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Abstract: 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) is a
triterpenoid analogue of oleanolic acid that has anti-inflammatory, antioxidant, and neuroprotective
activities. In the present study, we evaluate the effects of CDDO-Me on serum extravasation and
astroglial death in the rat piriform cortex (PC) induced by status epilepticus (a prolonged seizure
activity, SE) in order to propose an underlying pharmacological mechanism of CDDO-Me and its
availability for treatment of vasogenic edema. CDDO-Me effectively mitigated serum extravasation
and a massive astroglial loss in the PC following SE. CDDO-Me abrogated tumor necrosis factor-α
(TNF-α) synthesis in activated microglia by inhibiting nuclear factor-κB (NF-κB) p65 serine 276
phosphorylation. CDDO-Me also abolished NF-κB threonine 435 phosphorylation in endothelial cells
and TNF-α-mediated-phosphatidylinositol-3-kinase (PI3K)/AKT/endothelial nitric oxide synthase
(eNOS) signaling cascades, which trigger vasogenic edema following SE. Furthermore, CDDO-Me
increased astroglial viability via the up-regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2)
expression. Therefore, our findings suggest that CDDO-Me may ameliorate SE-induced vasogenic
edema formation by regulating NF-κB p65 phosphorylations in microglia as well as endothelial cells
and enhancing Nrf2 expression in astrocytes, respectively.
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1. Introduction

Vasogenic edema results from the increased capillary permeability due to breakdown in intact
brain–blood barrier (BBB) that is important for the maintenance of brain homeostasis [1,2]. Serum
extravasation during vasogenic edema formation leads to spreading depolarizations and epileptiform
discharges [3]. In addition, the leakage of albumin from blood into brain tissue activates microglia
and results in the production of inflammatory mediators [4,5], although astrocytes and blood-derived
monocytes are also involved in pro-inflammatory reactions [6,7]. These neuroinflammatory responses
to vasogenic edema formation are the risk factors of pharmacoresistant temporal lobe epilepsy that
is uncontrolled by conventional antiepileptic drugs [8]. This is because multidrug efflux transporter
expressions are up-regulated during the recovery of vasogenic edema [9]. Therefore, the blockade or
attenuation of vasogenic edema formation may be one of the important therapeutic strategies for the
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prevention of secondary complications following various brain insults including status epilepticus (SE,
a prolonged seizure activity).

The underlying mechanisms of BBB disruption involve various signaling pathways, such as
phosphatidylinositol-3-kinase (PI3K), AKT [10], matrix metalloproteinase-9 [2], and endothelin-1 [11].
In particular, tumor necrosis factor-α (TNF-α)-mediated nuclear factor-κB (NF-κB) p65-threonine (T) 435
phosphorylation initiates up-regulations of endothelin B (ETB) receptor and transient receptor potential
canonical channel-3 (TRPC3), which increase endothelial nitric oxide synthase (eNOS) expression via
PI3K/AKT signaling pathway following SE [1,12,13]. Therefore, TNF-α-induced NF-κB activation is
one of the common up-stream regulators of vasogenic edema formation induced by SE.

On the other hand, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid methyl ester (CDDO-Me;
RTA 402) is a triterpenoid analogue of oleanolic acid that is structurally similar to steroids and has
anti-inflammatory properties [14]. CDDO-Me suppresses microglial proliferation and its activation,
while it exerts microglial phagocytic activity. CDDO-Me also directly inhibits NF-κB signaling and the
transcription of pro-inflammatory genes such as NOS and TNF-α [15–20]. Furthermore, CDDO-Me
ameliorates warfarin-mediated intracranial hemorrhage by nuclear factor-erythroid 2-related factor 2
(Nrf2) activation [21]. With respect to these previous studies, it is noteworthy to explore the effects of
CDDO-Me on SE-induced vasogenic edema formation and its underlying mechanisms, which have
been elusive.

Here, we demonstrate that CDDO-Me effectively mitigated vasogenic edema formation and a
massive astroglial loss in the piriform cortex (PC) following SE. CDDO-Me ameliorated microglial
activation and TNF-α synthesis by inhibiting NF-κB serine (S) 276 phosphorylation. In addition,
CDDO-Me abrogated the NF-κB-T435/PI3K/AKT/eNOS signaling cascade in endothelial cells, and
increased Nrf2 expression in astrocytes following SE. However, CDDO-Me did not prevent increase in
vascular endothelial growth factor (VEGF) expression following SE. Therefore, these findings suggest
that CDDO-Me may attenuate SE-induced vasogenic edema by inhibiting NF-κB p65 phosphorylations
in microglia and endothelial cells, and enhancing Nrf2 expression in astrocytes, respectively.

