
 International Journal of 

Molecular Sciences

Review

Mitochondrial Calcium Uniporter Structure and
Function in Different Types of Muscle Tissues in
Health and Disease

Nadezhda V. Tarasova 1,*, Polina A. Vishnyakova 2 , Yulia A. Logashina 1,3

and Andrey V. Elchaninov 2,4,5

1 Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str. 8, bld. 2,
Moscow 119991, Russia; yulia.logashina@gmail.com

2 National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician
V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, Moscow 117997, Russia;
vpa2002@mail.ru (P.A.V.); elchandrey@yandex.ru (A.V.E.)

3 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences,
Miklukho-Maklaya Street 16/10, Moscow 117997, Russia

4 Scientific Research Institute of Human Morphology, 3 Tsurupa Street, Moscow 117418, Russia
5 Peoples’ Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow 117198, Russia
* Correspondence: compasstar@gmail.com; Tel.: +7-495-609-1400

Received: 14 August 2019; Accepted: 26 September 2019; Published: 28 September 2019
����������
�������

Abstract: Calcium ions (Ca2+) influx to mitochondrial matrix is crucial for the life of a cell.
Mitochondrial calcium uniporter (mtCU) is a protein complex which consists of the pore-forming
subunit (MCU) and several regulatory subunits. MtCU is the main contributor to inward Ca2+

currents through the inner mitochondrial membrane. Extensive investigations of mtCU involvement
into normal and pathological molecular pathways started from the moment of discovery of its
molecular components. A crucial role of mtCU in the control of these pathways is now recognized
in both health and disease. In particular, impairments of mtCU function have been demonstrated
for cardiovascular and skeletal muscle-associated pathologies. This review summarizes the current
state of knowledge on mtCU structure, regulation, and function in different types of muscle tissues in
health and disease.
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1. Introduction

Calcium ions (Ca2+) are indispensable for signal transduction and regulation of target cell activity.
Mitochondria are widely recognized as one of the key organelles maintaining Ca2+ homeostasis [1,2].
In mitochondrial matrix, Ca2+ stimulates mitochondrial activity, metabolism, and energy production,
thus allowing the cells to adapt to immediate metabolic needs [3]. On the other hand, the mitochondrial
Ca2+ buffer prevents the excessive increase in metabolism induced by Ca2+ stimulation [4]. In addition
to its influence on bioenergetics, mitochondrial Ca2+ plays an important role in the regulation of
various aspects of the cell life from contractility [5], chemotaxis, and migration [6,7] to reactive oxygen
species (ROS) production [8], cell cycle and proliferation, the mitochondrial permeability transition
pore (mPTP) opening, and cell death [9–11].

Since Ca2+ is a universal second messenger, the mitochondrial Ca2+ homeostasis is affected in
various pathologies. Indeed, alterations in mitochondrial Ca2+ handling were observed in a range of
cancers [4,12], as well as cardiovascular [13] and neurodegenerative [14] diseases.
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Ca2+ penetrates through the outer mitochondrial membrane via a voltage-dependent anion
channel (VDAC) [15]. The mitochondrial Ca2+ uniporter (mtCU), located in the inner mitochondrial
membrane, unequivocally represents the dominant mechanism of Ca2+ transport from intermembrane
space to mitochondrial matrix, although several mtCU-independent mechanisms were identified as
well [16]. Ca2+ efflux from mitochondria occurs via Na+/Ca2+ and H+/Ca2+ exchangers [1].

In this review, we discuss the most recent discoveries on the molecular structure of mtCU and
the regulatory mechanisms underlying its activity in connection with its function in different types of
muscle tissue under normal physiological conditions and in pathology.

2. Structural and Electrophysiological Characteristics of MtCU

MtCU consists of at least four main components: The pore-forming subunit (MCU) capable of
higher-order oligomerization, the essential MCU regulator (EMRE), and two membrane gate-keeping
factors (MICU1 and MICU2) (Figure 1) [17,18]. The summer of 2018 could rightly be called the season
of cryo-electron microscopy (cryo-EM) for mtCU, since three significant works on its structure were
published at this time [19–21]. Two years earlier, a core region of MCU was determined using nuclear
magnetic resonance (NMR) by Oxenoid et al. [17]. MCU forms an elongated tetramer where each of
the four protomers consists of three structural domains: Hydrophobic transmembrane domain (TMD),
mainly located in the inner membrane; N-terminal domain (NTD) and coiled-coil domain (CCD), jointly
forming a large hydrophilic region located in the mitochondrial matrix [19]. TMD is formed by two
helices (TM1, TM2) which play a major role in the mtCU architecture: TM1 is essential for the interaction
with EMRE while TM2 forms the central ion conduction pore [21]. A highly-conserved sequence motif
W-D-Φ-Φ-E-P-V-T-Y (Φ stands for a hydrophobic amino acid) is located in the N-terminal region of
TM2. The Asp and Glu residues in this motif from each of the four protomers form two acidic rings in
the channel pore and has been proposed to constitute the selective Ca2+ filter [17,22–24]. Human MCU
also contains the linker helix domain (LHD) that links the NTD and CC1 helix of CCD. In human MCU,
the Asp and Glu residues in the W-D-I-M-E-P sequence motif (denoted as “DIME sequence”) are also
involved in the formation of two rings of acidic residues for the selective Ca2+ permeation [18,25].

MtCU had been identified as a highly selective Ca2+ channel in the mitochondrial inner membrane long
before its molecular nature was determined [12,26,27]. Nevertheless, the data on the electrophysiological
properties of mtCU are rather heterogeneous and sometimes controversial. Whereas mtCU currents
recorded in recombinant MCU-MICU1 [28] and MCU-EMRE [29] complexes in the planar lipid
bilayers differ several times, data from whole mitoplasts differ by two orders [30,31]. To overcome the
complexity of mitoplasts technique, a system based on Xenopus oocytes with the human MCU-EMRE
complex targeted to the plasma membrane has been recently established [32]. Complex expression
was confirmed by inhibitory analysis of inward Ca2+ current with mtCU selective inhibitor Ru360 [32].
Although this system can be considered as a promising tool for electrophysiological analysis both to
determine fundamental molecular mechanisms and to test new potential pharmacological modulators,
the reported mtCU-current parameters would require additional validation before the introduction of
the model to applied research.

MtCU is better investigated as the assembled complex rather than individual subunits.
This circumstance, however, does not interfere with effective simulation of the mtCU activity.
Wacquier et al. introduced the computational model based on experimental data, which successfully
described Ca2+ kinetics in either a suspension of mitochondria isolated from hepatocytes or the
mitochondria in intact hepatocytes and, importantly, accounted for the difference between these two
systems [33]. In addition, they analyzed the Ca2+ currents with consideration of the mitochondrial
heterogeneity: The authors assumed that the total mitochondrial volume might correspond to different
numbers of individual mitochondria. This consideration is important because the Ca2+ influx strongly
correlates with the level of MCU expression and protein abundance in individual organelles. Despite
the availability of the experimental data sufficient to create a computer model of Ca2+ currents via mtCU,
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many questions about the structure and mutual orientation of the subunits in the complex are still
unclear. Next, we will focus on the structural and regulatory features of the human mtCU components.
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membrane [20], and has four “legs” extending from TMDs, formed by parts of NTD, CCD, and LHD 
(in the case of humans) [18]. The space between the legs allows the ions to diffuse into the matrix 
after passing through the pore [20]. The N-terminal matrix domain of human MCU consists of a 
conserved β-grasp-like fold containing a high-density cluster of negatively charged residues, the 
so-called MCU-regulating acidic patch (MRAP) [34]. Interaction of these residues with divalent 
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post-translational modifications of Cys include disulfide formation, S-glutathionylation, 
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Figure 1. Scheme of mtCU structure. Mitochondrial calcium uniporter pore-forming subunit
(MCU) and regulatory subunits are shown: MICU1 and 2—mitochondrial calcium uptake 1 and
2; MCUb—mitochondrial calcium uniporter dominant negative beta subunit; EMRE—essential
MCU regulator. IMS—intermembrane space; NTD—N-terminal domain; CTD—C-terminal domain;
TM1, TM2—two helices of the transmembrane domain; CCD—coiled coil domain; DIME—amino
acids sequence mediating a Ca2+-modulated electrostatic interaction between MCU and MICU1.
EF hand—helix-loop-helix structural motif of calcium-binding proteins MICU1 and MICU2. Modified
from 10.1038/s41598-019-41996-3 under CC-BY.

