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Abstract: Both the presence of, and the important contribution to growth and development made
by TCP transcription factors, have been established in various plant species. Here, a TCP4 homolog
isolated from Chrysanthemum nankingense was shown to be more strongly transcribed in the diploid than
in the autotetraploid form of the species. CnTCP4 was shown to encode a member of the class II TCP
family and to be transcribed most strongly in the leaf and ligulate flowers. Its transcription was found
to be substantially inhibited by spraying the plant with the synthetic cytokinin 6-benzylaminopurine.
The transient expression of CnTCP4 in onion epidermal cells showed that its product localized to
the nucleus, and a yeast one hybrid assay suggested that its product had transcriptional activation
ability. The constitutive expression of CnTCP4 in fission yeast suppressed cell proliferation, inducing
the formation of longer and a higher frequency of multinuclated cells. Its constitutive expression
in Arabidopsis thaliana reduced the size of the leaves. The presence of the transgene altered the
transcription of a number of cell division-related genes. A yeast one hybrid assay identified a second
TCP gene (CnTCP2) able to interact with the CnTCP4 promoter. A transient expression experiment
in Nicotiana benthamiana leaves showed that CnTCP2 was able to activate the CnTCP4 promoter.
Like CnTCP4, CnTCP2 was shown to encode a member of the class II TCP family, to be transcribed most
strongly in the leaf and ligulate flowers, and to be suppressed by exogenous 6-benzylaminopurine
treatment. The CnTCP2 protein also localized to the nucleus, but had no transcriptional activation
ability. Its constitutive expression in A. thaliana had similar phenotypic consequences to those induced
by CnTCP4.
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1. Introduction

Development in a multicellular organism requires precise control over cell proliferation and
expansion. The various phases of the cell cycle each depend largely on the activity of cyclins and
cyclin-dependent kinases (CDKs) [1], with a contribution in plants also being made by members
of the TCP transcription factor family [2–4]. The characteristic feature of the TCPs is a 59 residue
stretch, which forms the basic helix-loop-helix (bHLH) motif central to the proteins’ ability to bind to
DNA and to direct protein–protein interactions [5]. Both the Arabidopsis thaliana and rice genomes
harbor over 20 genes encoding a TCP [6]. Based on variation in the TCP domain sequence, the TCPs
have been divided into two distinct classes, referred to as class I/PCF/TCP-P and class II/TCP-C [7,8].
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While the former act to promote cell division, the latter repress it [6,9]. The products of the A. thaliana
class I genes AtTCP14 and AtTCP15 both drive cell division in young internodes [10], while the
consequence of knocking out the class I genes AtTCP9 and AtTCP20 is to inhibit cell division and to
promote cell expansion [11]. The product of the class II gene AtTCP4 represses cell proliferation in the
A. thaliana leaf [12]. AtTCP4 activates AtGIS, so reducing its presence results in an increase in trichome
branching [3].

The diploid species Chrysanthemum nankingense is a near relative of the commercially important
ornamental species C. morifolium [13,14]. The product of the TCP I gene DgBRC1 represses the
formation of lateral branching [15], that of CmCYC regulates the growth of ray florets [16], while that
of the gene CmTCP14 suppresses the size of the organ [17]. As yet, no attempt has been made to
characterize the complement of TCP genes harbored by the C. nankingense genome. An analysis of an
autotetraploid C nankingense showed that its leaves were larger than those of its diploid progenitor [18].
The experiments reported here were designed to reveal the transcriptional behavior of CnTCP4 in both
diploid and autotetraploid forms of the species, and to study the phenotypic effect of heterologously
expressing it in both fission yeast and A. thaliana.

2. Results

2.1. Characterization of a TCP4 Homolog in C. nankingense

The length of the cloned full cDNA sequence was 1812 nt, of which 1203 nt represented the
coding sequence. CnTCP4 was therefore predicted to be a 400 residue protein, which included
an atypical basic-helix-loop-helix domain (Figure 1c). The sequence was related to the class II
set of TCP proteins, as its most closely related sequence was the product of AtTCP4 (Figure 1d).
CnTCP4 transcript was abundant in both the leaf and ligulate florets of C. nankingense (Figure 1e).
A qRT-PCR experiment revealed that the abundance of CnTCP4 transcript was greater in the
leaf of the diploid form of C. nankingense than in the leaf of the autotetraploid form (Figure 1a).
The autetraploid plants, on the other hand, produced larger leaves than the diploid plants (Figure 1b).
CnTCP4 was significantly downregulated when plants were sprayed with the synthetic cytokinin
6-benzylaminopurine; the abundance of its transcript decreased marginally over the first 4 h following
treatment, but fell by at least twofold over the period 8–24 h post treatment (Figure 2).

