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mjnawrocki@ump.edu.pl (M.J.N.); pzawierucha@ump.edu.pl (P.Z.); mbruska@ump.edu.pl (M.B.)

2 Department of Cardiac Surgery and Transplantology, Poznan University of Medical Sciences, 61-848 Poznań,
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psujka@ump.edu.pl (P.S.-K.); akonwer@ump.edu.pl (A.K.); skaluzna@ump.edu.pl (S.K.);
mnowicki@ump.edu.pl (M.N.); amalinsk@ump.edu.pl (A.M.)

4 Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland;
maciej.zabel@gmail.com

5 Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw
Medical University, 50-368 Wrocław, Poland

6 Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno,
Czech Republic

* Correspondence: bkempisty@ump.edu.pl; Tel.: +48-61-8546418; Fax.: +48-61-8546440

Received: 3 September 2019; Accepted: 30 September 2019; Published: 2 October 2019
����������
�������

Abstract: Coronary artery bypass grafting (CABG) is one of the most efficient procedures for patients
with advanced coronary artery disease. From all the blood vessels with the potential to be used in
this procedure, the internal thoracic artery (ITA) and the saphenous vein (SV) are the most commonly
applied as aortocoronary conduits. Nevertheless, in order to evaluate the graft patency and efficiency
effectively, basic knowledge should be constantly expanding at the molecular level as well, as the
understanding of predictive factors is still limited. In this study, we have employed the expressive
microarray approach, validated with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR),
to analyze the transcriptome of both venous and arterial grafts. Searching for potential molecular
factors, we analyzed differentially expressed gene ontologies involved in bone development and
morphogenesis, for the possibility of discovery of new markers for the evaluation of ITA and SV
segment quality. Among three ontological groups of interest—“endochondral bone morphogenesis”,
“ossification”, and “skeletal system development”—we found six genes common to all of them. BMP6,
SHOX2, COL13A1, CSGALNACT1, RUNX2, and STC1 showed differential expression patterns in
both analyzed vessels. STC1 and COL13A1 were upregulated in ITA samples, whereas others were
upregulated in SV. With regard to the Runx2 protein function in osteogenic phenotype regulation, the
RUNX2 gene seems to be of paramount importance in assessing the potential of ITA, SV, and other
vessels used in the CABG procedure. Overall, the presented study provided valuable insight into the
molecular background of conduit characterization, and thus indicated genes that may be the target of
subsequent studies, also at the protein level. Moreover, it has been suggested that RUNX2 may be
recognized as a molecular marker of osteogenic changes in human blood vessels.
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1. Introduction

Coronary artery bypass grafting (CABG), together with percutaneous coronary intervention (PCI),
are both still the most efficient procedures for myocardial revascularization to treat advanced coronary
artery disease (CAD). Although there are some blood vessels that can serve as grafts in reestablishing
coronary circulation, the internal thoracic (mammary) artery (ITA) and the great saphenous vein (SV)
are the most commonly applied in CABG patients [1,2]. In this procedure, the ITA is the conduit of
choice, particularly in young individuals, while the SV is more often used in older subjects [1,3]. The
ITA grafts exhibit a pivotal benefit of a favorable long-term patency rate and survival. A 10-year rate
of angiographic patency reaches 90% or even more, while for vein grafts, it usually does not exceed
50% [4,5]. However, bilateral harvesting of these arteries may predispose to mediastinitis, which is a
life-threatening complication [6]. The occlusion of SV grafts leads to angina recurrence, repeated acute
coronary syndromes, and a need for further interventions. The subsequent surgeries are much more
risky, and are associated with substantially worse early, as well as late outcomes than after primary
surgery [7].

However, it should be noted that the graft patency and CABG outcomes depend on a number of
factors, such as the type and quality of vessel used, the size of the recipient’s coronary arteries, or the
surgeon’s skill [8]. Three main factors that can contribute to SV graft failure include acute thrombosis,
neointimal hyperplasia, and eventually accelerated atherosclerosis [8]. Although the ITA has a better
patency and survival, there are different comorbidities and conditions that significantly limit arterial
conduit applicability [9–11]. Despite advances in perioperative management, better understanding of
the vessel wall biology, its histological architecture, the expression of tissue markers, as well as the
humoral and cellular outcomes of the process of intimal smooth muscle cell proliferation, the role
of biomarkers in CABG outcome prediction is still controversial. Thus, graft patency is a result of
complex and multifactoral net processes that depend on a large number of factors, some of which have
not yet been well established [12]. Up to now, many predictive factors have been determined for the
ITA patency rate [12,13], whereas we have still observed a limited number of such indicators for SV
segments [14–16].