2.1. MCU

The human MCU monomer consists of 351 amino acids and weighs about 40 kDa. Most of the
data on the MCU tetramer structure is obtained by the cryo-EM approach and is particularly related to
the structural features of the pore-forming tetramer channel discussed above. In this section, we will
consider structural features and the role of extra-membrane parts of the tetramer in the functional
activity of the whole complex. The matrix part of the tetramer protrudes 70 Å from the membrane [20],
and has four “legs” extending from TMDs, formed by parts of NTD, CCD, and LHD (in the case of
humans) [18]. The space between the legs allows the ions to diffuse into the matrix after passing through
the pore [20]. The N-terminal matrix domain of human MCU consists of a conserved β-grasp-like fold
containing a high-density cluster of negatively charged residues, the so-called MCU-regulating acidic
patch (MRAP) [34]. Interaction of these residues with divalent cations (Ca2+ or Mg2+) destabilizes the
tetramer toward monomer, thus causing inhibition of the mtCU activity in response to Mg2+ and Ca2+

binding [34].
Another structural feature of MCU is post-translational modifications which affect the functional

activity of the protein. Cys is highly sensitive amino acid incorporated into proteins in the
thiol (R-SH) form, which subsequently becomes oxidized or converted into disulfides (R-S-S-R).
The post-translational modifications of Cys include disulfide formation, S-glutathionylation,
S-nitrosylation, persulfidation, etc [35]. Its pronounced oxidizability makes Cys a redox-sensor



Int. J. Mol. Sci. 2019, 20, 4823 4 of 26

in the cell. Dong et al. identified a conserved cysteine at position 97 in the MCU’s NTD as a reactive
thiol susceptible to S-glutathionylation upon oxidative stress. The authors found that the MCU
oxidation promotes the MCU higher-order oligomer formation while increasing the rates of Ca2+

uptake, elevating mitochondrial concentrations of ROS, and enhancing the Ca2+-induced cell death [35].
NTD is also involved in the interaction of MCU with Miro1, the outer mitochondrial membrane protein
important for mitochondrial movement. Niescier et al. revealed specific interaction of Miro1 with
the MCU’s NTD and considered it as a link in novel mechanism modulating the mitochondrial Ca2+

uptake and mitochondrial transport [36].
The opposite part of the MCU tetramer faces the intermembrane space and acts as an important

site of interaction with the MICU1 regulatory subunit, although whether this interaction occurs inside
the membrane or in the intermembrane space is still debatable. As recently shown by Phillips et al.,
Asp in the MCU’s DIME sequence mediates Ca2+-modulated electrostatic interaction with MICU1 [24].
In the absence of Ca2+, MICU1 binds to DIME with two arginines and blocks the intermembrane space
entrance of the MCU pore. In the presence of Ca2+, its ions bind to MICU1 and disrupt this interaction,
leading to the pore opening [24,37]. Importantly, MICU1 expression is related to MCU level, and the
ratio of MICU1 and MCU protein levels positively correlates with their binding, which indicates the
importance of the Ca2+ threshold for Ca2+ uptake and cooperativity of the whole mtCU complex [38].

2.2. MCUb

MCUb is a protein of 336 amino acids and has a molecular weight of about 40 kDa (similar to
MCU). The sequence identity between MCUb and MCU is 48.77% (according to BLAST). MCUb alone
is incapable of forming a Ca2+-conductive channel but plays an important role in the regulation of
mtCU functional activity by forming heteromers with MCU [39,40]. An increase in the MCUb-to-MCU
ratio has been shown to reduce the activity of MCU; thus, MCUb acts as a dominant-negative subunit
that attenuates the Ca2+ currents via the channel [39].

2.3. MICU1

The regulatory subunit MICU1 consists of 476 amino acids and weighs about 54 kDa. As we
have already mentioned, MICU1 binds with MCU through the DIME sequence thus serving as a
gatekeeper of mtCU [37,41]. At low Ca2+ concentrations, MICU1 inhibits the Ca2+ current; at high Ca2+

concentrations, the MCU-binding site in MICU1 is blocked by Ca2+ ions and the pore conductance
is restored. MICU1 is able to form a homodimer or heterodimer (by disulfide bonds) with another
regulatory subunit—MICU2. Both MICU1 and MICU2 have high affinities for Ca2+ [42]. When a
heterodimer is formed, the Ca2+ binding capacity of individual subunits (in the nanomolar range
of concentrations) is preserved. As demonstrated by Kamer et al., the MICU1-MICU2 heterodimer
selectively binds with liposomes containing cardiolipin; this finding suggests a mechanism for
association of the complex with the inner mitochondrial membrane [42].

MICU1 has two structural domains separated by a long alpha helix [42]. Each domain contains a
helix-loop-helix structural motif, the so-called EF-hand, typical for Ca2+-binding proteins. This motif
is especially important for overall ion selectivity of the uniporter. Kamer et al. have suggested that
specific metal-ligand interactions in EF-hand underlie the ability of MICU1 to differentiate between
Ca2+ and Mn2+ [43]. According to their model, at high Ca2+ levels, Ca2+ binds to EF hands promoting
the channel opening and facilitating the passage of Ca2+ and Mn2+ through the pore. When manganese
level is high and Ca2+ is low, Mn2+ binds to the MICU1‘s EF-hands without structural changes in the
MICU1-MCU interconnection and the pore remains closed. In MICU1 knockout cells (HEK-293T),
MCU has no such ion selectivity, which leads to Mn2+ loading in mitochondria. Wettmarshausen et al.
came to a similar conclusion: Co-expression of MCU and MICU1 in the yeast S. cerevisiae as a model
system protects the cells against the uniporter-dependent Mn2+ overload and Mn2+ toxicity [44].
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In vivo deletion of MICU1 leads to and larval lethality in Drosophila [45], while in mice causes
Ca2+ overload, severe neurological and myopathic defects, similar to that observed in MICU1-deficient
patients [41].

MICU1 degradation is Parkin-mediated and occurs in proteasome. Interestingly, it proceeds
independently of the E3-ubiquitin ligase activity of Parkin protein but depends on its Ubl-domain [46].
Parkin is therefore considered as a regulator of mtCU composition and activity.

MICU1.1 is a splicing isoform of MICU1 having an extra micro-exon between exons 5 and 6, which
encodes four amino acids and is highly conserved among all vertebrates [47]. MICU1.1 is expressed in
skeletal muscle and at a lower level in the brain, and nowhere else, whereas the MICU1 expression is
ubiquitous. All in all, MICU1.1 acts as an alternative regulator of mtCU in certain tissues; its function
is believed to be related to the fast muscle contraction.