When the p35S::GFP-CnTCP4 fusion construct was transiently expressed in onion epidermal
cells, the ensuing GFP signal was concentrated in the nucleus, while the introduction of a p35S::GFP
transgene resulted in a cell-wide distribution of GFP activity (Figure 3a). The upshot of a yeast one
hybrid experiment intended to reveal the gene’s transcriptional activity was that yeast cells harboring
either pCL1, pGBKT7-CnTCP4, or pGBKT7-CnTCP4-F3 were all able to grow on SD/-His/-Ade
and to metabolize X-α-Gal, while cells harboring either the negative control plasmid pGBKT7,
pGBKT7-CnTCP4-F1, or pGBKT7-CnTCP4-F2 all failed to show any galactosidase activity (Figure 3b,d).
The conclusion was that the full length CnTCP4 was transcriptionally active, and that residues
201–300 were required for its transcriptional activation.
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Figure 1. The C. nankingense homolog of AtTCP4. (a) CnTCP4 was transcribed more abundantly in
the diploid than in the autotetraploid form of C. nankingense. Values shown as mean ± SE (n = 3).
(b) The leaf of the autotetraploid was larger than that of the diploid. Bar: 1 cm. (c) Alignment of the
polypeptide sequences of CnTCP4, CnTCP2, and A. thaliana class II TCPs. The key domains were
identified. (d) The phylogenetic relationship of CnTCP4 and CnTCP2 to the family of A. thaliana TCPs.
(e) The transcription of CnTCP4 throughout the C. nankingense plant. Values shown as mean ± SE
(n = 3).
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Figure 2. Effects of 6-benzylaminopurine on CnTCP4 transcription. Values shown as mean ± SE (n = 3).
Columns headed by a different letter denote transcript abundances differing significantly (p < 0.05)
from the transcript abundance measured in unsprayed (CK) plants. The x axis indicated the time point
of the assay following the spray treatment.
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Figure 3. Subcellular localization of CnTCP4 in transgenic onion epidermal cells and the transcriptional
activation activity of CnTCP4. (a) GFP activity generated by the p35S::GFP-CnTCP4 transgene introduced
into onion epidermis peels. Fluorescence: image recovered from the green fluorescence channel, DIC:
image recovered under bright light, merged: an overlay of the fluorescence and DIC images. Bar:
50 µm. (b) a yeast one hybrid assay used to detect the transcriptional activation activity of CnTCP4.
(c) fragment constructs of different C’-deletion of CnTCP4 amino acid. (d) transcriptional activation
activity of different C’-deletion of CnTCP4.

2.2. The Heterologous Expression of CnTCP4 Affected Cell Division of Fission Yeast

Yeast is used as a model system for studying gene function [19,20], and AtTCP4 protein has been
studied in yeast cells [2]. So we investigated the function of CnTCP4 gene using the yeast system.
CnTCP4, when driven by the NMT1 promoter, was induced in a medium lacking thiamine (Figure 4a).
Under inductive conditions, the proliferation of cells heterologously expressing CnTCP4 was strongly
inhibited, while in a noninductive medium, transformants harboring either CnTCP4 or an empty
pESPM plasmid both grew freely (Figure 4b,c). When cultured under inductive conditions, the length
of cells harboring the CnTCP4 transgene was some 2.5 fold greater than that of those harboring the
empty vector (Figure 4d,e), and some of those expressing CnTCP4 were multiseptated. Inspection of
DAPI stained transformed cells revealed morphological differences between those expressing CnTCP4
and those harboring the empty vector (Figure 5a): the former produced many cells harboring two
nuclei or multiple nuclei (Figure 5b). The conclusion was that the expression of CnTCP4 suppressed
cell proliferation via its effect on both cell division and cell expansion.
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Figure 4. The effect of expressing CnTCP4 on the growth of fission yeast. (a) RT-PCR analysis of
the transcription of the CnTCP4 transgene in yeast. (b) Dilution analysis of the yeast transformants
harboring CnTCP4 or an empty vector with (+VB1) or without VB1 (-VB1) on EMM medium. (c) The
growth of CnTCP4 and empty transgenic cells in the presence and absence of VB1 in the growth
medium. Values shown as mean ±SE (n = 3). (d) The appearance of cells harboring CnTCP4 or an
empty vector in response to the absence of VB1 in the medium. Bar: 10 µm. (e) The length of cells
grown in a medium lacking VB1. Values shown as mean ± SE (n = 1000).
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Figure 5. The effect of expressing CnTCP4 on the appearance of fission yeast grown in a medium lacking
VB1. (a) DAPI stained cells carrying an empty vector (pESPM) and those carrying the pESPM::CnTCP4
transgene (CnTCP4). Bar: 10 µm. (b) The frequency of cells carrying multiple nuclei. Values shown as
mean ± SE (n = 1000).
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2.3. The Effect of Constitutively Expressing CnTCP4 in A. thaliana