The analyses presented in this paper aim to find potential molecular factors that could be
characteristic markers for both SV and ITA conduits. The performed comparison at the molecular
level shows several discrepancies in the levels of gene expression belonging to different ontological
groups. In this work, particular attention was paid to the ontological group, which are not the first
choice at the preoperative characteristics of the vessels. We decided to describe “endochondral bone
morphogenesis”, “ossification”, and “skeletal system development” gene ontology biological process
(GO BP) terms also, because calcifications seen in the harvested grafts disqualify them from clinical
applications. In the SV, they may result from previous inflammation or well-organized old thrombus.
Macroscopic calcifications in ITA, which can be noted by a surgeon, are extremely rare. However,
morphological studies of the internal thoracic artery segments harvested in patients undergoing CABG
showed that even in up to 7% of them, signs of atherosclerosis may be present [17]. Nevertheless,
analyzing the presented results, one can also see genes of potential significance for the examined vessels.

2. Results

Whole transcriptome profiling by Affymetrix microarray allowed us to analyze vascular gene
expression differences. Using Affymetrix® Human HgU 219 Array, we examined the expression of
49,308 transcripts. Genes with a fold change higher than abs |2| and with a corrected p-value lower
than 0.05 were considered as differentially expressed in our study. This set of genes consisted of 1170
different transcripts.



Int. J. Mol. Sci. 2019, 20, 4890 3 of 18

DAVID (Database for Annotation, Visualization, and Integrated Discovery) software was used for
the extraction of significantly enriched gene ontology (GO) terms. Upregulated and downregulated
gene sets were subjected to the DAVID search separately, and only gene sets with adj. p-values
lower than 0.05 were selected. The DAVID software analysis showed that the differently expressed
genes belonged to 164 gene ontology terms. In this paper, we focused on “endochondral bone
morphogenesis”, “ossification”, and “skeletal system development” gene ontology biological process
terms (GO BP). A hierarchical clusterization procedure was carried out for these sets of these genes,
with the results presented as heatmaps (Figure 1). There were 40 differentially expressed genes in the
gene ontologies of interest. In this entire pool of genes, 24 of them showed a higher level of expression
in the venous conduits, while 16 were upregulated in ITA grafts. The gene symbols, fold changes of
gene expression, Entrez gene IDs, and adjusted p-values were shown in Table 1.
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Figure 1. Heat map representation of differentially expressed genes belonging to “endochondral bone
morphogenesis”, “ossification” and “skeletal system development” gene ontology biological process
(GO BP) terms. Arbitrary signal intensity acquired from microarray analysis is represented by colors
(green, higher; red, lower expression). Log2 signal intensity values for any single gene were resized to
row Z-score scale (from –2, the lowest expression, to +2, the highest expression for a single gene).

Table 1. Gene symbols, fold changes in expression, Entrez gene IDs, and corrected p-values of
studied genes.

Gene Symbol Ratio Adjusted p Value Entrez Gene ID

SHOX2 −22.8240429 1.03 × 10−27 6474

HOXA11 −9.830934198 7.60 × 10−17 3207

COMP −7.773021124 3.33 × 10−13 1311

TNC −7.430294969 1.88 × 10−08 3371

GDF10 −5.309648509 2.16 × 10−08 2662

MSX1 −3.455950944 9.17 × 10−13 4487
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Table 1. Cont.