2.4. MICU2

MICU2, another gatekeeper, contains 434 amino acids and has a molecular weight of about
50 kDa. Kamer et al. [48] recently revealed the presence of two structural lobes in murine MICU2
protein, with a pair of EF-hands each, described essential structural differences in N- and C-terminal
segments between MICU2 and MICU1, and also proposed computational models for participation of
the MICU1–MICU2 complex in gating mechanisms of the uniporter. Human MICU2 dimerizes in Ca2+

concentration-dependent manner in two types of dimers: Back-to-back or face-to-face dimers. At low
Ca2+ levels, MICU2 forms back-to-back homodimers thus blocking the Ca2+ conduction through the
pore, while at high Ca2+ levels both MICU2 and MICU1 form face-to-face dimers which do not interfere
with Ca2+ currents [49]. Payne et al. showed that at low Ca2+ concentrations MICU1 mainly performs
the gatekeeping function, while MICU2 modulates its inhibitory effect on mtCU [50]. Despite the
seemingly subordinate role of MICU2 in the regulation of Ca2+ currents, depletion of MICU2 decreases
the levels of both MCU and MICU1 proteins without altering transcription of the corresponding
genes [51]. MICU2 null mutations in patients lead to neurodevelopmental complications, including
gliosis, periventricular haemorrhage, sagittal sinus thrombosis, periventricular encephalomalacia,
and cognitive impairment [52]. Disruptions in Ca2+ homeostasis persisting in the patients’ cells:
The MICU2-deficient cells exhibited mitochondrial Ca2+ overload at resting state and showed a slower
bradykinin-stimulated Ca2+ influx than control cells from healthy individuals [52].

2.5. MICU3

MICU3 contains 530 amino acids and weighs about 60 kDa. According to UNIProt database,
the MICU3 structure also has the EF-hand motif (as in MICU1 and MICU2), and its presence in skeletal
muscle has been reported [53]. In earlier studies, MICU3 was considered as a regulatory subunit with
gatekeeping function (similarly with MICU1 and MICU2) [49]. However, MICU3 has been recently
shown to form heterodimers with MICU1 but not with MICU2 or itself, with prevalent expression of
MICU3 in brain tissue [54]. Stimulation of MICU3-overexpressing HeLa cells with agonists (e.g., ATP)
led to increased mitochondrial Ca2+ uptake rates. All in all, MICU3 is presently considered as mtCU
activator with reduced gatekeeping function [54]. The presence of additional brain-specific mtCU
regulators may be related to fine-tuning of Ca2+ signals in neuronal networks.

2.6. EMRE

EMRE, also known as SMDT1, is a 107 amino acids protein weighing about 11 kDa. It contains
a TMD while its N- and C- terminal domains are exposed to the matrix and intermembrane space,
respectively [18,55,56]. A set of acidic residues exposed to mitochondrial matrix works as a Ca2+

sensor [57]. EMRE is only found in metazoans, and cryo-EM structural analysis of human MCU-EMRE
complex demonstrated that each EMRE molecule binds to one MCU protomer, with the resulting
architecture of the MCU-EMRE tetramer working as a minimal functional mtCU complex [18]. Without
MCU, EMRE is ineffective and insufficient for Ca2+ uptake [55,58]. It is now clearly evident that EMRE
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provides both physical interconnection of MICU1 and MICU2 with MCU and stabilizes the entire
Ca2+ pore in open state with β-hairpin in its N-domain [18,56]. EMRE participates not only in the
regulation of single uniporters, but also in the functional coupling and coordination between several
mtCU complexes [18]. Thus, EMRE is considered as a stabilizer of the MCU interaction with other
regulatory subunits and a major regulator of mtCU cooperativity.

2.7. MCUR1

MCUR1 contains 359 amino acids and weighs about 40 kDa. MCUR1 is a regulatory protein
which is often overlooked in the context of mtCU functioning. Orthologs of MCUR1 are found in
various organisms, but whether to accept MCUR1 as an independent and separate subunit is still
questionable. The published data indicates that MCUR1 deletion significantly impairs Ca2+ uptake;
therefore, MCUR1 may be considered as a positive regulator of mtCU complex [59]. Structurally,
human MCUR1 has several domains: A head, a β-layer neck and a stalk, set side by side in the matrix,
and a transmembrane domain [60]. The head domain of MCUR1 directly contacts the NTD of MCU, and
MCUR1 function is controlled proteolytically [59–61]. Tissue-specific MCUR1 knockout (KO) in cardiac
muscle- and endothelium lead to decreased ATP levels, impaired mitochondrial Ca2+ import, and
increased autophagy in cardiomyocytes and endothelial cells [59]. MCUR1 also plays the essential role
in the forming EMRE-MCU complex: In addition to its interaction with MCU, MCUR1 could directly
interact with EMRE thereby providing a link to the full assembly complex. Up-regulated expression of
MCUR1 was observed in a pathological condition: MCUR1 promoted the epithelial-mesenchymal
transition of hepatocellular carcinoma cells followed by invasion and metastasis [62].

3. MtCU Regulation by Intracellular Signaling Pathways

The proper mitochondrial Ca2+ handling, provided by proper mtCU functioning, is essential
for the well-being of individual cells and the whole organism. Fine-tuning of mtCU function is
carried out at multiple levels, including transcriptional, post-transcriptional, and post-translational
levels [63]. Several transcriptional regulators of mtCU are known, and most likely there are more of
them to be described. The cyclic AMP response element-binding protein (CREB) was the first identified
transcriptional factor regulating MCU expression [64]. Shanmughapriya et al. discovered a direct
interaction of activated CREB with an MCU promoter stimulating the gene expression. The important
point is that cytoplasmic Ca2+ signals induce CREB activation through its phosphorylation by various
kinases. Damping of Ca2+ oscillations reduces CREB phosphorylation leading to significantly lower
MCU expression [64]. Recently, the same group revealed downregulation of MICU1 expression by
transcription factor Foxd1 in human induced pluripotent stem cells (hiPSCs) under glycolytic and
hypoxic conditions. Foxd1 knockdown and the consequent MICU1 upregulation turned out to be
necessary for the periodic cytosolic Ca2+ oscillations essential for cell differentiation and maturation [65].

Post-transcriptional regulation of mtCU expression and function by microRNAs (miRs) is not yet
fully understood, although the influence of miRs on mitochondrial Ca2+ was recently reviewed [66].
Remarkably, all miRs, identified as mtCU regulators, reduce the MCU subunit expression, but
the overall physiological effect depends on tissue type and other conditions. Indeed, miR-340
negatively regulates MCU expression and suppresses breast cancer metastasis [67]. At the same time,
miR-25 overexpression in colon cancer ultimately resulted in decreased MCU protein expression
providing protective anti-apoptotic effects and promoting cancer cells survival [68]. In the pulmonary
arterial hypertension, miRs 25 and 138 cooperatively cause an impairment of mtCU function [69].
More specifically, simultaneous upregulation of miR-25 and miR-138 not only downregulates MCU
transcription, but also inhibits MCU expression by means of binding with 3′-untranslated region of MCU
transcripts. The reciprocally increased MICU1 expression further enhances the mtCU dysfunction.
On the other hand, downregulation of these miRs or restoration of mtCU function accordingly
restores the Ca2+ homeostasis [69]. It should be noted that some authors consider pulmonary arterial
hypertension as a cancer-like disease [70], and a shared miR-dependent mechanism promoting both
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cancer and pulmonary arterial hypertension progression would support this theory. Surprisingly, the
oxidative stimulation-induced miR-25 elevation inhibits MCU expression in cardiomyocytes, thus
being cytoprotective [71]. The MCU protein expression in myocardium is also selectively repressed by
miR-1 [72], the most abundant miR in the heart, belonging to the “myomiR” family with muscle-specific
expression and recognized for the central regulatory role in muscle biology [73]. MiR-1 targets the
MCU 3′-untranslated region and causes a marked reduction in the MCU protein content, while the
MCU mRNA level remains unchanged. Consistently, miR-1 overexpression significantly reduced
the amplitude of the steady-state mitochondrial Ca2+ level in cardiomyocytes during pacing and
suppressed the hypertrophic gene expression program. The beta-adrenergic receptor/Akt/FOXO axis
was proposed as an upstream regulator of miR-1/MCU pathway [72]. DRP1 protein, responsible for
mitochondrial fission, was also proposed as an upstream regulator of miR1-mtCU cascade by some
authors [74], indicating interconnection of some pathways at the point of mtCU.