Two independent constitutive expressors of CnTCP4 in A. thaliana were selected among the T3

progeny bred from the original transformed Col-0 material (Figure 6a). Their vegetative growth was
severely compromised compared to wild-type plants (Figure 6b); although they formed a higher
number of rosette leaves (Figure 6c), both their leaf length (Figure 6d) and width (Figure 6e) were
reduced. The size of the cells formed in the epidermis of the lower leaf surface was larger than in
wild-type plants (Figure 6f,g). The effect of the transgene on the transcription of a range of cell cycle
marker genes was summarized in Figure 7. The abundance of CYCA1;1, CYCA3;1, CYCA3;2, CYCB2;4,
CDKB1;2, CDKB2;2, CDKD;2, and CDKD;3 transcripts were lower in the transgenic plants than in wild
type, and vice versa for KRP5 and E2Fc, there was no effect on the transcript abundance of either
CDKC;1 or CDKG;2.
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Figure 6. The phenotypic effect of constitutively expressing CnTCP4 in A. thaliana. (a) RT-PCR-based
identification of the transgenic A. thaliana plants OX-1 and OX-2. (b) The appearance of 35-day-old
wild-type Col-0, OX-1, and OX-2 plants. Bar: 1 cm. Quantification of leaf growth. (c) number of rosette
leaves (d) length of the fifth leaf. (e) width of the fifth leaf. (f) surface area of cells in the fifth leaf.
Values in (c) through (f) shown as mean ± SE (n = 10). (g) The appearance of epidermal cells sampled
from the fifth leaf. Bar: 50 µm.
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Figure 7. The effect of constitutively expressing CnTCP4 in A. thaliana on the transcription of cell cycle
marker genes. Col-0: wild-type plants; OX-1, OX-2: transgenic plants. Values shown as mean ± SE
(n = 3). Columns headed by a different letter denote transcript abundances differing significantly
(p < 0.05) from the transcript abundance measured in Col-0 plants.



Int. J. Mol. Sci. 2019, 20, 4848 7 of 17

2.4. CnTCP2 Interacted with the CnTCP4 Promoter

Multiple potential TCP binding sites were identified within the CnTCP4 promoter fragment
(Figure S1), and various ethylene-responsive, gibberellin-responsive, and light-responsive elements
were predicted by PLACE software (Table 1). When the CnTCP4 promoter fragment was subjected
to a yeast one hybrid assay, a sequence designated CnTCP2 was identified as a putative interacting
transcription factor. The interaction was confirmed by testing the CnTCP2 ORF sequence in an
independent yeast one hybrid assay featuring the same CnTCP4 promoter fragment (Figure 8a).
In addition, a transient assay conducted in N. benthamiana leaves showed that leaves infiltrated
with a pCnTCP4::LUC transgene generated less LUC activity than did leaves co-infiltrated with both
pCnTCP4::LUC and p35S::CnTCP2 (Figure 8b).

Table 1. An in silico analysis of the regulatory element content of the CnTCP4 promoter.

Motif No. Distance from ATG (bp) Function

CAT-box 1 1116 cis-acting regulatory element related to
meristem expression

CCGTCC-box 3 662, 1154, 1330 cis-acting regulatory element related to meristem
specific activation

CGTCA-box 1 686 cis-acting regulatory element involved in the
MeJA-responsiveness

ERE 1 998 ethylene-responsive element
P-box 2 994, 1022 gibberellin-responsive element

TCA-element 1 32 cis-acting element involved in salicylic
acid responsiveness

TGACG-box 1 686 cis-acting regulatory element involved in the
MeJA-responsiveness

ARE 2 92, 159 cis-acting regulatory element essential for the
anaerobic induction

EIRE 1 902 elicitor-responsive element
Box-W1 2 913, 957 fungal elicitor responsive element

Skn-1 motif 2 106, 681 cis-acting regulatory element required for
endosperm expression

LTR 3 969, 1086, 1261 cis-acting element involved in
low-temperature responsiveness

CAAT-box 2 1276, 1292 common cis-acting element in promoter and
enhancer regions

MRE 1 1189 MYB binding site involved in light responsiveness
GT1-motif 1 1105 light responsive element

Sp1 1 826 light responsive element
Box I 4 353, 639, 994, 1168 light responsive element