Gene Symbol Ratio Adjusted p Value Entrez Gene ID

CTHRC1 −3.018066571 5.20 × 10−11 115908

CSGALNACT1 −2.881617301 2.10 × 10−12 55790

HOXA10 −2.63199568 1.36 × 10−12 3206

KL −2.458105612 2.59 × 10−08 9365

HOXC10 −2.457042843 7.09 × 10−15 3226

BMP6 −2.45216404 2.98 × 10−07 654

IFITM1 −2.349841846 2.37 × 10−08 8519

RUNX2 −2.331169268 5.34 × 10−07 860

PTGER4 −2.280369849 7.12 × 10−09 5734

FHL2 −2.216349206 6.35 × 10−10 2274

HOXA13 −2.166453813 2.16 × 10−10 3209

TP53INP2 −2.127154082 3.09 × 10−08 58476

CD44 −1.387817152 0.006540227 960

FLI1 –1.131519079 0.002636506 2313

ROR2 −1.128865754 0.004346143 4920

COL11A1 −1.12582207 0.000190115 1301

ADAMTS12 −1.054115576 0.188720272 81792

GPR68 −1.028071249 0.512393039 8111

CSRNP1 1.338139052 0.026644084 64651

BCAP29 1.823380549 3.52 × 10−07 55973

TOB1 1.841885719 1.99 × 10−08 10140

STC1 1.845964521 0.000109973 6781

HOXA2 2.01745347 5.20 × 10−11 3199

HOXB7 2.230080809 3.31 × 10−09 3217

HOXB2 2.433099517 5.86 × 10−11 3212

LRRC17 2.543411445 2.26 × 10−10 10234

SPP1 2.96640349 0.001152397 6696

TAC1 3.167584851 4.92 × 10−05 6863

RBP4 3.228449588 3.61 × 10−05 5950

ENPP1 3.320786599 4.83 × 10−10 5167

TNFRSF11B 4.741562441 1.54 × 10−10 4982

NPR3 5.295452922 2.59 × 10−12 4883

COL13A1 8.475105942 8.83 × 10−18 1305

SOST 12.36428646 1.01 × 10−10 50964
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In order to further investigate the changes within chosen GO BP terms, we measured the
enrichment levels of each selected GO BP term. The enrichment levels were expressed as Z-scores and
presented as circular visualization (Figure 2).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 19 
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Figure 2. The circular visualization of the results of gene annotation enrichment analysis. The outer
circle shows a scatter plot for each term of the logFC of the assigned genes. Green circles display
upregulation, and red ones display downregulation. The inner circle is the representation of Z-score.
The size and the color of the bar correspond to the value of the Z-score.

In the Gene Ontology database, genes that form one particular GO group can also belong to other
different GO term categories. For this reason, we explore the gene intersections between the selected
GO BP terms. The relations among those GO BP terms were presented as a circle plot (Figure 3) as
well as a heatmap (Figure 4). As can be seen in the figures, six genes (BMP6, SHOX2, COL13A1,
CSGALNACT1, RUNX2, and STC1) are members of all three GOs of interest. The circle plot in Figure 3
indicates genes with the highest transcript expression in the SV (such as SHOX2 and HOXA11), and
those that show the highest levels of mRNA in ITA grafts (SOST and COL13A1). Determining the
relations between individual GO BP terms was used to select the genes used in the next stage to
validate the results of microarrays.

RT-qPCR was performed to validate the results obtained during microarray analysis. The outcomes
were presented and compared in the form of a bar graph. As can be seen, the direction of changes in
expression was confirmed in all examples. However, the scale of differences in transcription levels
varied between both methods analyzed (Figure 5).
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Figure 5. RT-qPCR quantitative validation of microarray results presented in a form of a bar graph.
The graph shows the relative changes in gene expression results for veins, in relation to the transcript
levels obtained from the ITA. FC was presented in its logarithmic form to provide clear comparability
of the results.

A STRING interaction network was generated among the chosen differentially expressed genes
belonging to each of the selected GO BP terms. Using such a prediction method provided us with
a molecular interaction network formed between the protein products of studied genes (Figure 6).
According to the STRING database, the biggest amount of confirmed interactions characterized in the
figure (also experimentally determined) can be observed with respect to the RUNX2 gene. The result
obtained further underlines the importance of RUNX2 expression in the osteoblastic differentiation
processes. Some interactions between transcription factors belonging to the family of HOX genes are
also clearly noticeable. Additionally, in order to better understand the intragroup and intergroup
differences in the global expression of calcification-related genes between the surgery conduits most
commonly applied in CABG patients, we performed principal component analysis (PCA) of 40 genes
that belongs to the selected three Gene Ontology terms (Figure 7). The dots distribution on the PCA plot
clearly indicate a distinct transcriptomic profile between both CABG surgery conduits in relation to the
calcification processes, which may lead to the reduced suitability of the vessel in the CABG procedure.
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Figure 7. Principal component analysis (PCA) plot of significantly differentially expressed genes, based
on the first two principal components’ (PC1 and PC2) loadings against each other. Each dot on the plot
(red for saphenous vein (SV) and blue for internal thoracic artery (ITA)) means a single sample of the
conduit used in the CABG procedure.
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Histological examination revealed the proper structure of ITA and SV segments. ITA is
characterized by well-developed tunica media composed of smooth muscles, while in the saphenous
vein, the tunica adventitia is the most prominent layer. SV is also characterized by a thickened inner
layer (tunica intimia) compared to the artery (Figure 8).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 19 
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Figure 8. Photomicrograph representing the histological structure of internal thoracic artery (ITA; A,B)
and saphenous vein (SV; C,D) segments stained with routine hematoxylin and eosin (H&E) staining.
The differences in histological structure can be observed. SV is characterized by a thicker tunica
adventitia and subendothelial layer compared to ITA. Arrows: 1—endothelium, 2—internal elastic
lamina, 3—tunica intima, 4—tunica media, and 5—tunica adventitia.

