplantgenotypes, are involvedinmodulating leafangle [10,17,18].Amongtheseregulators, phytohormone
BR is the most important leaf-angle determinant. At present, almost the complete BR signal transduction
pathway has been established for the model plant Arabidopsis [19], and several key BR signaling elements
have also been well-characterized in rice, includingbrassinosteroid-insensitive1 (OsBRI1), glycogen synthase
kinase 2/shaggy-like kinase (OsGSK2) and dwarf and low-tillering (DLT) [20]. OsBRI is localized in the
plasma membrane and perceives BR and activates the BR signaling pathway [21]. OsGSK2, the rice ortholog
of BR-insensitive 2 (BIN2) in Arabidopsis, functions as the central negative regulator of BR signaling by
directly phosphorylating and inactivating downstream transcription factors, including DLT [22]. DLT is
a GRAS family protein and is a positive regulator of BR signaling and mediates multiple BR responses
in rice [22–24].

Leaf angle is the most distinctive BR-responsive architectural trait in cereals and ample evidence indicates
that BR-deficient or -insensitive mutants exhibit reduced leaf angles in rice and maize [7,16,21,22,25,26].
Conversely, the exogenous application of BR or the genetic enhancement of BR signaling strikingly increased
leaf angle [16,22,25]. Therefore, BR might represent a potential biotechnological target with which to enhance
crop yield by modulating leaf angle [27]. However, considering the pleiotropic effects of BR on plants, other
traits such as seed size and plant height are often closely associated with plant leaf-angle phenotypes [24,28,29].
Thus, attention has focused on identifying novel regulators that interact with the BR pathway and coordinate
multiple key cereal agronomic traits, including leaf angle. Among these points of regulation, BR-centered
hormonal crosstalk is essential for regulating leaf angle. In rice, both BR and GA promote an increase
in leaf angle and the degree of their interaction depends on the respective hormone concentrations [30].
Recently, OsmiR396d was implicated in BR–GA co-regulation of leaf angle in rice [31]. The effect of BR
and auxin interaction in regulating leaf angle is more complex. Generally, the co-application of BR and
auxin has a greater effect in promoting leaf angle than either single hormone treatment [1]. However, rice
mutants lacking free auxin have an enhanced BR content and as a consequence, more horizontal leaves [8,32],
suggesting that auxin homeostasis is involved in leaf angle regulation. Recently, TaSPL8, which encodes
a Squamosa-promoter binding protein-like (SPL) protein, was demonstrated to control wheat lamina joint
development and leaf angle by modulating auxin signaling and BR biosynthesis [15].

Another well-studied phytohormone with an essential role in plant development and adaptation
to stress is ABA [33]. In general, BR and ABA have antagonistic regulatory effects. However,
the underlying molecular mechanisms have only been recently elucidated by the characterization of
BR and ABA signaling pathways. Recently, mechanisms of interaction between BR and ABA have been
identified in seed germination [34–36], root elongation [37–39], stomatal movement [40,41], hypocotyl
elongation [42], and drought stress [43]. These represent several nodes of crosstalk and a complex
molecular interaction network has been established. However, whether BR and ABA also interact to
regulate cereal leaf angles and the underlying molecular mechanism, remains unclear.

In the present study, lamina joint inclination analysis was applied to evaluate the potential
interaction between BR and ABA in controlling leaf angle of rice. A number of rice mutants or
transgenic lines affected in BR biosynthesis and signaling were used for further identifying the
integration nodes. Furthermore, RNA-seq analysis was accomplished by using the leaf segments
to identify genes responsive to both BR and ABA that are involved in leaf-angle determination.
Our findings will contribute to the understanding of the complex hormonal interaction network that
optimizes leaf angle.
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2. Results