AAAC-motif 1 412 light responsive element
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Figure 8. The CnTCP4 promoter interacted with CnTCP2. (a) Yeast one hybrid assay. Dilution analysis
of the yeast transformants harboring CnTCP4-Pro and empty pGADT7 vector or CnTCP4-Pro and
pGADT7-CnTCP2 on medium lacking His, Ura, and Leu with 3-AT or without it. -HUL: medium
lacking His, Ura, and Leu; (b) CnTCP2 activated the CnTCP4 promoter in N. benthamiana leaves.
P19+GV3101+GV3101: cultures of P19 plus GV3101 at a ratio of 1:2, P19+GV3101+35S::CnTCP2:
cultures of P19 plus GV3101 and p35S::CnTCP2 at a ratio of 1:1:1, P19+GV3101+CnTCP4
Pro:LUC: cultures of P19 plus GV3101 and pCAMBIA1381Z-Luc-CnTCP4-Promoter at a
ratio of 1:1:1, P19+35S::CnTCP2+CnTCP4 Pro:LUC: cultures of P19 plus p35S::CnTCP2 and
pCAMBIA1381Z-Luc-CnTCP4-Promoter at a ratio of 1:1:1. Values shown as mean ± SE (n = 10).

2.5. Characterization of the CnTCP2 Sequence

The full length CnTCP2 cDNA sequence comprised 2066 nt, of which 1329 nt was occupied by the
ORF: its gene product was 442 residues long. The sequence was classified as a class II TCP, related
more strongly to AtTCP2 than to any other A. thaliana TCP gene (Figure 1b). The sequence encoded
an atypical bHLH domain (Figure 1c). The gene was abundantly transcribed in ligulate florets and
leaves (Figure S2a), and was strongly downregulated in plants sprayed with 6-benzylaminopurine
(Figure S2b). The gene product was directed to the nucleus (Figure S3a), and lacked transcriptional
activation activity (Figure S3b). Analysis of the two independent constitutive expressors of CnTCP2
in A. thaliana selected among the T3 progeny bred from the original transformed Col-0 material
(Figure 9a) showed that that presence of the transgene affected growth in the same way as did the
constitutive expression of CnTCP4 (Figure 9b–g). The abundance of CYCA1;1, CYCB2;4, CDKB1;2,
CDKD;2, and CDKD;3 transcripts were lower in the transgenic plants than in Col-0, and vice versa for
CDKC;1, CDKG;2, KRP5, and E2Fc (Figure 9h).
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Figure 9. The phenotypic effect of constitutively expressing CnTCP2 in A. thaliana. (a) RT-PCR-based
identification of the transgenic A. thaliana plants OX-1 and OX-2. (b) The appearance of 35-day-old Col-0
wild type, and transgenic OX-1 and OX-2 plants. Bar: 1 cm. Quantification of leaf growth. (c) number
of rosette leaves. (d) length of the fifth leaf. (e) width of the fifth leaf. (f) surface area of cells in the
fifth leaf. Values in (c) through (f) shown as mean ± SE (n = 10. (g) The appearance of epidermal cells
sampled from the fifth leaf. Bar: 50 µm. (h) The transcription of cell cycle marker genes. Col-0: wild
type plants; OX-1, OX-2: transgenic plants. Values shown as mean ± SE (n = 3). Columns headed
by a different letter denote transcript abundances differing significantly (p < 0.05) from the transcript
abundance measured in Col-0 plants.

3. Discussion

TCP transcription factors, featuring a bHLH motif that facilitates their ability to bind to DNA and
to mediate protein–protein interactions, are unique to plants, and contribute to both their growth and
development [6]. Both the CnTCP4 and CnTCP2 genes harbored by C. nankingense encode class II TCPs.
Proteins of this type have been implicated in the regulation of several aspects of plant development,
including the development of axillary meristems and the differentiation of lateral organs [3,21,22].
Antirrhinum majus cin mutants (CIN encodes a TCP transcription factor that promotes growth arrest,
particularly at the leaf margin) develop larger leaves than do wild-type plants, and their leaves have an
undulating edge due to excessive growth at the leaf margin [23]. The A. thaliana JAW locus generates a
microRNA, which guides the cleavage of several TCP mRNAs controlling leaf development, and its
loss-of-function mutant exhibits a crinkly leaf phenotype [24]. The product of AtTCP3 is thought to be
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an important regulator of shoot lateral organ morphology [21], while the expression of a hyperactivated
form of AtTCP4 dampens cell proliferation, producing plants with cup-shaped leaves of reduced
size [25]. At the early stages of leaf development, the TIE1 protein has been shown to modulate leaf size
and shape through its inhibition of TCP activity [26]. Here, it was demonstrated that the constitutive
expression of CnTCP4 in A. thaliana had the effect of reducing leaf size, indicating that its product
represses leaf development.