3. Discussion

Despite the better perioperative management of CABG patients and more common application of
the novel methods supporting failing organs, the early results of these procedures are still affected by
adverse cardiovascular events, such as myocardial ischemia or stroke, which usually occur within
the first days or weeks following operations [18,19]. The predominant reason of early acute coronary
syndromes is graft failure. Thus, better understanding of the activated molecular mechanisms occurring
soon after surgery may allow further a reduction of the rate of these adverse cardiovascular events.
CABG, as an extensive operation, unquestionably gives rise to an important and possibly sustained
activation of different pivotal molecular pathways. Researchers are increasingly devoting more
attention to such changes, which are still part of a little-known area that can further increase the
safety and clinical efficiency of the CABG procedure by describing the involved molecular markers.
Therefore, our study aimed to investigate the transcriptomic profile of genes characterizing both ITA
and SV. Employing the microarray technique, we analyzed differences at the molecular level between
both blood vessels that often serve as aortocoronary grafts.

Many investigators tried to address the question concerning the possible role of single-nucleotide
polymorphisms (SNPs) in graft patency and post-operative results in patients undergoing CABG.
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Analyzing the potential role of gene polymorphisms, numerous studies over the past few years focused
on different morphological and biochemical pathways. SNPs in genes regulating oxidative stress [20],
inflammatory response [21], or thrombotic pathways [22] were investigated. As an example of a
changing environment after the procedure, increases in inflammatory markers can be mentioned. An
increased post-operative concentration of interleukin-6 (IL-6), which has pathogenic effects on the
vessel wall [23], is associated with poorer outcome [24]. However, IL6 gene variants did not affect
long-term survival after CABG [21].

Among the genes belonging to GO BP terms of interest, six constitute to a specific, common
element. BMP6, SHOX2, COL13A1, CSGALNACT1, RUNX2, and STC1 belong to the three discussed GO
BP groups: “endochondral bone morphogenesis”, “ossification”, and “skeletal system development”.

The essential function of the homeobox transcription factor SHOX2 in the development of
multiple organs, including the heart, is well established [25,26]. Its specific role is attributed to
the development of the sinoatrial node (SAN), which is the primary cardiac pacemaker regulating
heart-beat frequency [27]. Espinoza-Lewis et al. demonstrated that Shox2 plays an essential role in
the SAN and cardiac conduction system development by controlling a genetic cascade through the
repression of Nkx2-5 promoter activity [25]. Other investigators [28] also described the pivotal role of
the Shox2–Nkx2-5 antagonistic mechanism operating in the cardiac venous pole, particularly in the
SAN and myocardium of the pulmonary vein, in the regulation of cell fate, morphogenesis, and the
distinction between pacemaker cells and working myocardium. Other research found an association
of Shox2 loss-of-function mutation with enhanced susceptibility to familial atrial fibrillation (AF).
Subsequent studies of AF pathogenesis similarly indicate that genetic defects may play a crucial role in
the early onset of this most common sustained cardiac arrhythmia [29]. The results obtained in these
studies indicate clearly higher mRNA expression in the SV compared to the ITA.