2. Results

2.1. CDDO-Me Effectively Attenuates SE-Induced Vasogenic Edema in the PC

The PC is one of the most susceptible brain regions to pilocarpine-induced SE. In this region,
vasogenic edema and astroglial loss peaked at 3 days after SE [22,23]. Thus, the PC is a suitable site to
evaluate the effects of CDDO-Me on vasogenic edema formation and the related events following SE.
Consistent with our previous studies [12,22], the present data showed that SE led to vasogenic edema
and a massive astroglial loss in the PC. As compared to vehicle, CDDO-ME showed ~72% and ~66%
reductions in vasogenic edema and glial fibrillary acidic protein (GFAP)-deleted lesion, respectively
(p < 0.05 vs. vehicle, respectively; Student’s t-test, n = 7, respectively; Figure 1). Since CDDO-Me does
not affect seizure susceptibility in response to pilocarpine [24], these findings indicate that CDDO-Me
may effectively ameliorate SE-induced vasogenic edema formation and astroglial loss, independent of
seizure activity.
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Figure 1. Effects of CDDO-Me on vasogenic edema formation and astroglial loss in the piriform cortex 
(PC) following status epilepticus (SE). CDDO-Me attenuates serum extravasation and astroglial 
degeneration induced by SE. (A) Representative photographs for vasogenic edema and astroglial loss 
in the PC. Red lines indicate the contours of vasogenic edema and glial fibrillary acidic protein 
(GFAP)-deleted lesion. (B,C) Quantitative values (mean ± S.E.M) of the effect of CDDO-Me on serum 
extravasation (B) and astroglial loss (C) in the PC following SE (n = 7, respectively). Significant 
differences are * p < 0.05 vs vehicle-treated animals (Student’s t-test). 

2.2. CDDO-Me Inhibits Microglial Activation and TNF-α Synthesis by Abrogating NF-κB S276 
Phosphorylation Following SE 

Next, we evaluated the effect of CDDO-Me on microglial activation induced by SE. In control 
animals, ionizing calcium-binding adaptor molecule 1 (Iba-1) positive microglia showed a slender 
ramified and stellate appearance (Figure 2A), which is indicative of resting microglia [25–27]. 
Following SE, Iba-1 positive microglia had hypertrophic, irregularly shaped soma and blunted 
processes with thorny spines (Figure 2A), indicating activated microglia [25–27]. In addition, the Iba-
1 positive area was increased to ~3-fold of the control level (p < 0.05 vs control animals, one-way 
analysis of variance (ANOVA) followed by Bonferroni test for multiple comparisons, n = 7, 
respectively; Figure 2A,B). CDDO-Me inhibited the microglia transformation (Figure 2A) and 
decreased the Iba-1 positive area to ~1.7-fold of the control level (p < 0.05 vs vehicle, n = 7, respectively; 
Figure 2A,B). 

Since the up-regulation of TNF-α expression in activated microglia plays an important role in 
SE-induced vasogenic edema formation [1,12,13,23], we investigated whether CDDO-Me affects 
microglial TNF-α expression induced by SE. In control animals, TNF-α positive microglia were rarely 

Figure 1. Effects of CDDO-Me on vasogenic edema formation and astroglial loss in the piriform
cortex (PC) following status epilepticus (SE). CDDO-Me attenuates serum extravasation and astroglial
degeneration induced by SE. (A) Representative photographs for vasogenic edema and astroglial
loss in the PC. Red lines indicate the contours of vasogenic edema and glial fibrillary acidic protein
(GFAP)-deleted lesion. (B,C) Quantitative values (mean ± S.E.M) of the effect of CDDO-Me on serum
extravasation (B) and astroglial loss (C) in the PC following SE (n = 7, respectively). Significant
differences are * p < 0.05 vs. vehicle-treated animals (Student’s t-test).

2.2. CDDO-Me Inhibits Microglial Activation and TNF-α Synthesis by Abrogating NF-κB S276
Phosphorylation Following SE

Next, we evaluated the effect of CDDO-Me on microglial activation induced by SE. In control
animals, ionizing calcium-binding adaptor molecule 1 (Iba-1) positive microglia showed a slender
ramified and stellate appearance (Figure 2A), which is indicative of resting microglia [25–27]. Following
SE, Iba-1 positive microglia had hypertrophic, irregularly shaped soma and blunted processes with
thorny spines (Figure 2A), indicating activated microglia [25–27]. In addition, the Iba-1 positive area
was increased to ~3-fold of the control level (p < 0.05 vs. control animals, one-way analysis of variance
(ANOVA) followed by Bonferroni test for multiple comparisons, n = 7, respectively; Figure 2A,B).
CDDO-Me inhibited the microglia transformation (Figure 2A) and decreased the Iba-1 positive area to
~1.7-fold of the control level (p < 0.05 vs. vehicle, n = 7, respectively; Figure 2A,B).