2.1. ABA Antagonizes the Promotion of Lamina Joint Inclination by BR in Rice

The comparison results of lamina joint inclination test showed that the samples exhibited the
same leaf-angle responses in both tube-based and Petri-dish-based BL treatment systems, i.e., leaf
angle increased together with an increase in BL concentration. However, the leaf-angle response
of samples on Petri-dishes was greater than that of samples in tubes (Figure S1A,B). For example,
following treatment with 10−7 M BL, the mean leaf angle of samples in tubes was 57.2◦, whereas that of
samples on Petri-dishes was 100.1◦. Moreover, the increase in leaf angle was slight at BL concentrations
greater than 10−7 M in the Petri-dish-based system. Therefore, 10−7 M BL treatment on Petri-dishes
was chosen for subsequent experiments. To analyze the effect of ABA on leaf angle and to establish
a suitable ABA treatment concentration, rice leaf segments were treated with different concentrations
of ABA in the presence or absence of 10−7 M BL. Leaf angle decreased following treatment with ABA
in a concentration-dependent manner. Moreover, when leaf segments were treated with BL and ABA
simultaneously, ABA suppressed the positive effect of BL on lamina joint inclination. For example, BL
alone resulted in a 91◦ leaf angle, whereas co-application of 50 mM ABA and 10−7 M BL resulted in
a 26.9◦ leaf angle, which was similar to that of samples treated with ABA alone (Figure 1).

Figure 1. Abscisic acid(ABA) antagonizes the effect of brassinosteroid(BR) on lamina joint inclination in
Nipponbare (Nip, Oryza sativa L.). (A) Responses of leaf segments from etiolated seedlings to different
concentrations of ABA in the presence or absence of brassinolide (BL) (10−7 M). (B) Quantitative data
for lamina joint angle analysis. Data were analyzed by analysis of variance (ANOVA) by Pearson’s
correction. Error bars represent SD (n = 20 seedlings). Bars with different letters indicate statistically
significant differences at p < 0.05.
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2.2. Modulating the Expression of BR Biosynthesis Genes Plays an Important Role in ABA Regulation of
Lamina Joint Inclination

To explore why ABA treatment almost abolished the promotive effect of BR on lamina joint
inclination, the expression of several key genes involved in BR biosynthesis, BR signaling, and cell
elongation was analyzed. The expression of the three BR biosynthesis genes ebisu dwarf (D2), dwarf
11(D11) and OsDWARF 4 (OsDWF4) was slightly suppressed by BL treatment. However, ABA treatment
promoted the expression of D2 and OsDWF4 but inhibited that of D11, independent of the presence of
BL (Figure 2). The decrease in expression of OsBRI1, which encodes the BR receptor, in response to BL,
was partially counteracted by ABA treatment. The genes encoding brassinazole-resistant 1 (OsBZR1)
and DLT, two key transcription factors involved in rice BR signaling were differentially affected in
response to hormone treatment. Transcription of OsBZR1 was more or less unaffected by BL or ABA
treatment, whereas that of DLT decreased markedly. The expression of genes related to cell elongation
all increased in response to BL or ABA treatment, although co-application of both hormones slightly
reduced the expression of brassinosteroid upregulated1(BU1) but enhanced the expression of xyloglucan
endotransglycosylase/hydrolase 1 (OsXTH1) and phosphate-induced protein-1 (OsPHI-1). Although no
consistent changes in expression were observed among the gene classes analyzed, we hypothesized
that modulation of D11 expression is important for the BR–ABA-mediated regulation of leaf angle.
The reasons for this are that D11 was most highly expressed in leaf segments (Figure S2) and the
change in D11 expression in response to BL and ABA was consistent with the results of the lamina
joint inclination assay, i.e., ABA suppressed leaf angle and D11 expression, even in the presence of BL.

Figure 2. Expression analysis of BR-related genes in Nipponbare treated with BL and/or ABA.
Ubiquitin-conjugating enzyme(UBC) was used as an internal control. Mock refers to dimethylsulfoxide
(DMSO) solution. Values were obtained from three independent experiments.

2.3. Interaction between ABA and BR Biosynthesis Pathways in Lamina Joint Inclination

The most distinctive feature of m107 mutant is its large leaf angle during the mature stage, making
it an ideal genetic background to assess the contribution of D11 and BR biosynthesis in regulating leaf
angle together with ABA. In the absence of hormone treatment, the leaf angle of the m107 mutant
was 88.2◦, which was greater than that of the Nip control (49.1◦) in the Petri-dish-based experimental
system. Furthermore, the leaf angle of mock-treated m107 was similar to that of BL-treated Nip,
suggesting that the overexpression of D11 due to the dominant mutation indeed enhanced endogenous
BR biosynthesis, resulting in a similar effect to exogenous BL treatment. Although ABA treatment still
caused a sharp reduction in the m107 leaf angle, it remained significantly larger than that of wild-type
(WT) in the same treatment conditions (Figure 3A,B), indicating that modulating BR biosynthesis
contributes to the ABA-mediated regulation of lamina joint inclination.
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Figure 3. Antagonistic effect of ABA on BR biosynthesis in the regulation of lamina joint inclination.
(A) Effect of ABA and BR on leaf angle in m107 mutant and wild type Nip (Oryza sativa L.).
(B) Quantitative data for lamina joint angle analysis in (A). Data were analyzed by analysis of
variance (ANOVA) with Pearson’s correction. Error bars represent SD (n = 20 seedlings). Bars with
different letters indicate statistically significant differences at p < 0.05.