Furthermore, several other transcription factors detected in both blood vessels that can serve as
grafts were described. An analysis of microarray results showed the expression of seven DNA-binding
transcription factors belonging to the family of HOX genes. Interestingly, some genes exhibit higher
transcript levels in SV (HOXA11, HOXA10, HOXC10, and HOXA13), whereas others were more
abundantly expressed in ITA (HOXA2, HOXB2, and HOXB7). The coordinated expression of the
HOX gene sub-family in both space and time is crucial for embryonic patterning. Members of this
transcription factors family may regulate gene expression, morphogenesis, and differentiation [30].
Moreover, genes forming the HOX family are the main candidates for determining and maintaining
region-specific physiological properties in the vascular smooth muscle cells (VSMCs) of the adult
cardiovascular system. This assumption comes from the fact that clear topographic HOX expression
patterns in blood vessels can be observed [31]. Furthermore, results from the Pruett laboratory indicate
that proper HOX function and regulation is critical for maintaining vascular functional integrity [32].

In our study, using microarray and RT-qPCR analysis, we also found the expression of another
transcription factor—the runt-related transcription factor 2 (RUNX2) gene, which is essential for
osteoblastic differentiation, skeletal morphogenesis, and bone remodeling [33]. Runx2 evokes a process
pivotal for functional disorders of the vascular system, namely VSMCs to osteogenic transdifferentiation
(VOT) in a high-phosphate environment. Then, transition to an osteogenic phenotype is involved in
the pathogenesis of arterial medial calcification (AMC) [34]. The induction of Runx2 and then VOT
is preceded by the activation of WNT/β-catenin signaling [35,36]. Recent studies employing mice
knock-out models [37] and primary rat aortic smooth muscle cells cultures [38] also confirmed the
crucial role of Runx2 and downstream osteogenic pathways in VSMCs osteogenic changes, as an
important factor promoting AMC. Our data indicates higher RUNX2 transcript expression levels in
SV, which may suggest greater propensity to osteogenic phenotype change in these arterial grafts
compared with ITA. If this property was confirmed, it would be a factor undoubtedly decreasing the
usefulness of these blood vessels as conduits in the CABG procedure.

The transcript expression member of the transforming growth factor beta (TGFB) superfamily,
BMP6, was also detected. Bone morphogenetic protein’s (BMP) functionality is relevant to the proper
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form and function of blood vessels, and can function as a context-dependent pro-angiogenic cue [39,40].
According to the findings of Mouillesseaux et al. [41], new vessel formation is blocked by BMP failure
via Notch regulated SMAD6 expression. Other research found BMP participation in subcortical
small vessel disease (SVD) via angiogenesis promotion [42]. Similarly to the mRNA levels for the
BMP6 gene, we have also shown higher CSGALNACT1 transcript levels in the SV. The presence of
chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1) mRNA was shown in human
perivascular (PV) adipocytes. Interestingly, the level of expression was higher than in subcutaneous
(SQ) adipocytes [43]. Other investigators [44] described the transcript expression of this gene in aorta
endothelial cells (ECs), whereas rat’s ductus arteriosus (DA) did not show the presence of this mRNA.

In combination with the above-described genes, the STC1 gene exhibits a different pattern of
expression in the compared vascular grafts. We found higher transcript levels of this gene in the
arterial conduit. Stanniocalcin-1 (STC1) acts primarily as a paracrine/autocrine factor to regulate
various biological functions. The STC1 hormone is normally absent in mammalian blood [45]. In a
clinicopathological study of stanniocalcin-1 functions, significant elevated STC1 expression levels were
described in different human cancer samples, such as tumors of lung, breast, ovary, or liver [46]. A
transgenic mice model allowed observing the negative effects of STC1 and STC2 on muscle and bone
development [47]. The studies of Law and Wong [48] showed the stimulatory effects of STC1 or STC2
on angiogenesis in human umbilical vein endothelial cell (HUVEC) culture. Moreover, investigators
found that the action of STC1 was mediated via the VEGF/VEGFR2 pathway. Other studies indicated
that STC1 plays a crucial role in the response of human brain microvascular endothelial cells to
beta-amyloid peptide exposure [49].

The last of the six genes belonging to all three GO BP terms of interest was gene coding collagen
type XIII alpha 1 chain, namely COL13A1. The function of this gene product—an alpha chain of the
nonfibrillar collagens—has not been well known. It has been established that collagen type XIII is
a transmembrane protein localized in cell–cell and cell–extracellular matrix (ECM) junctions [50,51].
Studies of the Miyake laboratory [52] demonstrated that the expression of COL13A1 and COL4A1 by
cancer cells of human urothelial carcinoma plays a crucial role in tumor invasion through the induction
of tumor budding. Other studies found that the presence of the A→C polymorphism (rs942576) of
COL13A1 was associated with the prevalence of intracerebral hemorrhage [53].