Int. J. Mol. Sci. 2019, 20, 4862 4 of 15

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 15 

 

observed in the PC. Following SE, TNF-α expression was significantly up-regulated in activated 
isolectin B4 (IB4) positive microglia. CDDO-Me abolished SE-induced up-regulation of microglial 
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Figure 2. The effect of CDDO-Me on microglia activation in the piriform cortex (PC) following status 
epilepticus (SE). Ionizing calcium-binding adaptor molecule 1 (Iba-1) positive microglia show 
hypertrophic morphologies with hyper-ramified processes that are covered by a lot of thorny spines 
following SE. In addition, SE increases tumor necrosis factor-α (TNF-α) expression and nuclear factor-
κB (NF-κB) serine (S) 276 phosphorylation. CDDO-Me abolishes Iba-1 positive microglia 
transformation, TNF-α expression, and NF-κB S276 phosphorylation induced by SE. (A) 
Representative images for Iba-1 positive microglia. (B,C) Quantification of the effect of CDDO-Me on 
Iab-1 positive area (B) and the fluorescent intensities of TNF-α and NF-κB S276 signals in microglia 
(C) following SE (n = 7, respectively). Significant differences are *,# p < 0.05 control- and vehicle-treated 
animals in panel B, respectively (one-way ANOVA followed by Bonferroni test for multiple 
comparisons), and *,# p < 0.05 vehicle-treated animals in panel C (Student’s t-test). (D) Representative 
images for TNF-α expression and NF-κB S276 phosphorylation in microglia following SE. 

Figure 2. The effect of CDDO-Me on microglia activation in the piriform cortex (PC) following
status epilepticus (SE). Ionizing calcium-binding adaptor molecule 1 (Iba-1) positive microglia show
hypertrophic morphologies with hyper-ramified processes that are covered by a lot of thorny spines
following SE. In addition, SE increases tumor necrosis factor-α (TNF-α) expression and nuclear factor-κB
(NF-κB) serine (S) 276 phosphorylation. CDDO-Me abolishes Iba-1 positive microglia transformation,
TNF-α expression, and NF-κB S276 phosphorylation induced by SE. (A) Representative images for
Iba-1 positive microglia. (B,C) Quantification of the effect of CDDO-Me on Iab-1 positive area (B)
and the fluorescent intensities of TNF-α and NF-κB S276 signals in microglia (C) following SE (n = 7,
respectively). Significant differences are *,# p < 0.05 control- and vehicle-treated animals in panel B,
respectively (one-way ANOVA followed by Bonferroni test for multiple comparisons), and *,# p < 0.05
vehicle-treated animals in panel C (Student’s t-test). (D) Representative images for TNF-α expression
and NF-κB S276 phosphorylation in microglia following SE.

Since the up-regulation of TNF-α expression in activated microglia plays an important role
in SE-induced vasogenic edema formation [1,12,13,23], we investigated whether CDDO-Me affects
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microglial TNF-α expression induced by SE. In control animals, TNF-α positive microglia were rarely
observed in the PC. Following SE, TNF-α expression was significantly up-regulated in activated
isolectin B4 (IB4) positive microglia. CDDO-Me abolished SE-induced up-regulation of microglial
TNF-α expression (p < 0.05 vs. vehicle, Student’s t-test, n = 7, respectively; Figure 2C,D).

NF-κB S276 phosphorylation is essential for NFκB subunit-dependent cellular responses [28].
NF-κB S276 phosphorylation enhances its transactivation potential and interaction with cAMP response
element-binding (CREB) protein, which is important for the microglial activation [29]. In addition,
NF-κB S276 phosphorylation exerts TNF-α synthesis [30]. Thus, we also investigated whether
CDDO-Me regulates microglial TNF-α expression by inhibiting NF-κB S276 phosphorylation. In
control animals, NF-κB S276 phosphorylation was rarely detected in microglia. Following SE, activated
IB4 positive microglia showed NF-κB S276 phosphorylation, which was abrogated by CDDO-Me
(p < 0.05 vs. vehicle, Student’s t-test, n = 7, respectively; Figure 2C,D). These findings indicate that
CDDO-Me may attenuate microglia activation (transformation) and microglial TNF-α synthesis by
inhibiting NFκB S276 phosphorylation.