CIN-like TCP transcription factors are known to regulate growth though their interaction with
phytohormone-associated pathways. For instance, AtTCP3 activates the auxin signaling repressor
IAA3/SHY2 [27]. The expression of the rice gene OsTCP5 is influenced by both strigolactone and
cytokinin [28]. Meanwhile AtTCP4 interacts with pathways associated with auxin, gibberellin,
and abscisic acid [29]. It also promotes the synthesis of jasmonate via the upregulation of LOX2 [11,30].
In the present study, ethylene-, gibberellin-, jasmonate- and salicylic-responsive regulators were all
identified within the CnTCP4 promoter sequence (Table 1), suggestive of the participation of CnTCP4 in
the phytohormone-directed regulation of plant growth, a conclusion supported by the transcriptional
responsiveness of CnTCP4 to treatment with the synthetic cytokinin 6-benzylaminopurine (Figure 2).
Cytokinin 6-benzylaminopurine promoted cell division by repressing the expression of CnTCP4.

AtTCP4 has been implicated in coordinating cell division and cell differentiation in the developing
leaf; since the downregulation of AtTCP4 has been shown to promote mitotic activity [24,31],
the overexpression of this gene induces cells to exit the proliferation phase prematurely, resulting in the
formation of smaller leaves [25]. Here, the constitutive expression of CnTCP4 in fission yeast caused
the cells to elongate and to become multiseptated, while also suppressing cell division; its constitutive
expression in A. thaliana reduced leaf size and expanded the size of the epidermal cells on the abaxial
leaf surface. It showed a significant increase in average epidermal cell size in tcp20 mutant leaves,
but no obvious size or shape alterations could be observed in the tcp20 mutant line, owing to the fact
that the cell size effect was accompanied by a reduction in total cell number in the leaf [11]. Smaller
leaf phenotypes could be observed in overexpressed CnTCP2/4 lines, indicating that the cell size effect
is completely compensated for by a reduction of the total number of cells in the leaf. The suggestion is
that these effects derive from the transgene product’s suppression of cell proliferation, allied with its
promotion of cell expansion. This notion is fully consistent with the observation that the tetraploid
form of C. nankingense formed larger leaves than did the diploid form, while the abundance of CnTCP4
transcript was significantly lower (Figure 1b).

The timing of the onset of cell proliferation and expansion is correlated with the transition from
cell division to the endocycle [32]. Cell division is orchestrated by a number of proteins, including
cyclins, CDKs, and CDK inhibitors [33]. The activity of the CDK–cyclin complex is regulated by
CDK-activating enzymes and CDK inhibitory proteins [34,35]. Here, all of AtCYCA1;1, AtCYCA3;1,
AtCYCA3;2, AtCYCB2;4, AtCDKB1;2, AtCDKB2;2, AtCDKD;2, and AtCDKD;3 were downregulated
in plants constitutively expressing CnTCP4, which may explain the observed reduction in leaf size
induced by the transgene, because each of these genes acts to suppress cell division. The CDKCs
are responsible for the phosphorylation of the C terminal domain of RNA polymerase II. According
to Kitsios et al. (2008), the function of the plant CDKC–CycT complex may be similar to that of the
mammalian CDK9/CycT complex of the positive transcription elongation factor b [36]. In A. thaliana,
a loss of CDKC;2 activity promotes cell division [37]. The A. thaliana genome harbors two genes
encoding G-type CDKs, one which complexes with CYCL1 to delay entry into the cell cycle [38].
AtKRP5 influences cell cycle progression at both the G1/S and G2/M transitions by inhibiting the kinase
activity of the CYCD2/CDKB complex and reconstituted CYCD2-associated kinases [39]. AtE2FC is a
further protein that regulates entry into the G1/S transition [40]. Here, the upregulation of AtCDKC;1,
AtCDKG;2, AtKRP5, and AtE2Fc induced by the constitutive expression of CnTCP4 may have acted to
inhibit cell division, thereby contributing to the reduction in leaf size observed in the transgenic plants.

BHLH proteins regulate their downstream targets by interacting with sequences within their
promoter [41]. The AtTCP20 protein binds to the promoter of AtTCP9, thereby triggering its
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expression [11]. Based on the yeast one hybrid experiment and the transient expression assay in
N. benthamiana leaves carried out here, the CnTCP2 protein was concluded as capable of binding
to the CnTCP4 promoter. The constitutive expression of CnTCP2, as was also the case for CnTCP4,
suppressed cell division and promoted cell expansion, which suggests the presence in C. nankingense
of a TCP2–TCP4 pathway. CnTCP2 had no transcription activity, but the constitutive expression of
CnTCP2 in A. thaliana also generated the same phenotype as CnTCP4 (Figures 6 and 9), it is possible
that CnTCP2 binds to AtTCP4 and hence produces small plants.