At the post-translational level of regulation, mtCU undergoes a variety of modifications including
phosphorylation, S-glutathionylation, and methylation. It is now accepted that bioenergetic, oxidative,
and Ca2+ pathways meet and regulate each other in mitochondria [8]. For this reason, the proteins
involved in calcium handling and signaling require redox-sensors. In cell models of inflammation
and hypoxia, the concomitant oxidative stress-induced S-glutathionylation of MCU leads to more
prominent MCU oligomerization, an increase in mitochondrial Ca2+ uptake and ROS production, and,
finally, cell death induced by the Ca2+ overload [35].

Phosphorylation of MCU by proline-rich tyrosine kinase 2 (Pyk2) after adrenoceptor stimulation in
intact cardiac H9c2 myoblasts has been reported [75]. Adrenoceptor stimulation causes translocation of
Pyk2 to mitochondrial matrix where Pyk2 directly phosphorylates MCU tyrosine residue(s), promoting
MCU oligomerization into functional tetrameric MCU channels. The enhanced mitochondrial Ca2+

uptake via mtCU results in increased generation of ROS as well as calcium overload and initiation of the
apoptotic signaling [75]. Similar activation of the Pyk2/MCU pathway accompanied by mitochondria
damage and an increase in apoptosis was recently detected in the ischemic rat brain after middle
cerebral artery occlusion, indicating that the Pyk2/MCU pathway may be a universal mediator of
stress-induced mitochondrial damage and cell death [76].

Although direct phosphorylation of MCU by CaMKII in cardiac muscle was demonstrated,
its relevance is still debatable. In 2012, Joiner et al. [30] published impressive data indicating the
anti-ischemic effect of CaMKII inhibition with a transgenic mitochondrial-targeted inhibitory protein.
The inhibition attenuated mitochondrial disruption, caused by ischemia and reperfusion, and protected
cardiomyocytes from apoptosis, providing a significant decrease in the ischemic lesion area in
myocardium. Physical association of CaMKII and mtCU was proved by their co-immunoprecipitation
from the myocardial mitochondrial lysate, and the candidate phosphorylation sites in MCU were
identified [30]. However, the electrophysiological data indicating that CaMKII promotes the mPTP
opening and myocardial tissue death by increasing the mtCU current were not confirmed in more
recent studies by other groups [31,77]. Furthermore, no functional change in the mtCU current after
CaMKII application was observed, which suggests the lack of mtCU regulation by CaMKII [31].
The latest work of Nickel et al. provides comprehensive assessment of CaMKII role in the control
of mitochondrial Ca2+ uptake, respiration, and ROS production during β-adrenergic stimulation
and pacing in cardiomyocytes and isolated cardiac mitochondria from the CaMKII knockout mice.
The authors pointed out that the results were inconsistent with any relevant role of CaMKII in the
control of mitochondrial Ca2+ uptake [77]. It is also noteworthy that Nickel et al. failed to reproduce
the experiments of Joiner et al. on isolated hearts as well as the CaMKII/mtCU co-immunoprecipitation.
Therefore, the role of CaMKII in the recovery after ischemia-reperfusion injury in vivo and the direct
interaction of CaMKII with mtCU in cardiac muscle are still questionable. Interestingly, the mtCU
phosphorylation by CaMKII at the highly conserved Ser92 [30,78] stimulates mitochondrial Ca2+ uptake
which further activates the CaMKII-mediated mtCU phosphorylation thus forming a positive feedback
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circuit, and triggers migration of vascular smooth muscle cells (VSMCs) [79]. This observation brings
up the matter of tissue-specific mtCU regulation and may encourage further studies in this direction.

Mitosis-specific phosphorylation of MCU by AMPK, necessary for the restoration of ATP levels
during cell division, was recently reported [80]. The AMPK-dependent MCU phosphorylation at Ser57
activates the mitochondrial Ca2+ entry leading to the intensification of mitochondrial respiration and
energy production necessary for the proper spindle dynamics [80]. The receptor-interacting protein
kinase 1 (RIPK1), taking part in cell survival/apoptosis pathways, was recently shown to bind MCU
for the mitochondrial Ca2+ uptake induction and thus contribute to the development of colorectal
cancer [81]. Zeng et al. elucidated a RIPK1-MCU physical interaction in colorectal cancer samples
from patients and HT29 cells using co-immunoprecipitation and confocal microscopy. The authors
also identified Lys377, a known ubiquitination site, as crucial for the RIPK1 interaction with MCU.
Unfortunately, this study provides no information regarding the specific phosphorylation site in
MCU [81].

The large body of data on the mtCU regulation, obtained from cancer cells and models, are highly
relevant for the search of new therapies along with the general understanding of mtCU regulation and
functioning. For instance, a recently described Akt kinase-mediated phosphorylation of MICU1 at
the N-terminal region in cancer is the first demonstration of a phosphorylation event for the MICU1
subunit [82]. More specifically, the mitochondrial pool of active Akt is responsible for the MICU1
phosphorylation at Ser124, which affects the MICU1 processing and results in the MICU1-MICU2
dimer instability. The loss of the MICU1 inhibitory influence on mtCU leads to a significant increase
in the basal Ca2+ level in the mitochondrial matrix, culminating in the ROS production and tumor
progression [82]. A more comprehensive functional evaluation of this MICU1 modification under
normal and pathological conditions would be relevant.

In addition to phosphorylation, the MICU1 gatekeeper function is also modulated post-translationally
through its methylation by arginine methyl transferase 1 (PRMT1) at Arg455 [83]. Interestingly, although
the methylation of MICU1 desensitized it for Ca2+ and reduced the mitochondrial Ca2+ uptake, UCP2
was shown to bind exclusively to the methylated form and to restore the mitochondrial Ca2+ uptake in
the cells with pronounced PRMT1 activity [83]. Although the early data on the UCP2/3 engagement in
the regulation of Ca2+ uptake through the inner mitochondrial membrane were contradictory [84,85],
more recent studies have confirmed the regulatory effect of UCPs on mtCU [86,87].

Proper mitochondrial functioning requires the tightly controlled turnover of mitochondrial
proteins. In particular, the mtCU assembly dynamics is maintained by m-AAA metalloproteases
(ATPases associated with diverse cellular activities) [88]. Mitochondrial m-AAA proteases AFG3L2
and SPG7 rapidly digest the unassembled EMRE; however, after the EMRE incorporation into mtCU,
its turnover is substantially inhibited. The excessive EMRE expression leads to the paradoxical Ca2+

leakage into mitochondria through the constitutively active MCU-EMRE subcomplex and the increased
rates of Ca2+ uptake [89]. On the other hand, AFG3L2 loss leads to the facilitated mitochondrial
Ca2+ overload followed by mPTP opening and neuronal death in murine model [90]. Interestingly,
the functional loss of SPG7 led to similar changes, while physical loss was characterized by lower basal
levels of mitochondrial Ca2+ and the increased Ca2+ retention capacity [91]. Considerably increased
EMRE protein content and other major alterations in the mtCU stoichiometry and assembly observed
in SPG7 KO cells [91]. At the body level, the SPG7 null mutation in Drosophila model caused shortened
lifespan, progressive locomotor defects, increased sensitivity to chemical and environmental stress,
and muscular and neuronal degeneration [92].

Summing up, these data indicate that mitochondrial Ca2+ uptake through mtCU is precisely
regulated at multiple levels. Several health disorders associated with disturbances in mtCU functioning
and involving different types of muscle tissues are discussed in upcoming sections.
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4. The Role of MtCU in Cardiac Muscle

4.1. MtCU in Normal Myocardium Function

Main function of the heart is to ensure blood supply to all organs and tissues. To provide it, myocardium
undergoes constant rhythmic cycles of excitation followed by contraction (excitation–contraction
coupling) based on the permanent Ca2+ release/uptake cycles in the cytoplasm and buffering organelles
of cardiomyocytes [93]. Interestingly, in cardiomyocytes, the removal of Ca2+ from the cytoplasm after
myocardial contraction is mostly provided by activities of the Na+/Ca2+ exchanger (NCX) in sarcolemma
and the sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA), whereas in non-muscle cells the
Ca2+ buffering and termination of cytosolic Ca2+ signals mostly depend on the mitochondrial Ca2+

uptake [1]. Although the mitochondrial Ca2+ uptake in cardiomyocytes constitutes less than 1% and
the mtCU current is surprisingly low as compared to other tissues [93,94], it is definitely a key player
coordinating the balance between energy supply and demand (excitation–metabolism coupling) [3].
Precise mechanisms regulating the mitochondrial Ca2+ handling in cardiomyocytes were described
during the last decade [13].