2.3. CDDO-Me Decreases Endothelial NF-κB T435 Phosphorylation Following SE

We have reported that TNF-α-mediated NF-κB T435 phosphorylation in endothelial cells increases
BBB permeability following SE [1]. Therefore, it is likely that CDDO-Me may also attenuate vasogenic
edema via the regulation of NF-κB T435 phosphorylation in endothelial cells. To confirm this possibility,
we explored its effect on endothelial NF-κB T435 phosphorylation in the PC. As compared to control
animals, NF-κB T435 phosphorylation was increased in endothelial cells following SE, accompanied
by the reduced SMI-71 (an endothelial barrier antigen) expression (p < 0.05 vs. control animals,
one-way ANOVA followed by Bonferroni test from multiple comparisons, n = 7; Figure 3A,B).
CDDO-Me effectively alleviated the enhanced NF-κB T435 phosphorylation and the reduced SMI-71
expression in endothelial cells induced by SE (p < 0.05 vs. vehicle; Figure 3A,B). These findings
indicate that CDDO-Me may also ameliorate SE-induced vasogenic edema formation via blockade of
TNF-α-mediated NF-κB T435 activation in endothelial cells.

2.4. CDDO-Me Inhibits PI3K/AKT/eNOS Signaling Pathway Following SE

Since NF-κB activation triggers the PI3K/AKT/eNOS signaling pathway during vasogenic
edema formation [10,13], we investigated if CDDO-Me inhibits PI3K/AKT phosphorylation and
eNOS expression following SE. Under physiological condition, CDDO-Me did not affect PI3K/AKT
phosphorylations and eNOS expressions in the PC (Figure 4A,B). SE significantly increased
pPI3K-tyrosine (Y) 458 and pAKT-T308 phosphorylations to 1.65- and 1.68-fold of the control level
in the PC (p < 0.05 vs. control animals, one-way ANOVA followed by Bonferroni test for multiple
comparisons, n = 7, respectively; Figure 4A,B). SE also elevated expressions of eNOS and VEGF to 1.54-
and 1.56-fold of the control level in the PC (p < 0.05 vs. control animals, one-way ANOVA followed
by Bonferroni test for multiple comparisons, n = 7, respectively; Figure 4A,B). CDDO-Me effectively
prevented the up-regulation of PI3K/AKT phosphorylations and eNOS expression to 1.23-, 1.29-, and
1.2-fold of the control level following SE (p < 0.05 vs. control animals, one-way ANOVA followed
by Bonferroni test for multiple comparisons, n = 7, respectively; Figure 4A,B). However, CDDO-Me
did not influence the increased VEGF expression following SE (Figure 4A,B). Since CDDO-Me could
not influence PI3K/AKT phosphorylations and eNOS expression under physiological conditions, our
findings support the possibility that CDDO-Me may inhibit the PI3K/AKT/eNOS signaling pathway
via blockade of TNF-α synthesis or TNF-α-mediated NF-κB p65 phosphorylations induced by SE.
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and NF-κB T435 signals following SE (n = 7, respectively). Significant differences are *,# p < 0.05 
control- and vehicle-treated animals (one-way ANOVA followed by Bonferroni test for multiple 
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Figure 3. Effects of CDDO-Me on SMI-71 expression and nuclear factor-κB (NF-κB) threonine (T)
435 phosphorylation in the piriform cortex (PC) following status epilepticus (SE). SE diminishes SMI-71
expression in the PC accompanied by the enhanced NF-κB T435 phosphorylation, which are ameliorated
by CDDO-Me. (A) Representative images for SMI-71 expression and NF-κB T435 phosphorylation.
(B) Quantification of the effect of CDDO-Me on fluorescent intensities of SMI-71 and NF-κB T435 signals
following SE (n = 7, respectively). Significant differences are *,# p < 0.05 control- and vehicle-treated
animals (one-way ANOVA followed by Bonferroni test for multiple comparisons).
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Figure 4. Effects of CDDO-Me on expressions and phosphorylations of phosphatidylinositol-3-kinase
(PI3K), AKT, endothelial nitric oxide synthase (eNOS), vascular endothelial growth factor (VEGF),
and nuclear factor-erythroid 2-related factor 2 (Nrf2) in the piriform cortex (PC) following status
epilepticus (SE). SE increases phosphorylations of PI3K and AKT as well as expressions of eNOS and
VEGF. CDDO-Me abrogates the up-regulations of PI3K/AKT phosphorylations and eNOS expressions
induced by SE, without altering VEGF expression. In addition, CDDO-Me increases Nrf2 expression
level in the PC of control animals. SE decreases Nrf2 expression, which is abolished by CDDO-Me.
(A) Western blot image for expressions and phosphorylations of PI3K, AKT, eNOS, VEGF, and Nrf2
following SE. (B) Quantification of the effect of CDDO-Me on expressions and phosphorylations of
PI3K, AKT, eNOS, VEGF, and Nrf2 (n = 7, respectively). Significant differences are *,# p < 0.05 control-
and vehicle-treated animals (one-way ANOVA followed by Bonferroni test for multiple comparisons).