2.4. Identification of the Genes Commonly Responsive to BR and ABA via RNA-Seq

Phytohormones often converge on a set of common target genes to coordinate plant growth and
development [44]. Therefore, the identification of genes co-regulated by BR and ABA contributes to
understanding the molecular mechanisms that underlie leaf-angle regulation. We used RNA-Seq to identify
differentially expressed genes (DEGs) in response to ABA and/or BL treatment. Treatment with ABA or BL
alone or co-treatment with both hormones caused the change in expression of thousands of genes, among
which, there were 464 common DEGs to all three experimental sets (Figure 4, Table S2). First, the 464 genes
were classified into different cluster groups by hierarchical clustering analysis (Figure 5A), suggesting that
they perform different roles in mediating ABA–BR crosstalk in controlling leaf angles. Next, these genes
were assigned to nine different groups according to their biological processes (Figure 5B). Among these
groups, genes belonging to ‘metabolic process’ and ‘cellular process’ constituted the two largest groups
and accounted for 36.5% and 28.8% of total analyzed genes, respectively. Based on the annotations of their
encoded proteins, the genes could be classified into 17 subfamilies, among which ‘oxidoreductase’ accounted
for the largest proportion (17.6%), followed by ‘transferase’ and ‘hydrolase’, which accounted for 16% and
15.3% of the total analyzed genes, respectively (Figure 5C).
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Figure 4. Venn diagram illustrating the number of common target genes in response to ABA, BL,
and their combination.

Figure 5. Hierarchical cluster analysis and functional analysis of common differentially expressed genes
(DEGs) in three different treatment conditions. (A) Hierarchical cluster analysis of common genes in
response to BL and/or ABA. Common responsive genes are presented in biological process (B) and protein
class (C) using gene ontology (GO) analysis.

Next, eight genes out of the 464 common DEGs were randomly selected for qRT-PCR validation.
The quantitative expression data confirmed that most selected genes exhibited a similar change
in expression to that observed in the RNA-Seq dataset (Figure 6 and Figure S3). For example,
the expression of Os01g0678000 and Os11g0635500 were induced by BL, but were suppressed by ABA
with or without BL, suggesting that the RNA-Seq data are reliable and that many genes are involved in
the ABA–BR co-regulation of leaf angle in rice.
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Figure 6. Validation of RNA-Seq data by quantitative real-time polymerase chain reaction (qRT-PCR).
Ubiquitin-conjugating enzyme(UBC) was used as an internal control and values were obtained from three
independent experiments.

2.5. Suppression of Lamina Joint Inclination by ABA Does Not Depend on BR Perception

Hormone interactions can exist at the level of biosynthesis or signaling. The data here from
exogenous BL treatment and using the m107 mutant suggested that BR biosynthesis is involved in
BR–ABA crosstalk. Lamina joint angles were measured for mutant or transgenic rice lines for genes in
the BR signaling pathway, to identify the BR signaling component(s) that mediate ABA–BR crosstalk.
We first examined whether a functional BR receptor is required for the reduction in lamina joint
inclination caused by ABA. Thus, leaf segments of d61-1, a weak allele of BRI1, which encodes the BR
receptor, were tested for their response to hormone treatment. The leaf angle of d61-1 was smaller than
that of the wild-type under either mock or BL treatments. However, ABA treatment alone or together
with BL resulted in a similar leaf angle in d61-1 and WT (Figure 7A,B), suggesting that the inhibitory
effect of ABA on leaf angle resided downstream of the BR receptor.