After determination of the mtCU molecular identity, its role in the cardiac muscle has been widely
investigated by using genetic manipulations. The whole-body MCU KO mice displayed unaffected
cardiac function both under basal and stress conditions [58]. On the other hand, mice with a short-term
cardiac-specific MCU KO displayed unchanged phenotype under basal conditions but showed an
impaired adaptive response to acute stress [95,96].

Ca2+ entry through the L-type Ca2+-channels in cardiomyocytes induces Ca2+ delivery from the
sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) leading to formation of Ca2+ microdomains
nearby the SR-mitochondria junction and further Ca2+ signal transduction into mitochondria
via mtCU [97]. It should be noted, however, that exact composition of Ca2+ microdomains in
cardiomyocytes is not yet fully understood. Indeed, mtCU was initially reported to be homogeneously
distributed in the mitochondrial inner membrane, as observed in intact ventricular cardiomyocytes
of adult rabbit [98]. A more recent study on submitochondrial membrane fractions obtained from
mouse and rat heart mitochondria revealed that mtCU are concentrated at the SR-mitochondria contact
sites at the mitochondrial periphery to promote effective Ca2+ transport [99]. Along the same line,
this scientific group later reported spatial segregation of the mitochondrial Ca2+ efflux via NCLX from
the mitochondrial Ca2+ uptake via mtCU [100]. The lack of Ca2+ extrusion at the most Ca2+-exposed
area serves for optimization of the Ca2+ signaling efficiency and minimization of the energy costs [100].
The controversy concerning the distribution of mtCU in the inner mitochondrial membrane may
be explained by the difference in experimental approaches as well as by species- or age-specific
characteristics of cardiomyocytes. Overall, it is still difficult to draw any definite conclusions, and
further investigations are required.

The kinetics of mitochondrial Ca2+ concentration in adult ventricular cardiomyocytes during
excitation–contraction coupling is also debatable [1]. Cao et al. discussed two models proposed for
the Ca2+ dynamics in cardiac mitochondria [13]. According to the first model, Ca2+ concentration in
cardiac mitochondria oscillates in a beat-to-beat manner, whereas the second model assumes gradual
mitochondrial Ca2+ uptake. The authors emphasize that the mitochondrial Ca2+ dynamics, which may
depend on the animal species and pacing frequency, needs further investigation [13].

4.2. MtCU in Cardiac Hypertrophy

Myocardium hypertrophy can be defined as an increase in the myocardial mass. It is well
known, that in mammals the majority of cardiomyocytes lose the ability to proliferate shortly after
the birth, and the subsequent heart growth proceeds mostly by an increase in the cardiomyocyte
cell size. This is true under both normal physiological (growth, pregnancy, chronic exercise training)
and pathological (hypertension, sarcomeric gene mutations, etc.) conditions [101]. Physiological
cardiac hypertrophy during postnatal development is accompanied by both an increase in cell size and



Int. J. Mol. Sci. 2019, 20, 4823 10 of 26

pronounced remodeling, including redistribution of mitochondria to the Ca2+ microdomains and SR
maturation [102]. However, the data on the role of mtCU in cardiomyocyte maturation are extremely
limited. Zaglia et al., for the first time demonstrated decreased MCU protein levels and the reciprocal
miR-1 upregulation in the adult hearts as compared with the neonatal hearts in mice and humans,
and concluded that the miR-1/MCU axis takes part in the postnatal cardiomyocyte maturation [72].
Increased cardiac pressure load during exercises or aortic stenosis caused a decrease in miR-1 and,
accordingly, increased the MCU content indicating similar initial cardiomyocyte adaptation (Figure 2).
However, the signs of local tissue damage and the substantially increased mRNA expression of the
pore-inhibiting subunit MCUb were observed only under the pathological overload [72]. The increased
MCU content in the ventricular myocardium during the pressure overload-induced hypertrophy
is accompanied by autophagy inhibition and histological changes [103]. Therefore, although the
pathological cardiac hypertrophy is compensated at the initial step, its further progression leads
to decompensation and contributes to the development of severe cardiovascular disorders, such as
arrhythmias and heart failure.
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As expected, the mtCU inhibition under the overload-induced hypertrophy improved the cardiac
function and mitigated the pathological changes [103]. On the other hand, the absence of MCU protein
expression did not prevent the development of the overload-induced cardiac hypertrophy in MCU−/−

mice [58]. This contradiction once again emphasizes the multifactorial etiology of cardiovascular
diseases, as well as the necessity for precise regulation of mitochondrial Ca2+ homeostasis, reliably
compensated in the case of congenital defects in corresponding genes.

4.3. MtCU in Arrhythmogenesis

Arrhythmias represent one of the primary causes of sudden cardiac death and a severe complication
after acute ischemia and myocardial infarction [104,105].
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Several heart diseases, including nonischemic heart failure and myocardial ischemia, are associated
with increased arrhythmia risks and triggered activity. The ischemia-induced abnormalities in
the ventricular automaticity are supposed to cause arrhythmias and attributed to the disturbed
intracellular and, in particular, mitochondrial Ca2+ handling [106]. Mitochondrial Ca2+ uptake via
mtCU modulates the spontaneous electrical activity of ventricular-like cardiomyocytes derived from
mouse embryonic stem cells, together with RyR2 and IP3Rs at sarcoplasmic reticulum, while the
plasmalemmal Ca-L-channels and NCX ensure the cell automaticity [107]. The beating rate of
ventricular-like cardiomyocytes [107], as well as ventricular fibrillation after adrenergic stimulation in
isolated hearts with pressure overload-induced hypertrophy [108], were substantially reduced after
mtCU inhibition with selective inhibitor Ru360. On the other hand, direct stimulation of mtCU with
natural plant flavonoid kaempferol exacerbated the mitochondrial Ca2+ accumulation and spontaneous
premature ventricular contractions [108]. Consistent data were obtained on MCU knockdown mice and
the mouse ventricular cell computer model and simulation [109]. In contrast, anti-arrhythmogenic effect
was observed after mtCU activation in catecholaminergic polymorphic ventricular tachycardia (CPVT),
a disease associated with mutation in RYR2 and characterized by episodes of life-threatening ventricular
tachycardia upon the catecholaminergic stimulation after physical exercise or emotional stress [110].
Indeed, stimulation of mtCU with kaempferol led to enhanced mitochondrial Ca2+-uptake after the
release of Ca2+ from SR and eliminated the arrhythmogenic Ca2+ waves induced by catecholaminergic
stimulation in the CPVT murine cardiomyocytes [110]. These contradictions may originate from
differences in both the experimental approaches and model objects. In particular, the embryonic
stem cells-derived ventricular-like cardiomyocytes possess their own spontaneous electrical activity,
while the adult ventricular cardiomyocytes do not. At the same time, arrhythmia during the pressure
overload-induced hypertrophy is associated with excessive mechanical work of myocardium, while in
CPVT it is caused by a genetic defect.

Therefore, although the regulation of mitochondrial Ca2+ handling by mtCU is likely to provide a
versatile mechanism for adjusting the electrical activity of pacemaker cells, the attempts to modulate it
with pharmacological agents may lead to adverse consequences and should be studied in more detail.