2.5. CDDO-Me Mitigates SE-Induced Astroglial Loss by Enhancing Nrf2 Expression

SE results in acute and devastating astroglial degeneration in the PC, which is characterized by
a pattern of selective vulnerability [22,31–33]. Astroglial loss/dysfunctions also aggravate vasogenic
edema following SE [12,22]. In the present study, CDDO-Me ameliorated SE-induced astroglial loss in
the PC, concomitant with the reduced vasogenic edema formation (Figure 1A–C). Thus, the remaining
question is how CDDO-Me would protect astroglial damage from SE. Interestingly, CDDO-Me is
an activator of Nrf2 that is a master mediator of the cellular antioxidant response. Furthermore,
CDDO-Me up-regulates Nrf2 expression in astrocytes [21,34]. Since the production of intracellular
reactive oxygen species by NADPH oxidase in astrocytes is involved in SE-induced astroglial death [12],
it is likely that CDDO-Me may mitigate astroglial degeneration by increasing Nrf2 expression following
SE. To confirm this hypothesis, we explored the effect of CDDO-Me on astroglial Nrf2 expression
under physiological- and post-SE conditions. In the present study, Western blots demonstrated that
CDDO-Me increased Nrf2 expression level to 1.35-fold of vehicle level in the PC of control animals
(p < 0.05 vs. vehicle, one-way ANOVA followed by Bonferroni test for multiple comparisons, n = 7,
respectively; Figure 4A,B). Following SE, Nrf2 expression was decreased to 0.62-fold of control level
(p < 0.05 vs. vehicle-treated control animals, one-way ANOVA followed by Bonferroni test for multiple
comparisons, n = 7, respectively; Figure 4A,B). CDDO-Me effectively ameliorated the reduction in
SE-induced Nrf2 expression (p < 0.05 vs. vehicle, one-way ANOVA followed by Bonferroni test for
multiple comparisons, n = 7, respectively; Figure 4A,B).

Consistent with previous studies [21,34], immunohistochemical studies revealed that Nrf2
expression was observed in astrocytes within the PC of control animals (Figure 5A). CDDO-Me
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up-regulated Nrf2 expression in astrocytes more than other cell populations under physiological
condition (p < 0.05 vs. vehicle-treated control animals, one-way ANOVA followed by Bonferroni
test for multiple comparisons, n = 7, respectively; Figure 5A,B). Following SE, Nrf2 expression was
reduced in all cell populations. Remaining (surviving) astrocytes showed Nrf2 expression (p < 0.05 vs.
vehicle-treated control animals, one-way ANOVA followed by Bonferroni test for multiple comparisons,
n = 7, respectively; Figure 5A,B). CDDO-Me ameliorated SE-induced reduction in Nrf2 expression
in astrocytes more than other cell populations (p < 0.05 vs. vehicle, one-way ANOVA followed by
Bonferroni test for multiple comparisons, n = 7, respectively; Figure 5A,B). These findings suggest that
CDDO-Me may attenuate SE-induced astroglial degeneration by enhancing Nrf2 expression and/or
preventing vasogenic edema formation.
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Figure 5. Effects of CDDO-Me on astroglial nuclear factor-erythroid 2-related factor 2 (Nrf2) expression
in the piriform cortex (PC) following status epilepticus (SE). Under physiological conditions, CDDO-Me
up-regulates Nrf2 expression in astrocytes rather than other cells. Following SE, Nrf2 expression
is reduced in both astrocytes and other cells. CDDO-Me mitigates SE-induced reduction in Nrf2
expression in astrocytes rather than other cells. (A) Representative images for astroglial Nrf2 expression
in the PC following SE. (B) Quantification of the effect of CDDO-Me on Nrf2 fluorescent intensity (n = 7,
respectively). Significant differences are *,# p < 0.05 control- and vehicle-treated animals (one-way
ANOVA followed by Bonferroni test for multiple comparisons).
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3. Discussion