4. Materials and Methods

4.1. Plant Materials

The accessions of diploid and autotetraploid C. nankingense used here were maintained by Nanjing
Agricultural University’s Chrysanthemum Germplasm Resource Preserving Centre. Plants were
propagated by cutting and grown in a 1:1 (v/v) mixture of soil and vermiculite. Rooted seedlings were
grown in a greenhouse maintained at 22 ◦C during the day and at a minimum of 15 ◦C during the
night; the relative humidity ranged from 70% to 75%. A. thaliana (ecotype Col-0) plants were grown in
a 1:1:1 (v/v/v) mixture of vermiculite, perlite, and soil under a 16 h photoperiod (80–100 µmol m−2 s−1

illumination), and a day/night temperature regime of 22 ◦C/18 ◦C.

4.2. Transcription Profiling of CnTCP4

Transcription profiling was performed using quantitative real-time PCR (qRT-PCR), based on
the primer pair CnTCP4-QF/QR (sequences given in Table S1). Total RNA was extracted from C.
nankingense tissue using the RNAiso reagent (TaKaRa, Tokyo, Japan) according to the manufacturer’s
instructions. Each qRT-PCR assay was represented by three technical replicates, and each sample by
three biological replicates. The C. nankingense EF1α gene was used as the reference (primer sequences
given in Table S1). The reactions were initially denatured (95 ◦C/2 min), then cycled 40 times through
95 ◦C/15 s, 55 ◦C/15 s, 72 ◦C/20 s. Relative transcript abundances were calculated using the 2−44Ct

method [42].

4.3. Cloning and Sequencing of CnTCP4 cDNA

Diploid C. nankingense leaves were snap-frozen in liquid nitrogen, and total RNA isolated using
the RNAiso reagent (TaKaRa, Tokyo, Japan), following the manufacturer’s instructions. The first
cDNA strand was synthesized from 1 µg total RNA using M-MLV reverse transcriptase (TaKaRa)
according to the manufacturer’s instructions. The primer pair CnTCP4-F/-R (sequences given in Table
S1) was designed to amplify a fragment of CnTCP4 based on a sequence represented in a transcriptome
database [43]. The full length cDNA sequence was obtained by applying 5’- and 3’-RACE PCR. For the
3’-RACE reaction, the first cDNA strand was generated using the dT adaptor primer, following by
a nested PCR based on the primer pairs CnTCP4-3’-F1/F2/F3 and the Adapter-R adaptor primer
(sequences given in Table S1). For the 5’ reaction, the nested PCR used the primers AAP and AUAP
provided with a 5’ RACE System kit v2.0 (Invitrogen, Carlsbad, CA, USA), along with the gene-specific
primers CnTCP4-5’-F1/-F2/-F3 (sequences given in Table S1). The PCR products were purified using an
AxyPrep DNA Gel Extraction kit (Axygen, Shanghai, China) and inserted into pMD19-T (TaKaRa) for
sequencing. Finally, a gene-specific primer pair (CnTCP4-ORF-F/-R, sequences given in Table S1) was
designed to amplify the gene’s complete open reading frame (ORF) sequence.

4.4. Phylogenetic Analysis

A. thaliana TCP sequences were downloaded from the Arabidopsis Transcription Factors
database [44], and combined with the newly acquired CnTCP4 sequence to perform a multiple
alignment analysis based on ClustalW software [45]. The subsequent phylogenetic analysis was based
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on the neighbor-joining method, as implemented in MEGA v6 software [46]. The robustness of each
dendrogram branch was estimated by means of a bootstrap analysis (1000 replicates).

4.5. Phytohormone Treatments

The diploid form of C. nankingense at the 6–8 leaf stage were chosen to assess the transcriptional
response of CnTCP4 to 5.0 µM 6-benzylaminopurine treatment [47]. Control plants were sprayed with
distilled water. The leaves were sampled both before the first spray treatment, and then again after 1, 2,
4, 8, 12, and 24 h. Each treatment was replicated three times. The leaf samples were snap-frozen in
liquid nitrogen and stored at −70 ◦C.

4.6. Subcellular Location of CnTCP4

The CnTCP4 ORF sequence (lacking the stop codon) was amplified with the primer pair
CnTCP4-pENTR1A-F/R (sequences given in Table S1) using a Phusion High-Fidelity PCR kit
(New England Biolabs, MA, USA). Both the amplicon and the pENTR™ 1A vector (Invitrogen)
were restricted with BamHI and NotI, and the products ligated using T4 DNA ligase (TaKaRa).
Following its validation by sequencing, the pENTR™1A-CnTCP4 fusion product was recombined with
pMDC43 using the LR Clonase™ II enzyme mix (Invitrogen) to form the construct p35S::GFP-CnTCP4.
The p35S::GFP-CnTCP4 transgene or an empty pMDC43 vector were transiently transformed into
onion epidermal cells using a PDS-1000 particle accelerator (Bio-Rad, Hercules, CA, USA) according
to the manufacturer’s instructions. The epidermal peels were incubated in the dark at 22 ◦C for 16 h
on Murashige and Skoog (MS) medium [48]. The expression of GFP was observed by confocal laser
microcopy (Leica SP2, Wetzlar, Germany).