Disturbances in functioning of the mtCU regulators are also associated with the development
of arrhythmias. For instance, Ucp2−/− mice have more pronounced susceptibility to the Ca2+

overload-induced arrhythmias and increased PRMT1 protein levels, which may be responsible
for the decreased mitochondrial Ca2+-uptake in the Ucp2−/− hearts [111]. It is important to note that
the UCP polymorphisms in humans are known to be associated with the heart rate variability [112].
Although the protective role of other mtCU regulators, Pyk2 and Akt, to some extent counteracts
arrhythmogenesis [113,114], the mechanism has not yet been studied in detail and consideration of
Pyk2 and Akt as anti-arrhythmogenic targets may require further investigation.

4.4. MtCU in Myocardial Ischemia/Reperfusion Injury

Ischemic heart disease remains a major factor of death and disability worldwide [115], and the
mitochondrial Ca2+ mishandling in cardiomyocytes during ischemia/reperfusion injury is well
documented [116]. The cardiomyocyte death following ischemic episode is mainly caused by Ca2+

overload-induced ROS generation and mPTP opening.
The role of mtCU in the cardiomyocyte cell death was assessed on different genetically modified

models. In particular, an inducible tissue-specific Mcu deletion in the adult heart does not compromise
the myocardial energy production and contractile function due to a compensatory increase in the
fatty acid oxidation both under basal conditions and during the acute adrenergic challenge [117].
Moreover, such a deletion protects cardiomyocytes from mitochondrial Ca2+ overload and acute
ischemia-reperfusion injury [95,96]. In line with these findings, the siRNA-mediated MCU silencing
in vitro efficiently reduced mitochondrial Ca2+ overload, mPTP opening and cardiomyocyte death
activation after hypoxia-reoxygenation [118]. On the other hand, myocardium-specific expression of a
dominant negative form of MCU protein, induced before the birth, did not protect from the myocardial
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tissue death despite the preserved mitochondrial membrane potential and reduced ROS generation
during ischemia/reperfusion [119]. These controversial observations led to a hypothesis that MCU
deletions prior to birth result in compensatory changes in mitochondrial cell death pathways, and the
protective effect of MCU depletion is dependent on the time of induction but not tissue specificity [120].
Indeed, a higher mPTP sensitivity to Ca2+ associated with the increased phosphorylation of cyclophilin
D at Ser42 were observed in the hearts of conventional (whole-body) MCU KO mice, while the receptor
interacting protein (RIP3) kinase-activated cell death pathway had no significant contribution to
ischemia/reperfusion injury [120].

Conductance of mtCU channel is tightly regulated by auxiliary subunits; therefore, the resistance
of cardiomyocytes to ischemia may be affected by alterations in either subunits expression or their
association with MCU to form the whole mtCU complex. Indeed, the MICU1 protein content in
mitochondria was significantly reduced following ischemia/reperfusion, despite the unchanged total
MICU1 content, due to the inhibited expression of translocase of outer membrane 70 (Tom70) leading
to the impaired MICU1 import into mitochondria [121]. Furthermore, targeting of myocardial MICU1
with siRNA significantly exacerbated the consequences of ischemic episode by increasing the infarction
area, depressing cardiac function and increasing the myocardial apoptosis; the effects resulted from
mitochondrial Ca2+ overload with consequent ATP depletion and morphological defects [121].

4.5. MtCU in Heart Failure

Heart failure is reported to be the prevalent reason for hospital admissions in some developed
countries, and the imbalanced Ca2+-dependent regulation of oxidative metabolism is widely accepted
as a key factor in its pathogenesis [122,123]. In particular, sustainably elevated cytoplasmic Ca2+

concentrations resulting from decreased SERCA expression or activity, along with Ca2+ leakage via
RyR2, may lead to mitochondrial Ca2+ overload [1]. This, in turn, results in the elevated ROS levels
and reduced ATP production, and eventually leads to maladaptive myocardium remodeling and
contractile impairment [13]. Initial attempts to assess the physiological role of mtCU by using a
conventional (whole-body) KO model surprisingly revealed that the absence of MCU expression has no
influence on the cardiac morphology and function under basal conditions and is certainly insufficient
to prevent the pressure overload-induced heart failure, despite the markedly impaired mitochondrial
calcium handling [58]. At the same time, the isolated hearts of mice with myocardium-delimited
transgenic expression of a dominant negative form of MCU protein showed the increased oxygen
consumption indicative of lower efficiency, despite the unaltered myocardium morphology and
mitochondrial structure [119]. The lack of mtCU-mediated mitochondrial Ca2+ entry in cardiomyocytes
could be compensated by changes in cytoplasmic Ca2+ homeostasis manifested as unchanged oxygen
consumption by the isolated cardiac mitochondria [119]. Interestingly, the opposite situation is observed
for the inducible cardiac-specific MCU deficiency: this model shows an increased cardiac output
associated with the enhanced fatty acid oxidation, and the unchanged levels of glucose oxidation [117].

Heart failure progression is accompanied by an increase in the myocardial MCU protein content
reaching the highest point during the compensatory hypertrophic phase. The MCU upregulation
is accompanied by autophagy blockade, as indicated by an increase in the p62 (SQSTM1) protein
content resulting from its reduced degradation [103]. Interestingly, pharmacological inhibition of
mtCU restores the levels of autophagy and mitophagy, partially prevents both the cardiomyocytes
hypertrophy and myocardial fibrosis, and alleviates the concomitant ventricular asynchrony [103].
On the other hand, correction of cardiac dysfunction by cardiac resynchronization therapy provides
mitochondrial fission and autophagosome/mitophagosome formation underlying the alleviated cell
enlargement and myocardial fibrosis [124]. This therapeutic approach leads to a significant reduction
in MCU and p62 content accompanied by DRP1 upregulation [124], which brings up an important
question of mtCU participation in the mitochondria quality control. Cho et al. have recently reported
that mtCU mediates the DRP1-dependent Zn2+ influx into the mitochondrial intermembrane space
during fission [125]. Although the compromised mitochondria quality control in heart failure has been
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documented [123], further studies are needed to clarify whether this mechanism is crucial for the heart
failure progression.

In contrast to Mcu−/−mice, which show a mild phenotype, the Micu2−/−mice have increased
left atrium diameter resulting from the retarded cardiomyocyte relaxation and consequent diastolic
dysfunction [51]. These dysfunctional changes develop despite the compensatory enhanced SERCA
expression and normal myocardial structure [51], emphasizing the important role of mtCU regulatory
subunits and upstream regulatory molecules in the mitochondrial Ca2+ handling under pathological
conditions. For instance, miR-1 is being extensively studied as a potential therapeutic target, given
its contribution to cardiac hypertrophy [72] and remodeling [126] and its association with heart
failure [127], whereas mtCU has been identified as a downstream target of miR-1 in the hypertrophic
changes realization [72]. Nevertheless, prognostic value of miR-1/mtCU axis in the heart failure
progression has not been assessed thoroughly. As far as the CaMKII/mtCU axis role in heart failure is
concerned, although CaMKII has been shown to cause heart failure through the mtCU activation and
mPTP opening leading to cardiomyocyte death [30], contradictory data about the direct regulation
of mtCU by CaMKII [30,31,77] do not allow us to make unambiguous conclusions at this point until
further investigation.

The imbalance in mitochondrial Ca2+ may also be associated with the disturbed Ca2+ efflux
from mitochondria. The mitochondrial Na+/Ca2+ exchanger is essential for Ca2+ homeostasis, as
its inducible deletion in mice leads to sudden death caused by myocardial dysfunction and heart
failure [128]. The correct balance of non-mtCU molecules is therefore essential for the prevention of
heart failure.

5. The Role of MtCU in Skeletal Muscle

5.1. General Role of MtCU in Skeletal Muscle

The major role of skeletal muscle is the conversion of chemical energy into mechanical movements
necessary for the realization of many vital functions [129]; an increase of Ca2+ concentration in the
sarcoplasm is essential for skeletal muscle contraction [130].