Vasogenic edema is the most common type of brain edema due to BBB disruption, which results in
an abrupt increase in intracranial pressure, abnormal blood–brain transports of serum-derived
molecules, and aberrant neuronal excitability [1–3]. Although the underlying mechanisms of
vasogenic edema formation are very complicated, neuroinflammatory responses to harmful stimuli are
emphasized. In particular, TNF-α is thought to be one of the up-stream regulators for vasogenic edema
formation induced by SE, since blockade of TNF-α functions by soluble TNF p55 receptor ameliorates
vasogenic edema through abrogating activations of NF-κB, eNOS, PI3K, and AKT [1,12,13]. Consistent
with these previous studies, the present study shows that TNF-α expression was rapidly upregulated
in activated microglia following SE. CDDO-Me attenuated vasogenic edema formation by inhibiting
microglial TNF-α expression induced by SE. CDDO-Me also abolished activations/up-regulations
of the down-stream effectors in TNF-α-mediated signaling pathway, such as PI3K, AKT, and eNOS,
following SE. However, CDDO-Me did not influence the up-regulated VEGF expression following SE.
Considering the inhibitory effect of CDDO-Me on TNF-α production [15,16], our findings indicate that
CDDO-Me may attenuate SE-induced vasogenic edema formation by affecting the TNF-α-mediated
PI3K/AKT/eNOS signaling pathway, independent of the up-regulated VEGF expression.

In the present study, CDDO-Me inhibited NF-κB S276 and T435 phosphorylations in microglia
and endothelial cells, respectively, following SE. Similar to microglial TNF-α synthesis, SE also
up-regulates TNF receptor expressions in astrocytes (TNFp55 and TNFp75 receptors) and endothelial
cells (TNFp75 receptor), which are relevant to vasogenic edema formation [1,12]. TNF receptor
activations increase NF-κB phosphorylation that enhances its transactivation potential [29,35]. NF-κB
S276 phosphorylation plays an important roles in microglial activation and TNF-α synthesis [23,29,30].
Furthermore, NF-κB T435 phosphorylation in endothelial cells results in vasogenic edema induction
via SMI-71 degradation [1]. Since CDDO-Me directly inhibits NF-κB signaling [16,17], our findings
suggest that the inhibition of NF-κB S276 phosphorylation by CDDO-Me may abrogate microglial
TNF-α production and the subsequent endothelial NF-κB T435 phosphorylation, which would mitigate
vasogenic edema formation induced by SE.

Astrocytes are the most numerous non-neuronal cell types in the brain, which participate in the
BBB integrity. Thus, the dysfunctions of astrocytes as well as endothelial cells induce BBB breakdown
leading to vasogenic edema [12,22]. Recent studies have revealed that astroglial subpopulations show
differential vulnerability in regional-specific patterns following SE, independent of hemodynamics [36].
In particular, the PC is the most susceptible brain region to SE-induced astroglial degeneration [12,22,36].
Consistent with these previous reports, the present data show that SE resulted in a massive astroglial
loss in the PC, accompanied by reduced Nrf2 expression. Nrf2 is a redox-sensitive transcription factor,
which maintains redox homeostasis by regulating antioxidant-response element (ARE)-dependent
transcription and antioxidant defense enzymes [37,38]. Under physiological condition, Kelch-like
ECH-associated protein 1 (Keap1) binds to Nrf2, which inhibits nuclear Nrf2 translocation and facilitates
Nrf2 degradation via the ubiquitin–proteasome system [34,38–40]. Thus, up-regulation of endogenous
Nrf2 expression is not sufficient to prevent cell injuries under pathophysiological conditions [21,34].
Since NADPH oxidase-mediated free radical production triggers SE-induced astroglial death in the
PC [12], our findings indicate that the decreased Nrf2 expression may be relevant to a massive astroglial
loss in the PC. Indeed, the present data demonstrate that CDDO-Me attenuated SE-induced vasogenic
edema and astroglial loss, accompanied by up-regulation of Nrf2 expression. Furthermore, CDDO-Me
increased Nrf2 expression in astrocytes under physiological conditions. CDDO-Me dissociates Keap1
from Nrf2 by interacting with the reactive cysteine 151 residue of Keap1 through a Michael addition [41],
which abrogates Keap1-mediated Nrf2 ubiquitination and results in Nrf2 accumulation/activation [42].
In addition, CDDO-Me itself exerts Nrf2 transcription [43,44]. Therefore, it is likely that CDDO-Me
may also inhibit vasogenic edema formation by increasing astroglial viability. However, CDDO-Me
increased Nrf2 expression in astrocytes more than neurons under physiological- and post-SE conditions.
Since Nrf2 activation protects neurons from ischemia via astrocytes [34], these findings suggest that
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CDDO-Me may affect Nrf2 expression in astrocytes rather than neurons. Further studies are needed to
elucidate these astrocyte-friendly CDDO-Me properties.

Although CDDO-Me improves kidney function in patients with chronic kidney disease stage 4
and type 2 diabetes, a phase 3 clinical trial evaluating CDDO-Me was terminated for safety concerns.
This is because CDDO-ME increased the risk of heart failure hospitalizations or death from heart
failure [45]. Therefore, the development of a novel BBB-permeable derivative of CDDO-Me would be
needed for clinical trials concerning prevention treatment for vasogenic edema.