4.7. Transactivation Activity Assay of CnTCP4

The transactivation activity of CnTCP4 was tested with a yeast one hybrid assay [48]. The three
different C’-deletion variants of the CnTCP4 coding region (Figure 3c) were amplified using the
primer pair CnTCP4-pENTR1A-F plus one of CnTCP4-pENTR1A-R1/-R2/-R3 (sequences given
in Table S1). The resulting fragments were inserted into pENTR™1A via the BamHI and NotI
cloning sites. The resulting pENTR™1A-CnTCP4, pENTR™1A-CnTCP4-F1, pENTR™1A-CnTCP4-F2,
and pENTR™1A-CnTCP4-F3 fusions were subsequently recombined with pDEST-GBKT7 via an
LR reaction (Invitrogen) to form the constructs pDEST-GBKT7-CnTCP4, pDEST-GBKT7-CnTCP4-F1,
pDEST-GBKT7-CnTCP4-F2, and pDEST-GBKT7-CnTCP4-F3. Each of these four constructs, plus pCL1
(positive control) and pDEST-GBKT7 (negative control), were introduced individually into Y2H Gold
yeast cells (Clontech, Mountain View, CA, USA) following the manufacturer’s protocol. Selection
for transformants (except for those carrying pCL1) was carried out by culturing the cells on SD/-Trp
medium, while the pCL1 transformants were cultured on SD/-Leu medium. All of the transformant
cell lines were finally plated on SD/-His/-Ade medium containing 20 mg/mL X-α-Gal, and incubated at
30 ◦C.

4.8. Yeast Transformation, Growth, and Observation

The CnTCP4 coding sequence was amplified using primer pair CnTCP4-XhoI-F/ CnTCP4-BamHI-R
(sequences given in Table S1) and the resulting amplicon inserted into pESPM via its XhoI and
BamHI cloning sites to form the construct pESPM-CnTCP4. This construct (and in parallel, as a control,
an empty pESPM plasmid) was transformed into Schizosaccharomyces pombe Leu- SPQ-01 using a lithium
acetate-mediated method, as recommended in a commercial protocol (Clontech), and transformants
were selected on Edinburgh minimal medium (EMM) agar plates containing thiamine held at 30 ◦C.
Selected cells were then cultured in liquid EMM containing thiamine held at 30 ◦C up to the
mid-exponential phase, after which they were flushed three times with EMM lacking thiamine to
de-repress the NMT1 promoter. The same transgenic mid-exponential cells were then streaked onto
liquid EMM (either with or without thiamine) and incubated at 30 ◦C for 30 h, and cell densities were
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monitored by measuring the OD600. The same number of transformed mid-exponential yeast cells were
also streaked onto solid EMM medium with or without thiamine and incubated at 30 ◦C for 60 h. CnTCP4
transcription was monitored using an RT-PCR assay (primer pair CnTCP4-XhoI-F/CnTCP4-BamHI-R,
sequences given in Table S1), after total RNA had been isolated from the cells using a Fungi RNA
kit (Hua Yue Yang, Beijing, China). The S. pombe Tubulin gene was used as the reference (primer
sequences given in Table S1). Cells were stained in a 1 mg/mL solution of 4,6-diamidino-2-phenylindole
(DAPI) and monitored by fluorescence microscopy (Zeiss Axioskop40, CarlZeiss, Jena, Germany).
Mean cell lengths were compared using routines implemented in SPSS v17.0 software (SPSS Inc.,
Chicago, IL, USA).

4.9. A. thaliana Transformation and Transcriptional Profiling of Cell Cycle Marker Genes

The p35S::GFP-CnTCP4 construct was introduced into Agrobacterium tumefaciens strain EHA105,
and from thence into A. thaliana Col-0 using the floral dip method [49]. Transformants were selected
by culturing on half strength MS medium agar plates containing 20 µg/mL hygromycin, and were
advanced to the T3 generation. The zygosity of the transgene was identified using a RT-PCR assay
based on the primer pair CnTCP4-ORF-F/R (sequences given in Table S1). The size of epidermis cells
from the abaxial surface of the fifth leaf of ten independent 35-day-old T3 plants was measured from
phase contrast micrographs. The transcriptional behavior of selected cell cycle marker genes was
derived from qRT-PCR assays, with the AtActin gene chosen as the reference (primer sequences given
in Table S1). RNA was extracted from the fifth leaves of 28-day-old wild-type and transgenic plants
using the RNAiso reagent (TaKaRa) according to the manufacturer’s instructions.