Figure 7. Antagonistic effect of ABA on BR signaling in regulating lamina joint inclination. (A) and (B) Effect
of ABA and BR on leaf angle in the d61-1 mutant and wild type Taichung 65 (T65, Oryza sativa L.). (C) and
(D) Effect of ABA and BR on leaf angle in transgenic rice GSK2-RNAi and wild type Zhonghua 11 (ZH11,
Oryza sativa L.). Data were analyzed by analysis of variance (ANOVA) with Pearson’s correction. Error bars
represent SD (n = 20 seedlings). Bars with different letters indicate statistically significant differences at p < 0.05.
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2.6. BR and ABA Crosstalk in Establishing Lamina Joint Angle Is Partially Mediated by GSK2

Because GSK2 is the major negative regulator within the BR signaling pathway, we measured the
lamina joint angle of GSK2-RNAi transgenic rice, which was 124.6◦ without BL treatment and was
greater than that of the ZH11 control, which was only 28.7◦ for the same treatment. BL treatment further
increased the leaf angle of GSK2-RNAi plants to 150.2◦ compared to that of the WT control, which was
only 60.7◦. Treatment with ABA alone or together with BL markedly decreased the leaf angle of WT to
less than 15◦, but only caused a slight reduction in the leaf angle of GSK2-RNAi rice, which was 75.6◦

following ABA treatment alone and 97.9◦ following simultaneous ABA and BL treatment (Figure 7C,D).
We, therefore, hypothesized that GSK2 kinase partially mediates BR–ABA crosstalk in controlling
rice leaf angle. ABI1 and ABI2 are two ABA signaling components, which directly interact with and
dephosphorylate BIN2, thus modulating its activity in phosphorylating BES1 in Arabidopsis. To verify
whether the ABI1/ABI2–BIN2 interaction module also mediates ABA–BR crosstalk in controlling leaf
angle in rice, yeast two-hybrid analysis was performed to examine whether GSK2 can physically
interact with ABI-LIKE 1 (ABIL1)/ABIL2, the ABI1/ABI2 homologs in rice. The result indicated no
interaction (Figure 8), suggesting that although GSK2 is one determinant of lamina joint angle in rice,
it probably does not function via the ABI1/ABI2-BIN2 interaction module.

Figure 8. No direct physical interaction was detected between glycogen synthase kinase 2 (GSK2)
and ABI-like (ABIL) proteins. Yeast two-hybrid assay for the interaction between GSK2 and ABIL1
and ABIL2. Yeast cells transformed with bait (pGBKT7-GSK2) and prey (ABIL1 or ABIL2 cloned into
pGADT7) were selected on SD-Trp/-Leu/-His medium. pGADT7 was the empty prey vector control.

2.7. DLT Represents a Major ABA–BR Crosstalk Node in Coordinating Lamina Joint Inclination

The analysis of GSK2-RNAi transgenic rice only partially explained the joint regulation of leaf
angle by BR and ABA, implying that additional BR signaling component(s) are involved. Because
previous reports indicated that DLT is a key regulator of rice lamina joint inclination [22], we tested the
response of genetic backgrounds with altered DLT expression to BR and/or ABA treatment, to confirm
whether DLT mediates BR–ABA crosstalk in rice leaf angle regulation. Loss of DLT function led to
an almost completely erect-leaf phenotype and only BL treatment alone slightly increased the leaf angle.
In the presence of BL, ABA application restored the leaf angle to the same as that of the mock-treated
control (Figure 9A,B). Moreover, overexpression of DLT strikingly increased the leaf angle to 72.4◦.
Treatment with BL alone increased the leaf angle to 90.3◦ and ABA treatment decreased the leaf angle to
27.5◦ and 29.3◦, in the presence or absence of BL, respectively. However, the leaf angle of ABA-treated
DLT-OE rice was still greater than that of the ABA-treated ZH11 control. The response of DLT-OE rice
in response to BL and/or ABA treatment was qualitatively similar to that of GSK2-RNAi rice. However,
some differences were observed: Firstly, the leaf angle of GSK2-RNAi rice was always greater than
that of DLT-OE rice in each treatment condition. Secondly, the reduction in the leaf angle of DLT-OE
rice in response to ABA was greater than that of GSK2-RNAi plants. For example, the leaf angles of
GSK2-RNAi rice were 124.6◦ and 75.6◦, before and after ABA treatment, respectively, but were 72.4◦

and 27.5◦, respectively, for the same treatments with DLT-OE rice (Figure 9A,B), representing a more
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than 60% reduction after ABA treatment. This suggests that DLT represents a crosstalk node that
integrates BR and ABA signals to modulate rice leaf angle.