Since mitochondrial Ca2+ handling is crucial for the adaptation of energy production to the
immediate energy demands of the muscle, and also provides a link between excitation and transcription,
the mtCU function in skeletal muscle is widely investigated [130]. Large body of valuable data on
the role of mtCU in skeletal muscle was obtained on models with mtCU deficiency (as in the
case with myocardial tissue). The role of MCU as a trophic factor was initially revealed in adult
mice with muscle-targeted MCU overexpression or silencing as a cause of muscle hypertrophy or
atrophy, respectively [131]; these findings were consistent with the smaller size of muscle fibers in
muscle-targeted MCU KO mice [131,132] and the decreased body weight of conventional (whole-body)
MCU KO mice [133]. However, more recent study did not show direct influence of the muscle-specific
Mcu depletion on body weight, muscle weightm and fiber size regardless of the age of gene loss
induction [134]. Some discrepancies between the models are also observed for the basal mitochondrial
Ca2+ level. Whereas the basal mitochondrial Ca2+ concentrations were substantially reduced in the
whole-body KO and adult muscle-specific Mcu depletion models [131,133], in a skeletal muscle-specific
loss-of-function model they were unaffected [134]. Nevertheless, the relevance of all models was
confirmed by observations of the blunted mitochondrial Ca2+ uptake in skeletal muscle in response
to different stimuli [131–134]. A metabolic shift toward fatty acid oxidation in skeletal muscle
of MCU-deficient mice was reported [132,134]. Consistently, impaired glucose oxidation in these
animals was observed due to a decreased activity of pyruvate dehydrogenase regulating the flow
of primary glucose metabolites to mitochondrial oxidative phosphorylation [131,133]. Interestingly,
the in vivo effects of Mcu depletion may also depend on the experimental approach. For instance,
impaired performance of the animals in the intense muscle exercise tests was demonstrated for the
whole-body [133] and muscle-specific Mcu deletion [132]. However, other authors observed similar
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impairments only when using the exercise protocol without a warm-up period [134]; after a long
adaptation to running, the performance of KO mice was similar to the control group [134].

Mcu deletion in skeletal muscle tissue not only affects muscle metabolism, but also triggers
systemic metabolic adaptations [132]. Indeed, gluconeogenesis enzymes were upregulated in the liver
of mice with skeletal muscle-specific Mcu deletions. At the same time, reduced blood levels of glucose
were accompanied by increased glucose uptake in muscles. Taken together, these observations indicate
systemic metabolic adaptations allowing the liver to counteract excessive muscle glucose uptake and
maintain euglycemia [132].

5.2. Specific Features of MtCU in Skeletal Muscle

Skeletal muscle tissue is one of the top energy consumers in the body and therefore has special
needs of rapid and tightly controlled energy production. Since mitochondrial Ca2+ directs the
conversion of nutrient energy into ATP by activating the Ca2+-dependent dehydrogenases of the
tricarboxylic acid cycle, regulation of mitochondrial Ca2+ uptake is a crucial point for the proper
muscular contractions [130]. An alternative splice variant of MICU1, called MICU1.1, forms a dimer
with MICU2 (as MICU1 does) activating mtCU and promoting Ca2+ uptake at much lower cytosolic
Ca2+ concentrations than conventional MICU1-MICU2 does. At low Ca2+ concentrations, MICU1.1 is
also capable of gatekeeping. The effect is explained by the increased Ca2+ affinity of MICU1.1, which is
an order of magnitude higher than that of MICU1, as estimated by isothermal titration calorimetry [47].
The exact mechanism of boosting of the EF-hand Ca2+ binding affinity by MICU1.1 extra exon remains
obscure. Therefore, in this case alternative splicing works as a means of adaptation of mitochondrial
Ca2+ uptake to energetic demands of a particular tissue.

5.3. MtCU in Skeletal Muscle Dysfunction, Injury and Ageing

MtCU dysfunction associated with MICU1 intronic insertions causing frameshifts and leading to
significant downregulation of MICU1 mRNA levels has been identified. Clinical phenotype of these
patients comprising proximal muscle weakness, learning difficulties and progressive extrapyramidal
movement disorder [135]. In accordance with the mtCU gatekeeper role of MICU1 [41], cell cultures
derived from these patients showed the enhanced Ca2+ uptake at low cytosolic Ca2+ concentrations
and the damping of cytosolic Ca2+ signals due to increased mitochondrial Ca2+ buffering [135].
Moreover, increased rates of mitochondrial fission (mediated by the elevated activity of DRP1 [136]
in the MICU1-deficient cells with chronically activated mtCU [135]) result in highly fragmented
mitochondrial networks. This finding additionally illustrates the regulatory function of the uniporter in
the mitochondrial quality control system. Further analysis of the identified mutant phenotypes revealed
a compensatory increase in Ca2+ efflux via NLCX, counteracting the increased mitochondrial Ca2+

uptake [136]. As a result, the sodium-proton exchanger (NCX) is also activated, which attenuates the
proton-motive force required for ATP synthesis. Eventually, these mechanisms cause muscle weakness
concomitant with the mutations [136]. In line with this data, the loss of MICU1 protein expression
due to deletion of exon 1 of MICU1 causes fatigue, lethargy, and weakness [137]. Mitochondrial Ca2+

uptake is also substantially impaired in the cells derived from these patients [137]. Surprisingly, the
loss of MICU1 does not affect oxygen consumption or membrane potential [135,137]; this finding is
consistent with the data for a MICU1 in vivo silencing murine model [53]. Another recent report
focuses on novel nonsense MICU1 mutations [138], previously documented as minor alleles [139].
The authors identified 13 patients from Middle East who manifested characteristic symptoms of MICU1
deficiency, including muscle weakness and easy fatigability [138]. Overall, different MICU1 mutations
lead to similar effects and severe phenotypes resembling mitochondrial diseases, which should be
accounted for in diagnostics.

The beneficial role of mtCU-dependent mitochondrial Ca2+ uptake in skeletal muscles following
muscle injury has also been demonstrated [140]. Specifically, Ca2+ activates mitochondrial ROS
production which, in turn, facilitates the myocyte membrane repair by local activation of RhoA
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and triggering F-actin accumulation at the site of injury. Both mtCU inhibition and ROS quenching
compromise the plasma membrane repair. Interestingly, this mechanism is common for myoblasts,
mature skeletal myofibers, and nonmuscle cells [140]. These findings emphasize the role of mtCU in
skeletal muscle repair and the positive role of ROS as valuable signaling molecules.

Since mtCU has been characterized as a trophic factor in skeletal muscle, therapeutic approaches
leading to increased mtCU expression or activity should be considered for the treatment of various
atrophic muscle diseases, for example, age-related sarcopenia. Leg press exercise training and
neuromuscular electrical stimulation of the anterior thigh quadriceps muscles beneficially affected
the structure and function of the muscle tissue in 70-year-old sedentary volunteers [141]. In detail,
the improvement in muscle strength and the recovery of the myofiber structure was accompanied by
an increase in MCU protein expression without changes in the MCU mRNA levels (suggesting
post-transcriptional regulation). Additionally, the expression of hypertrophy-associated genes
(e.g., IGF1) was induced by the training, concomitantly with the inhibitory effect on atrophy-associated
genes (e.g., MuRF1). It should be noted that neuromuscular electrical stimulation has a more profound
effect than conventional physical exercise training, and may be considered as an alternative to the
traditional rehabilitation therapy [141]. On the other hand, excessive expression of MCU in mice
with impaired mitochondrial quality control contributes to mitochondrial Ca2+ overload, myocyte
cell death, and skeletal muscle atrophy [74]. This effect is mediated by DRP1-miR1-MCU axis: Drp1
inhibition downregulates miR1, leading to increased MCU protein levels. Simultaneously, MCU
inhibition normalizes Ca2+ handling and ameliorates myofiber survival [74]. Altogether, these findings
indicate the importance of proper Ca2+ balance, achieved by proper regulation of mtCU activity, for
normal skeletal muscle functioning and prevention of muscular atrophy.