We have performed a comparative transcriptomic analysis of the two main blood vessels that
serve as aortocoronary grafts in CABG patients, the internal thoracic artery and the saphenous
vein, aiming to find potential molecular factors that could be helpful in assessing the suitability of
individual conduits in the procedure. Analyzing the expression microarray results, we have focused
on ontological groups, which were not an obvious choice when discussing blood vessel characteristics.
Nevertheless, calcification may lead to the reduced suitability of the vessel in the CABG procedure.
The final stage of chronic atherosclerosis is vascular calcification [54], which mimics the complex
process of bone formation [55,56]. Among many others, the downregulation of calcification inhibitors,
the accumulation of hydroxyapatite, the expression of osteogenic proteins (e.g., Runx2) and the
transformation of vascular smooth muscle cells into osteoblast-like cells were noted [57]. Accelerated
atherosclerosis is the predominant pathology responsible for aortocoronary graft failure, particularly
venous. Such conclusions are also consistent with our results, because we indicate a higher level of
RUNX2 expression as a factor promoting osteogenic changes in venous grafts. In some patients, it
appears in SV conduits even 6 to 12 months after surgery, but in the majority (up to 60%), it appears
10 years later [58]. Although the plaque composition in SV grafts may differ from those in the native
vessels, the histopathological studies proved that calcified cartilages and amorphous calcifications
were also seen in these conduits [59].

In “endochondral bone morphogenesis”, “ossification”, and “skeletal system development” GO
BP terms, we have found six genes with differential expression in both vessels. Global transcriptomic
analysis was performed with the use of Affymetrix microarray, and then validated with RT-qPCR. In
every example, the direction of changes was confirmed, and changes in gene expression have been
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validated. At the same time, the scale of changes may vary significantly between the methods (such as
in the case of RUNX2). However, this difference is not surprising, considering the different accuracy of
complete transcriptomic analysis and a specific primer-based, single gene-oriented approach. It should
be mentioned that the RT-qPCR is far more accurate in the quantitative analysis of transcript levels, as
it targets specific gene sequences as opposed to multiple probes for different transcript variants of the
same gene. Thus, whole-transcriptome screening by microarrays is mainly a qualitative, rather than
quantitative study. All these genes described above play an important role in the functioning of vessels
or the occurrence of undesirable states in those vessels. The transition to an osteogenic phenotype,
regulated via Runx2, seems to be especially important in assessing the potential of vessel utilization in
the CABG procedure. It can be assumed that, according with our transcriptome analysis, SV grafts
may exhibit a higher propensity to osteogenic phenotype change compared with arterial conduits.
Nevertheless, increased RUNX2 expression levels would be a factor decreasing the usefulness of all
the blood vessels used as conduits in the CABG procedure. It should be noted that although RUNX2
expression levels analysis is valuable, calcification processes themselves play a secondary role in
graft evaluation.

We hope that an analysis of the expression of genes involved in bone development and
morphogenesis may help to identify patients at high risk of calcification development. It was
shown in the mice model that diet was associated with a higher concentration of calcium deposits
in the wall of venous grafts [59]; thus, it may be that these CABG subjects will need more aggressive
medical treatment (including statins and acetylsalicylic acid) following surgery. As calcification is one
of the features of occluding atherosclerotic, the future therapy oriented to downregulate the osteogenic
potential of the vascular grafts may improve the long-term patency of aortocoronary conduits and
simultaneously the outcomes of CABG patients.

4. Materials and Methods

4.1. Human Subjects

The procedures of the study were approved by the Local Ethical Committee of Poznań University
of Medical Sciences (No. 1201/08, approved on 18/12/2008).

4.2. Operation Procedure and Sample Collection

In most patients, the left ITA was used to bypass the left anterior descending coronary artery
(LAD). The other target coronary arteries were usually revascularized with SV grafts.