4. Materials and Methods

4.1. Experimental Animals and Chemicals

The present study was carried out on adult male Sprague–Dawley (SD) rats (7 weeks old). Animals
were housed in a controlled room temperature (22 ± 2 ◦C), humidity (55 ± 5%), and a light–dark cycle
on a 12-h on-off cycle. Food and water were available ad libitum throughout the experiments. All
experimental protocols described below were approved by the Institutional Animal Care and Use
Committee of Hallym University (Chuncheon, South Korea, Hallym 2018-2, 26th, April 2018). Every
effort was made to reduce the number of animals employed and to minimize animal discomfort. All
reagents were obtained from Sigma-Aldrich (St. Louis, MO, USA), except as noted.

4.2. Surgery and Drug Infusion

Under Isoflurane anesthesia (3% induction, 1.5–2% for surgery, and 1.5% maintenance in a 65:35
mixture of N2O:O2), animals were infused with vehicle or CDDO-Me into the right lateral ventricle
(1 mm posterior; 1.5 mm lateral; −3.5 mm depth to the bregma) with a brain infusion kit 1 and an Alzet
1007D osmotic pump (Alzet, Cupertino, CA, USA). The osmotic pump contained vehicle or CDDO-Me
(10 µM). The pump was placed in a subcutaneous pocket in the dorsal region. In a pilot study and our
previous study [24], this dosage of CDDO-Me did not show behavioral and neurological defects and
could not change the seizure susceptibility and seizure severity in response to pilocarpine. Three days
after surgery, rats were induced with SE by lithium chloride (LiCl)-pilocarpine.

4.3. SE Induction

SE was induced by a single dose (30 mg/kg) of pilocarpine in rats pretreated (24 h before
pilocarpine injection) with 127 mg/kg LiCl. Before pilocarpine injection, animals were given atropine
methylbromide (5 mg/kg i.p.) to block the peripheral effects of pilocarpine. As controls, rats were
treated with saline instead of pilocarpine. Two hours after SE onset, diazepam (Valium; Roche, Neuilly
sur-Seine, France; 10 mg/kg, i.p.) was administered to terminate SE and repeated, as needed [22–26].
Three days after SE, animals were used for immunohistochemistry and Western blot.

4.4. Tissue Processing

Under urethane anesthesia (1.5 g/kg, i.p.), animals were perfused via a cannula into the left
ventricle of the heart with 0.9% saline followed by 4% paraformaldehyde in 0.1 M phosphate buffer
(PB, pH 7.4). After perfusion, the brains were removed and post-fixed in the same fixative overnight,
and subsequently cryoprotection was conducted with 30% sucrose/0.1 M PBS. Brain coronal sections
of 30µm were obtained with a cryo-microtome. For Western blot, animals were decapitated under
urethane anesthesia. The PC was rapidly dissected out and homogenized in lysis buffer. The protein
concentration in the supernatant was determined using a Micro BCA Protein Assay Kit (Pierce Chemical,
Dallas, TX, USA).

4.5. Immunohistochemistry

Free-floating sections were washed 3 times in PBS (0.1 M, pH 7.3). Next, to inactivate the
endogenous peroxidase, sections were incubated in 3% H2O2 and 10% methanol in PBS (0.1 M) for
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20 min at room temperature. Later, sections were incubated in primary antibody (Table 1). Tissue
sections were developed in 3,3′-diaminobenzidine in 0.1 M Tris buffer and mounted on gelatin-coated
slides. Some sections were incubated with a cocktail solution containing the primary antibodies or
IB4 (Table 1) in PBS containing 0.3% Triton X-100 overnight at room temperature. Thereafter, sections
were visualized with appropriate Cy2- and Cy3-conjugated secondary antibodies. Immunoreaction
was observed using an Axio Scope microscope (Carl Zeiss Korea, Seoul, South Korea). To establish
the specificity of the immunostaining, a negative control test was carried out with preimmune serum
instead of the primary antibody. No immunoreactivity was observed for the negative control in any
structures. All experimental procedures in this study were performed under the same conditions and
in parallel.

Table 1. Primary antibodies and lectin used in the present study.