MtCU-associated function disturbances may be associated not only with structural and functional
impairments of the complex itself, but also with its abnormal regulation. In particular, null mutations
in the m-AAA protease SPG7 in Drosophila lead to multiple degenerative changes, including skeletal
muscle degeneration accompanied by accumulation of morphologically and functionally abnormal
mitochondria [92]. Although this model recapitulates some features of the hereditary spastic paraplegia
and could be relevant for understanding its molecular pathology, applicability of this model for
development of new therapies for paraplegia requires proper validation.

6. MtCU in Smooth Muscle Pathologies

The role of mtCU in smooth muscle cells has been mainly investigated in terms of vascular
smooth muscle physiology and dysfunction, since VSMCs are crucial players in the pathophysiology
of hypertension, which contributes to the development of heart failure, myocardial infarction, stroke
and other severe disorders [142]. For instance, studies on the influence of mtCU blockers on cerebral
blood flow preceded the discovery of mtCU molecular components [143]. Nevertheless, the number of
studies on the role of mtCU in smooth muscle is limited.

VSMC plasticity (the capability of the contractile-to-synthetic shift in phenotype) is pivotal for the
vascular wall repair during the phase of cell migration and proliferation following injury. By contrast,
if the vascular function is impaired chronically, as occurs in atherosclerosis and neointima formation,
VSMC plasticity contributes to the pathology progression [144]. Mitochondrial Ca2+ uptake via mtCU
is essential for mitochondrial mobility and the isolated aortic VSMCs migration during neointima
formation, with CaMKII as an upstream regulator of this process [79]. The CaMKII or mtCU inhibition
predictably abrogated VSMCs migration and mitochondrial translocation to the leading edge [79]
suggesting this pathway as a novel therapeutic option to mitigate the neointimal hyperplasia.

The excessive artery smooth muscle cells proliferation, migration, and apoptosis resistance are
also typical of pulmonary arterial hypertension [70]. In contrast to aortic VSMCs, the pulmonary
artery smooth muscle cells (PASMCs) from the patients with pulmonary arterial hypertension showed
decreased content of mitochondrial Ca2+ in combination with increased content of cytosolic Ca2+ which
contribute to PASMC proliferation and migration. PASMC Ca2+ disturbances are attributed to MCU
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downregulation and coordinated reciprocal upregulation of MICU1 resulting in the impaired mtCU
function. Along the same line, inhibition of mtCU in normal PASMCs reproduced the pulmonary
artery hypertension phenotype [69]. Disturbed mitochondrial Ca2+ handling was also identified
for maternally-inherited hypertension associated with a mutation in mitochondrial DNA [145].
In particular, Chen et al. revealed the lowest mitochondrial Ca2+ in combination with the highest
cytoplasmic Ca2+ in lymphoblastoid cell lines derived from hypertensive patients carrying the
mitochondrial DNA mutation in comparison with both hypertensive patients without the mutation
and normotensive carriers of the mutation. The decreased MCU expression was characteristic of the
cells from hypertensive patients both with mutation and without it [145]. Unfortunately, the paper
provides neither mechanistic insights nor matching experiments with VSMCs.

The hypertension, induced by chronic infusion of angiotensin II in the Micu2-depleted mice, led to
a progressive increase in the aortic diameter and eventually to aneurysms in some animals, although the
initial aortic diameter in Micu2−/−mice was only slightly larger than in normal animals. Interestingly,
this effect was specific for angiotensin II and was not reproduced by the treatment of Micu2−/− animals
with norepinephrine. Transcriptional profiling of aortic VSMCs revealed dysregulation including
proinflammatory signature, increased extracellular matrix remodeling, and cell proliferation [51].
Therefore, genetic defects in the mtCU subunit-encoding genes can exacerbate the adverse effects
of cardiovascular pathologies. Although the issue is beyond the scope of this review, endothelial
dysfunction contributing to the disease progression should be also taken into consideration when
discussing hypertension.

The data concerning mtCU function in the smooth muscle from non-vascular locations are
extremely scarce and indirect, although the mitochondrial Ca2+ mishandling in smooth muscle tissue
is typical for a number of diseases. For instance, hyper-responsiveness of the airway smooth muscle
in asthma results from the elevated cytoplasmic Ca2+ very probably associated with dysregulated
mitochondrial Ca2+ buffering [146]. Inhibitory analysis indicated the mtCU-mediated mitochondrial
Ca2+ buffering of cytosolic Ca2+ elevations in the histamine-stimulated airway smooth muscle
cells [147], suggesting the involvement of mitochondrial Ca2+ buffering in shaping of cytoplasmic
Ca2+ responses. Interestingly, the observed differential responses of perinuclear and peripheral
mitochondrial populations indicate the tight control of local Ca2+ concentrations and adaptation to
specific energy demands in different cellular compartments [147]. Expression of mtCU components in
myometrium along the course of human pregnancy has been recently analyzed [148]. The opposite
dynamics between mRNA and protein expression was revealed for MCU and MCUb subunits:
An abrupt transcriptional decline in the whole-term pregnancy was accompanied by increase in the
corresponding protein levels. This pattern may be associated with the myometrial hypertrophy during
gestation or with preparation to coordinated contractions at childbirth [148]. Overall, the role of mtCU
in smooth muscle physiology and pathology remains largely understudied and further findings in this
field are expected.

7. Future Directions and Conclusions

MtCU is the major route for the Ca2+ influx to mitochondria, and its contribution to pathophysiology
has been demonstrated for a number of cardiovascular and skeletal muscle diseases. Therefore,
modulation of mtCU expression and activity represents a promising molecular target. Ruthenium red
and its derivatives are usually used for inhibition of mtCU in the experiments. However, ruthenium
red, along with the inhibition of mtCU, has nonspecific activity against some other ion channels [149],
which prevents its use as a therapeutic agent. Use of the more selective ruthenium red derivative,
Ru360, is also limited as it is plasma membrane-impermeable, and its synthesis is challenging [150].
Two cell-permeable and highly selective small-molecule mtCU inhibitors were recently developed:
DS16570511 [151] and ruthenium complex Ru265 [150]. DS16570511 effectively blocks Ca2+ overload
and increases cardiac contractility without affecting heart rate [151]. Ru265 is minimally toxic and
prevents hypoxia/reoxygenation injury in cell model [150]. Anti-cancer drug mitoxantrone effectively
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inhibits mtCU activity, but its therapeutic use is limited by its cytotoxicity [152]. MtCU activators should
also be considered as therapeutic agents for mtCU-associated pathologies. For instance, kaempferol,
widely studied for its anti-cancer [153] and cardioprotective [154] properties, could be a promising
agent in the prevention of Ca2+-triggered arrhythmias [110]. Even though these compounds have a
prominent effect on mtCU-associated pathologies and may be promising drugs, they require more
detailed validation in cardiovascular and muscle disease animal models before being introduced into
clinical practice.

The mitochondrial Ca2+ uptake via mtCU is a crucial process for the life of a cell. The controllable
influx of Ca2+ ensures proper energy production and its adaptation to the immediate needs in
the tissues with high energy demands, such as cardiac and skeletal muscle tissues. In addition
to the energy production, mitochondrial Ca2+ regulates a variety of myocyte functions including
trophism, cell division, and cell death. MtCU expression and activity are tightly regulated by the
number of intracellular signaling pathways, with some peculiarities in different types of muscle
tissues. Disruptions in mitochondrial Ca2+ handling significantly increase the risks of cell and tissue
dysfunction and ultimately result in the development of different pathologies. Cardiovascular diseases,
currently known as one of the leading causes of death, and some skeletal muscle pathologies are shown
to be associated with mtCU dysfunction. Therefore, a better understanding of fundamental mechanisms
of mtCU function and dysfunction in muscle tissues may be useful for the future development of new
modulators of mtCU activity and perspective therapy approaches.
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