Figure 9. Dwarf and low-tillering(DLT) is a major crosstalk node of ABA and BR pathways in
coordinating lamina joint inclination. (A) and (B) Antagonistic effect of ABA and BR on lamina joint
inclination in dlt, DLT-OE transgenic plants and wild type ZH11 (Oryza sativa L.). Data were analyzed
by analysis of variance (ANOVA) by Pearson’s correction. Error bars represent SD (n = 20 seedlings).
Bars with different letters indicate statistically significant differences at p < 0.05.

3. Discussion

The degree of lamina inclination is an important trait that determines crop architecture,
photosynthetic efficiency and grain yield [7,17]. Various intrinsic hormonal signals and extrinsic
environmental cues are involved in leaf angle regulation and these include BR as a major regulator,
particularly in cereals [7,16]. Other phytohormones, including gibberellins, auxin, strigolactone, and JA
are also involved in the regulation of leaf angle [1,30,45,46]. However, most of these hormones control
leaf angle directly or indirectly by interacting with the BR pathway [1,30,45]. It remains uncertain
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whether ABA, an important stress-related hormone, also participates in leaf angle regulation and if so,
what the underlying molecular mechanism is. In rice, the lamina joint inclination test is one of the most
sensitive BR physiological assays and is closely related to leaf angle. Moreover, it is an ideal method
with which to investigate the interactions between BR and other hormones in rice. Although evidence
supports the existence of crosstalk between BR and ABA in co-regulating seed germination [34–36],
hypocotyl elongation [42] and stress responses [43], no interaction in modulating rice leaf angle has
yet been reported. In this study, evidences indicated that ABA alone can reduce the leaf angle of rice
(Figure 1) and co-treatment with ABA and BL strikingly suppressed changes in lamina joint inclination
induced by BR (Figure 1). These findings suggest that ABA indeed affects leaf angle in rice, most likely
by suppressing BR functions.

BR and ABA are essential for a broad spectrum of plant growth and developmental programs.
All hormones, including BR and ABA, control plant development by regulating the expression of a large
number of downstream target genes. Therefore, the co-regulation of the same subset of downstream
target genes represents one level of hormonal crosstalk [44,47]. Because BR is a major regulator of
lamina joint inclination, the expression of several key genes related to BR biosynthesis, signaling,
and cell elongation were analyzed by qRT-PCR. The D11 gene, which encodes the rate-limiting
enzyme of BR biosynthesis, is a potential target of both BR and ABA in determining lamina joint
inclination. Treatment with ABA alone or with BL reduced D11 expression. RNA-Seq was performed
to identify additional downstream transcripts. A previous study in Arabidopsis revealed more than
two hundred overlapping target genes of BL and ABA using a microarray approach [48]. However,
a tissue-specific RNA-Seq-based transcriptome analysis, instead of using whole seedlings, can improve
spatial resolution and provide more relevant data. In this study, 464 common DEGs were identified
in rice leaf segments under three experimental conditions: BL or ABA treatment alone or their
co-application. Subsequent qRT-PCR validation showed that for most genes, the change in expression
was consistent with that of RNA-Seq data (Figure 6 and Figure S3), confirming the reliability of the
transcriptome data. The identification of genes responsive to BL and ABA in the determination of
leaf angle is essential for additional functional analyses. Further bioinformatic analysis indicated
that more than 60% of these genes were involved in metabolic and cellular processes (Figure 5B).
Moreover, nearly half of the genes were oxidoreductases, transferases, and hydrolases (Figure 5C).
Several genes involved in phytohormone pathways were also identified. For example, OsGH3-4 and
OsGH3-7, two auxin-responsive GH3 family genes, were regulated by BL and ABA. Another GH3
family gene, OsGH3-5, also integrates auxin and BR signaling to regulate rice leaf angle [8]. Therefore,
the transcriptome data here implicate a role for additional genes in the complex regulatory network
involving BL and ABA in coordinating rice lamina joint inclination.