4.10. Cloning of CnTCP4 Promoter

Genomic DNA was extracted from leaves of diploid C. nankingense using a modified CTAB
method [50], and used as a PCR template (primed by CnTCP4-DNA-F/-R, sequences given in Table S1)
to scan for the presence of introns in the coding sequence. The CnTCP4 promoter was cloned from the
genomic DNA using an LA PCRTM in vitro Cloning kit (TaKaRa), according to the manufacturer’s
instructions, using the primer pair promoter-AP/CnTCP4-pro-SP1 (sequences given in Table S1).
A second nested round of PCR was performed using 1 µL of the initial PCR as the template and the
primer pair promoter-AP/CnTCP4-pro-SP2 (sequences given in Table S1). The final nested PCR used
1 µL of the second PCR as the template and the primer pair promoter-AP/CnTCP4-pro-SP3 (sequences
given in Table S1). Primer pair CnTCP4-pro-F/R (sequences given in Table S1) was then used to amplify
the CnTCP4pro-1336 sequence. Functional elements of CnTCP4 promoter were predicted by PLACE
(http://www.dna.affrc.go.jp/PLACE/signalup.html).

4.11. Yeast One Hybrid Assay

The primer pair CnTCP4-PHIS-F/R (sequences given in Table S1) was used to amplify the
CnTCP4pro-1336 sequence and the amplicon was inserted into the pHISi plasmid (Clontech),
which contains the HIS3 reporter gene and a minimal HIS3 promoter, to generate the reporter
construct pHISi-CnTCP4pro-1336. The recombined plasmid was linearized by digestion with AflII,
and the resulting fragment introduced into brewers’ yeast (S. cerevisiae) strain YM4271 (Clontech)
following the manufacturer’s protocol. The cells were cultured on SD/-His/-Ura medium for the
selection of cells harboring the reporter plasmid, and then cultured on SD/-His/-Ura medium containing
different 3-amino-1,2,4-triazole (3-AT) concentrations to select optimal 3-AT concentration. The selected
cells, along with a premade Y1H cDNA library, were transformed into S. cerevisiae strain YM4271,
and transformants were selected on SD/-His/-Ura/-Leu medium containing 30 mM 3-AT.

A gene-specific primer pair (CnTCP2-ORF-F/-R, sequences given in Table S1) was designed
to amplify the complete open reading frame sequence of CnTCP2. The CnTCP2 ORF sequence
was inserted into the yeast expression plasmid pDEST-GADT7 (Clontech) to generate the
effector plasmid pDEST-GADT7-CnTCP2 (CnTCP2-pENTR1A-F/R, sequences given in Table S1).

http://www.dna.affrc.go.jp/PLACE/signalup.html
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The pHISi-CnTCP4pro-1336 reporter plasmid and the pDEST-GADT7-CnTCP2 effector plasmid were
transformed into S. cerevisiae strain YM4271, and the transformants selected by culturing on a
SD/-His/-Ura medium. Selected transgenic cells were then cultured on SD/-His/-Ura/-Leu medium
containing 30 mM 3-AT to monitor the activation of the CnTCP4 promoter.

4.12. Transient Expression Assay in Nicotiana benthamiana Leaves

A transient assay was used in N. benthamiana leaves to investigate whether CnTCP2 can interact
with the CnTCP4 promoter in planta. The primer pair CnTCP4-LUC-F/-R (sequences given in Table S1)
was used to amplify the CnTCP4 promoter and the amplicon was ligated into pCAMBIA1381Z-Luc
(Clontech) to generate the reporter construct pCAMBIA1381Z-Luc-CnTCP4-Promoter. Overnight
culturezzs of Agrobacterium tumefaciens GV3101 harboring the reporter construct, the effector construct
p35S::GFP-CnTCP2, or an empty P19 plasmid were suspended in infiltration buffer (2 mM NaH2PO4,
50 mM MES, 100 µM acetosyringone, and 0.5% Glc) in sufficient density to give an OD600 of 0.2. Leaves
of 42-day-old N. benthamiana plants were spot-infiltrated with the transgenic Ag. tumefaciens cells,
following the Wang et al. (2014) protocol [51]. The experiment group was performed with cultures
of P19 plus 35S::CnTCP2 and pCAMBIA1381Z-Luc-CnTCP4-Promoter at a ratio of 1:1:1. The control
group were performed with P19 plus GV3101 at a ratio of 1:2, P19 plus GV3101 and 35S::CnTCP2
at a ratio of 1:1:1, P19 plus GV3101 and pCAMBIA1381Z-Luc-CnTCP4-Promoter at a ratio of 1:1:1.
Luciferase was imaged 48–96 h after infiltration, following the Walley et al. (2007) protocol [52].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/19/4848/s1.
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