All surgeries were performed through median sternotomy. SV grafts were obtained through
a full-length thigh incision over its course [60]. Pivotal points of the procedure included minimal
manipulation of the graft (“no-touch” technique), avoiding extensive dilation of the conduits, using
low-intensity electrocautery and the control of the branches with stainless-steel vascular clips. In all
cases, the distal part of the obtained SV segment (at least 15–20 mm in length) was saved for further
laboratory studies.

ITA conduits were harvested as pedicled, together with satellite veins and endothoracic fascia
from the second to the sixth intercostal space. The distal end of the ITA segment was divided at the
level of its bifurcation. After heparinization, ITA conduits were clipped distally, injected with 10 mL
of a papaverine solution (1 mg/mL), and allowed to pharmacologically dilate. Immediately before
anastomosis of the distal end of ITA to the recipient coronary artery, a 10-mm segment of the conduit
was harvested for further molecular and histological tests.

The sets of the vessel samples, both SV and ITA, were immediately snap-frozen in liquid nitrogen
and stored at −80 ◦C until RNA isolation. Another set of samples was directed for histochemical
examination. Transcriptome screening analysis was performed on 18 SV and 20 ITA samples.
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4.3. RNA Extraction and Reverse Transcription

Total RNA from the homogenized parts of the SV and ITA samples (including all the vessel
layers) was isolated according to the method described by Chomczyński and Sacchi [61] and in
our previous study [62–64]. RNA integrity was determined using denaturing agarose gel (2%)
electrophoresis. Then, the RNA was quantified by measuring the optical density (OD) at 260 nm
(NanoDrop spectrophotometer; Thermo Scientific, Waltham, MA, USA). RNA samples were treated
with DNase I and reverse-transcribed into cDNA using an RT2 First Strand Kit (Qiagen, Hilden,
Germany), according to the manufacturer’s protocol. Then, 500 ng of an RNA sample was used for
reverse transcription.

4.4. Microarray Expression Study and Data Analysis

Our experiment employed 38 GeneChip® HG-U219 (Affymetrix, Santa Clara, CA, USA)
microarrays to simultaneously examine thousands of transcripts for each of the analyzed samples.
In the first step, the total RNA (500 ng) from each pooled sample was subjected to two rounds of
sense cDNA amplification (Ambion® WT Expression Kit, provided by Ambion, Austin, TX, USA).
The synthesis of cRNA was performed by in vitro transcription (16 h, 40 ◦C). Then, cRNA was
purified and re-transcribed into cDNA. Subsequently, cDNA samples were used for biotin labeling
and fragmentation using an Affymetrix GeneChip® WT Terminal Labeling and Hybridization kit
(Affymetrix). Next, the biotin-labeled samples were loaded onto and hybridized to the Affymetrix®

Human Genome U219 Array Strip. Hybridization was conducted at 48 ◦C for 20 h, employing an
AccuBlock™ Digital Dry Bath (Labnet International, Inc., Edison, NJ, USA) hybridization oven. Then,
microarrays were washed and stained, according to technical protocol, using an Affymetrix GeneAtlas™
Fluidics Station (Affymetrix, Santa Clara, CA, USA). The strips were scanned using an Affymetrix
GeneAtlas™ Imaging Station (Affymetrix, Santa Clara, CA, USA). The scans of the microarrays were
saved on hard drives as *.CEL files for downstream data analysis.

Quality control (QC) studies were performed using the Affymetrix GeneAtlas™ Instrument
Control Software 2.0.0.460 (Affymetrix, Santa Clara, CA, USA), according to the manufacturer’s
standards. The generated *.CEL files were subjected to further analysis performed using the R
statistical language and Bioconductor package with the relevant Bioconductor libraries. To correct the
background, normalize, and summarize the results, we used the robust multiarray averaging (RMA)
algorithm. Assigned biological annotations were obtained from the “pd.ragene.2.1.st” library and
employed for the mapping of normalized gene expression values with their symbols, gene names, and
Entrez IDs, allowing to generate a complex gene data table. To determine the statistical significance
of the analyzed genes, moderated t-statistics from the empirical Bayes method were performed. The
obtained p-values were corrected for multiple comparisons using Benjamini and Hochberg’s false
discovery rate and described as adjusted p-values. The selection of significantly altered genes was based
on a p-value beneath 0.05 and an expression higher than two-fold. The differentially expressed gene
list (separated for upregulated and downregulated genes) was uploaded to the DAVID Bioinformatics
Resources 6.8 software (Database for Annotation, Visualization and Integrated Discovery) [65], where
the significantly upregulated Gene Ontology (GO) terms were extracted. The selection of significantly
altered GO terms was based on a p-value (Benajamini) < 0.05 and the volume of at least five genes.