In the absence of hormone treatment, the leaf angle of m107, the dominant mutant of D11,
increased, similar to that of WT treated with exogenous BL. Following ABA treatment, the leaf angle
decreased greatly, even in the presence of BL treatment (Figure 3A,B). However, the leaf angle of m107
was still significantly greater than that of WT under the same treatment conditions, suggesting that
enhanced BR biosynthesis can partially attenuate the effect of ABA. Consistent with this, expression
analysis indicated that ABA led to a decrease in D11 expression (Figure 2). Similar studies were also
performed using several genetic backgrounds with modified BR perception or signaling, including the
BR receptor mutant d61-1, an RNAi transgenic line of the negative regulator OsGSK2 and a mutant
and overexpression line of the transcription factor DLT. These data indicated that integration of the
BR and ABA pathways occurs downstream of the BRI receptor, since there was no difference in leaf
angle between d61-1 and the WT in response to ABA (Figure 7). However, knocking down OsGSK2
expression led to a striking increase in the leaf angle in all hormone treatments. Although ABA
treatment caused a decrease in the leaf angle to about 50%, the leaf angle of GSK2-RNAi plants was
greater than that of the BL-treated WT control (Figure 7), indicating that GSK2 represents a major
node of crosstalk between BR and ABA in leaf angle regulation. Recently, increasing evidence has
demonstrated the crucial roles of BIN2/GSK2 in mediating interactions between BR signaling and
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other pathways in drought responses [43,49], hypocotyl elongation [42,50], seed size [51,52] and
cellulose synthesis [53]. Therefore, BIN2/GSK2 might also integrate BR signaling with other pathways,
in addition to BZR1/BES1 transcription factors [19]. Furthermore, the DLT transcription factor that
functions downstream of GSK2 mediates several BR responses in rice [22–24,51]. Most importantly,
DLT is involved in BR-induced rice lamina joint inclination: the leaf angle in the dlt mutant was
relatively small and was hardly affected by BL treatment (Figure 9). However, DLT overexpression
resulted in a larger leaf angle than WT, even in the presence of ABA. Thus, DLT function can attenuate
the effect of ABA on lamina joint inclination.

In summary, we have shown that BR and ABA antagonistically regulate lamina joint inclination
in rice. ABA antagonizes the positive effect of BR on a high lamina joint angle via the BR biosynthesis
gene D11 and the BR signaling genes GSK2 and DLT, thus forming a multi-level regulatory module to
control rice leaf angle. Our findings contribute to understanding the complex BR–ABA interaction
network, which orchestrates functions of BR and ABA in diverse environmental conditions and thus
coordinates plant growth and developmental programs.

4. Materials and Methods

4.1. Plant Materials

In this study, seedlings of rice (Oryza sativa L.) were used for the following experiments. In general,
three different Japonica cultivars, including Nipponbare (Nip), Zhonghua 11 (ZH11), and Taichung 65
(T65), and derivative mutants or transgenic lines were used. In more detail, m107 is a D11 dominant
mutant caused by the insertion of a double 35S enhancer T-DNA upstream from its start codon [54],
and its wild-type counterpart is Nip. The GSK2-RNAi and DLT-OE transgenic lines and the dlt mutant
all derived from recipient ZH11. d61-1 is a BR-insensitive mutant and its wild-type counterpart is T65.
All rice plants were grown under the same climate and management conditions during the summer
in a paddy field at Yangzhou University. Mature seeds from superior rice spikelets were collected
for experiments.

4.2. Lamina Joint Inclination Assay

The lamina joint assay was performed according to [55] with some modifications. In brief, mature
seeds were sterilized with 70% ethanol and rinsed twice with sterile water. Seeds were imbibed in
darkness for two days and synchronously germinating seeds were selected and grown in the dark for
a further eight days at 30 ◦C. Leaf segments, consisting of 1 cm of the second leaf blade, the lamina joint
and 1 cm of the leaf sheath, were excised from the uniform seedlings. Leaf segments were then floated
on Milli-Q water for 24 h and were dipped into a centrifuge tube or floated on a Petri-dish containing
various hormone treatments in the dark for 48 h. Stock solutions of BL, ABA or an equal volume of
ethanol were diluted in 2.5 mM maleic acid potassium solution for treatment. The lamina joint angle,
formed by the lamina and leaf sheath, was measured using ImageJ software, a free and Java-based
image-processing package supported by the National Institute of Health (https://imagej.nih.gov/ij/).
Twenty seedlings were used for each treatment and all experiments were repeated at least three times.