Antigen Host Manufacturer (Catalog Number) Dilution Used

AKT Rabbit Cell signaling (#9272) 1:1000 (WB)

eNOS Rabbit Abcam (#ab66127) 1:1000 (WB)

GFAP Mouse Millipore (#MAB3402) 1:5000 (IH)

IB4 Vector (B-1205) 1:200 (IH)

Iba-1 Rabbit Biocare Medical (CP 290) 1:500 (IH)

NFκB S276 Rabbit Abcam (ab106129) 1:100 (IH)

NFκB T435 Rabbit Abcam (ab31472) 1:100 (IH)

Nrf2 Rabbit Abcam (ab137550) 1:1000 (WB), 1:100 (IH)

pAKT-T308 Rabbit Cell signaling (#9275) 1:1000 (WB)

pPI3K-Y458 Rabbit Cell signaling (#4228S) 1:1000 (WB)

PI3K Rabbit Cell signaling (#4292S) 1:1000 (WB)

Rat IgG Goat Vector (#PI-9400) 1:200 (IH)

SMI-71 Mouse Covance (#SMI-71R) 1:1000 (IH)

TNF-α Goat R&D systems (AF-510-NA) 1:1000 (IH)

VEGF Rabbit Abcam (#ab46154) 1:1000 (WB)

β-actin Mouse Sigma (#A5316) 1:5000 (WB)

eNOS: Endothelial nitric oxide synthase; GFAP: Glial fibrillary acidic protein; IB4: Isolectin B4; Iba-1: Ionizing
calcium-binding adaptor molecule 1; NF-κB S276: Phospho-nuclear factor-κB p65 serine 276 site; NF-κB T435:
Phospho-nuclear factor-κB p65 threonine 435 site; Nrf2: Nuclear factor-erythroid 2-related factor 2; pAKT-T308:
Phospho-AKT at threonine 308 site; pPI3K-Y458: Phospho-phosphatidylinositol-3-kinase tyrosine 458 site;
Phosphatidylinositol-3-kinase (PI3K); Rat IgG: Rat immunoglobulin; TNF-α: Tumor necrosis factor-α; VEGF:
Vascular endothelial growth factor; IH: Immunohistochemistry; WB: Western blot.

4.6. Measurements of Volumes of Vasogenic Edema and GFAP-Deleted Lesion, Iba-1 Positive Area, and
Fluorescent Intensities

The volumes of vasogenic edema and GFAP-deleted lesion were measured by the modified
Cavalieri method. Areas of vasogenic edema and GFAP-deleted lesion were measured by AxioVision
Rel. 4.8 software (Carl Zeiss Korea, Seoul, South Korea). Thereafter, the volumes (V) were estimated
according to the formula: V = Σa × tnom × 1/ssf, where a is area, tnom is the nominal section thickness
(of 30 µm in this study), and ssf is the section sampling fraction (of 1/6 in this study) [20]. Iba-1 positive
area was also measured, as previously described [26]. Briefly, sections (10 sections per each animal,
n = 7 in each group) were captured, and areas of interest (1 × 104 µm2) were selected. Thereafter,
measurement of Iba-1 positive area was performed on 20× images using AxioVision Rel. 4.8 software.
To measure fluorescent intensity, 30 areas/rat (300 µm2/area) were randomly selected within the PC (15
sections from each animal, n = 7 in each group). Thereafter, mean fluorescence intensities of TNF-α,
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SMI-71, NFκB T435, and Nrf2 signals on each section were measured by using AxioVision Rel. 4.8
software. Intensity measurements were represented as the number of a 256 gray scale. Intensity of each
section was standardized by setting the threshold level (mean background intensity obtained from five
image inputs). Manipulation of the images was restricted to threshold and brightness adjustments
to the whole image. Measurements of volumes of vasogenic edema and GFAP-deleted lesion, Iba-1
positive area, and fluorescent intensities were performed by two different investigators who were blind
to the classification of tissues.

4.7. Western Blot

Western blot was performed by the standard protocol (n = 7 in each group). The primary
antibodies used in the present study are listed in Table 1. The bands were detected and quantified on
an ImageQuant LAS4000 system (GE Healthcare Korea, Seoul, South Korea). As an internal reference,
rabbit anti-β-actin primary antibody (1:5000) was used. The values of each sample were normalized
with the corresponding amount of β-actin. The ratio of phosphoprotein to total protein was described
as the phosphorylation level.

4.8. Data Analysis

All data obtained from the quantitative measurements were analyzed using Student’s t-test
and one-way ANOVA to determine statistical significance. Bonferroni’s test was used for post hoc
comparisons. A p-value below 0.05 was considered statistically significant.

5. Conclusions

To the best of our knowledge, the present data validate, for the first time, the protective effects
of CDDO-Me against SE-induced vasogenic edema formation and astroglial loss in the PC. Briefly,
CDDO-Me attenuated vasogenic edema by inhibiting NF-κB S276 and T435 phosphorylations in
microglia and endothelial cells, which abrogated TNF-α production and BBB disruption induced
by SE, respectively. Furthermore, CDDO-Me protected astrocytes from SE via the up-regulation of
Nrf2 expression. Therefore, these findings propose the underlying pharmacological mechanisms
of CDDO-Me and its derivates against vasogenic edema formation and astroglial degeneration
following SE.
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