To further investigate the chosen gene sets, we investigated their mutual relations with the GOplot
package [66]. Subsequently, sets of differentially expressed genes from selected GO BP terms were
applied to the STRING10 software (Search Tool for the Retrieval of Interacting Genes/Proteins) for
interactions prediction. STRING is a huge database containing information on protein/gene interactions,
including experimental data, computational prediction methods, and public text collections. Finally,
the principal component analysis (PCA) of 40 genes that belong to the selected three Gene Ontology
terms were investigated. The PCA plot of significantly differentially expressed genes has been prepared
based on the first two principal components’ (PC1 and PC2) loadings against each other.
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4.5. Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) Analysis

Determination of the transcript levels of six genes belonging to all GO BP terms of interest was
conducted using a Light Cycler® 96 Real-Time PCR System, Roche Diagnostics GmbH (Mannheim,
Germany) with SYBR Green I as a detection dye. Each venous/arterial graft sample was tested
independently. Levels of analyzed transcripts were standardized in each sample, in reference to
hypoxanthine phosphoribosyltransferase 1 (HPRT1) and β-actin (ACTB) as an internal control. For target
cDNA quantification, we have performed relative quantification with the 2−∆∆C

T method. For each
of the amplification reactions, 1 µL of cDNA solution was mixed with 9 µL of reaction master mix
(5× FastStart Essential DNA Green Master (Roche Diagnostics GmbH; Mannheim, Germany) and a
specific starter pair). We have used the Primer3 software for primer design (Table 2). The exon–exon
design method was used as an additional method to avoid the possible amplification of genomic DNA
fragments. The primers were also designed using the sequence of several transcript variants of genes of
interest available in the Ensembl database. In order to confirm the specificity of the results, 2% agarose
gel electrophoresis of the products was performed. An analysis of dissociation curves in equipment
software provided by the manufacturer also confirmed the specificity of the amplification products
obtained in the RT-qPCR analysis.

Table 2. Oligonucleotide sequences of primers used for RT-qPCR analysis.

Gene Primer Sequence (5′–3′) Product Size (bp)

SHOX2
F GAAGGCCAGACCAAAATCAA

234R GGCCCCTATGAGAACACCTT

RUNX2
F GGACGAGGCAAGAGTTTCAC

165R GAGGCGGTCAGAGAACAAAC

BMP6
F AAGAAGGCTGGCTGGAATTT

170R GAAGGGCTGCTTGTCGTAAG

STC1
F TGATCAGTGCTTCTGCAACC

242R GACGAATGCTTTTCCCTGAG

CSGALNACT1
F CAGAAAGGGACAAAGGGACA

243R TGAGATGGACTCTCCCATCC

COL13A1
F CAAAGGGAGAAGCAGGTGTC

175R TCCTGGAGAGCCTCATTGAT

4.6. Histological Analysis

Immediately after harvesting, both ITA and SV segments were fixed with Bouin’s solution for 48
h. Subsequently, the collected tissues were dehydrated and embedded in paraffin blocks and then cut
into 4-µm thick sections with a semi-automatic rotary microtome (Leica RM 2145, Leica Microsystems,
Nussloch, Germany). Afterwards, the blood vessels sections were stained via the routine hematoxylin
and eosin (H&E) method, following the protocol of: deparaffinization and rehydration with xylene,
decreasing concentrations of alcohols and water, H&E staining, and dehydration with increasing
concentrations of alcohols and xylene. Histological sections were evaluated under a light microscope,
with selected pictures were taken using a high-resolution scanning technique and Olympus BX61VS
microscope scanner (Olympus, Tokyo, Japan).

5. Conclusions

Our transcriptomic analysis of two conduits most commonly applied in coronary artery bypass
grafting procedure, the internal thoracic artery (ITA) and the saphenous vein (SV), showed potential
molecular markers of osteogenic changes in these vessels. Especially, the RUNX2 gene seems to
be of paramount importance in assessing the potential of ITA, SV and other vessels used in the
CABG procedure. According to the results we obtained, venous grafts may be more exposed to
osteogenic changes.
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