4.3. Quantitative Real-Time PCR (qRT-PCR) Analysis

Leaf segments treated with either BL (10-7 M), ABA (50 mM), both hormones or an ethanol control
for 12 h were used for RNA extraction and gene expression analysis. Total RNA was isolated using
the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and treated with DNase I (Qiagen). RNA
quality and quantity were evaluated using a NanoDrop 2000 (Thermo Scientific, MA, USA) system.
High-quality RNA samples were reverse-transcribed using the SuperScript First-Strand Synthesis
System (Invitrogen, Van Allen Way Carlsbad, CA, USA) and qRT-PCR was performed using SYBR
Premix Ex Taq (TaKaRa, Dalian, Liaoning, China) and an ABI PRISMTM 7700 sequence detector system
(Applied Biosystems, Foster City, CA, USA). Relative expression was calculated using the 2−∆∆Ct

https://imagej.nih.gov/ij/
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method, and ubiquitin conjugase (UBC) was used as the internal control for normalization. Primers are
listed in Supplementary Materials Table S1.

4.4. RNA-Seq Analysis

High-quality RNA was isolated and used for library construction, and high-throughput RNA
sequencing was performed on a BGISEQ-500 platform at the Beijing Genomics Institute (BGI,
Shenzhen, China). Raw sequencing reads were trimmed and the collected clean data were aligned
to the genome of rice japonica cultivar Nipponbare (IRGSP-1.0, http://rapdb.dna.affrc.go.jp/) using
TopHat2 software [56]. The DESeq2 (version 1.12.4) was used to determine differentially expressed
genes (DEGs) [57], which were selected according to the following default criteria: A fold change ≥ 2.0
and FDR ≤ 0.001.

4.5. Bioinformatic Analysisand qRT-PCR Validation of RNA-Seq Data

The DEGs common to all three treatment experimental sets were isolated for the following
validation and bioinformatic analysis. First, common DEGs were used to construct a heat map with
Morpheus online software (https://software.broadinstitute.org/morpheus), a frequently used -omics
method to study genes with similar expression patterns. Gene ontology (GO) was used for the
classification of gene function and the description of genes or gene-product attributes. Using the
PANTHER database, genes were analyzed with two sets of ontologies, including biological process
and protein class [58]. Finally, qRT-PCR was used to validate the expression of eight randomly selected
DEGs from the RNA-Seq data.

4.6. Yeast Two-Hybrid Assays

The full-length coding sequence of GSK2 was amplified and cloned into the pGBKT7 bait vector
and transformed into the yeast strain AH109. Yeast cells carrying the bait vector were transformed with
the prey plasmids containing the full-length coding sequences of ABIL1 or ABIL2. Transformants were
selected on SD dropout plates. The assay was performed according to the manufacturer’s instructions
(TaKaRa, Dalian, Liaoning, China).

4.7. Statistical Analysis

For sample characterization, at least three independent experiments were performed unless
otherwise specified. All data represent the means ± standard deviation (SD) of the replicates. The data
were analyzed by analysis of variance (ANOVA) with Pearson’s correction.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/19/4908/
s1. Figure S1. Comparison between the Petri-dish-based and tube-based lamina joint inclination assay. Figure S2.
Expression analysis of BR-related genes in Nipponbare. Figure S3. Transcript levels of selected target genes from
RNA-Seq analysis. Table S1. Primers used for qRT-PCR analysis in this study. Table S2. The 464 common DEGs in
response to ABA and/or BL treatment from RNA-seq analysis.
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Abbreviations

ABA abscisic acid
ABIL1 ABI-like 1
ANOVA analysis of variance
BIN2 BR-insensitive 2
BL brassinolide
BR brassinosteroid
BU1 brassinosteroid upregulated1
BZR1 brassinazole resistant1
D2 ebisud warf
D11 dwarf 11
DEGs differentially expressed genes
DLT dwarf and low-tillering
DMSO dimethylsulfoxide
GO gene ontology
GSK2 glycogen synthase kinase 2
LAI leaf area index
OsBRI1 brassinosteroid-insensitive1
OsDWF4 osdwarf 4
OsXTH1 xyloglucan endotransglycosylase/hydrolase 1
PHI-1 phosphate-induced protein-1
qRT-PCR quantitative real-time polymerase chain reaction
QTLs quantitative trait loci
RNA-Seq RNA sequencing
SD standard deviation
SPL Squamosa-promoter binding protein-like
UBC ubiquitin-conjugating enzyme
UPA1 upright plant architecture1
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