SUPPORTING MATERIAL

Coordination of miR-192 and miR-22 in p53-mediated cell fate decision

Here, we present the ordinary differential equations for the model and standard parameter values and the initial values of variables .

Supplemental Method S1: Ordinary Differential Equations for the Model

$$\frac{d[p53^*]}{dt} = k_{acp53}[p53] - k_{dep53}[p53^*] - k_{dp53p}[Mdm2_n] \frac{[p53^*]}{[p53^*] + j_{1p53n}}$$
(1)

$$\frac{d[p53]}{dt} = k_{sp53} - k_{dp53n}[p53] + k_{dep53}[p53^*] - k_{acp53}[p53] - k_{dp53}[Mdm2_n] \frac{[p53]}{[p53] + j_{1p53n}}$$
(2)

$$k_{acp53} = k_{acp530} + k_{acp531} \frac{DD}{DD + j_{DDp53}}$$
 (3)

$$k_{\rm dmdm2n} = k_{\rm dmdm2n0} + k_{\rm dmdm2n1} \frac{\rm DD}{\rm DD + j_{\rm DDm2}}$$
(4)

$$\frac{d[\text{mdm2m}]}{dt} = k_{\text{smdm2m0}} + k_{\text{smdm2m}} \frac{[\text{p53}^*]^4}{[\text{p53}^*]^4 + j_{\text{smdm2m}}^4} - k_{\text{dmdm2m}}[\text{mdm2m}]$$
(5)

$$\frac{d[\mathrm{Mdm2}_{\mathrm{n}}]}{dt} = k_{\mathrm{i}}[\mathrm{Mdm2}_{\mathrm{cp}}] - k_{\mathrm{o}}[\mathrm{Mdm2}_{\mathrm{n}}] - k_{\mathrm{dmdm2n}}[\mathrm{Mdm2}_{\mathrm{n}}]$$
(6)

$$\frac{d[\mathrm{Mdm2_c}]}{dt} = k_{\mathrm{tmdm2}}[\mathrm{mdm2m}] - k_{\mathrm{dmdm2c}}[\mathrm{Mdm2_c}] + k_{\mathrm{dpmdm2}}\frac{[\mathrm{Mdm2_{cp}}]}{[\mathrm{Mdm2_{cp}}] + j_{\mathrm{dpmdm2}}}$$

$$-k_{\rm pmdm2} [\rm Akt_p] \frac{[\rm Mdm2_c]}{[\rm Mdm2_c] + j_{\rm pmdm2}}$$
(7)
$$k_{\rm tmdm20}$$

$$k_{\rm tmdm2} = \frac{\kappa_{\rm tmdm20}}{[\rm miR-192] + j_{\rm DDm2}}$$
(8)

$$\frac{d[Mdm2_{cp}]}{dt} = k_{pmdm2}[Akt_{p}] \frac{[Mdm2_{c}]}{[Mdm2_{c}] + j_{pmdm2}} - k_{dpmdm2} \frac{[Mdm2_{cp}]}{[Mdm2_{cp}] + j_{dpmdm2}} - k_{i}[Mdm2_{cp}] + k_{o}[Mdm2_{n}] - k_{dmdm2c}[Mdm2_{cp}]$$
(9)

$$\frac{d[\text{miR-192}]}{dt} = k_{\text{smiR1920}} + k_{\text{smiR192}} \frac{[\text{p53}^*]^4}{[\text{p53}^*]^4 + j_{\text{smiR192}}^4} - k_{\text{dmiR192}} [\text{miR-192}]$$
(10)

$$\frac{d[Akt_{p}]}{dt} = k_{acakt}[PIP3] \frac{[Akt]}{[Akt] + j_{acakt}} - k_{deakt} \frac{[Akt_{p}]}{[Akt_{p}] + j_{deakt}}$$
(11)

$$[Akt] = Akt_{tot} - [Akt_p]$$
(12)

$$\frac{d[\text{PIP3}]}{dt} = k_{\text{p2}} \frac{[\text{PIP2}]}{[\text{PIP2}] + j_{\text{p2}}} - k_{\text{p3}} [\text{PTEN}] \frac{[\text{PIP3}]}{[\text{PIP3}] + j_{\text{p3}}}$$
(13)

$$[PIP2] = PIP_{tot} - [PIP3]$$
(14)

$$\frac{d[\text{PTEN}]}{dt} = k_{\text{sPTEN0}} + k_{\text{sPTEN}} \frac{[\text{p53}^*]^4}{[\text{p53}^*]^4 + j_{\text{sPTEN}}^4} - k_{\text{dPTEN}} [\text{PTEN}]$$
(15)

$$\frac{d[p21m]}{dt} = k_{sp21m0} + k_{sp21m} \frac{[p53^*]^4}{[p53^*]^4 + j_{sp21m}^4} - k_{dp21m} [p21m]$$
(16)

$$\frac{d[p21_{tot}]}{dt} = k_{tp21}[p21m] - k_{dp21}[p21_{tot}]$$
(17)

$$k_{\text{tp21}} = \frac{k_{\text{tp210}}}{[\text{miR-22}] + j_{22p21f}}$$
(18)

$$k_{\rm dp21m} = k_{\rm dp21m0} + k_{\rm dp21m1} \frac{[miR-22]}{[miR-22] + j_{22p21d}}$$
(19)

$$\frac{d[\text{miR-22}]}{dt} = k_{\text{smiR220}} + k_{\text{smiR22}} \frac{[\text{p53}^*]^4}{[\text{p53}^*]^4 + j_{\text{smiR22}}^4} - k_{\text{dmiR22}} [\text{miR-22}]$$
(20)

$$\frac{d[p21CE]}{dt} = k_{asp21ce}[p21][CycE] - k_{dsp21ce}[p21CE] -(k_{dp21} + k_{dcyce})[p21CE]$$
(21)

$$[p21] = [p21_{tot}] - [p21CE]$$
(22)

$$\frac{d[\text{CycE}_{\text{tot}}]}{dt} = k_{\text{scyce0}} + k_{\text{scyce}} \frac{[\text{E2F1}]^2}{[\text{E2F1}]^2 + j_{\text{scyce}}^2} - k_{\text{dcyce}} [\text{CycE}_{\text{tot}}]$$
(23)

$$[CycE] = [CycE_{tot}] - [p21CE]$$
(24)

$$\frac{d[E2F1]}{dt} = k_{se2f1} - k_{asre}[Rb][E2F1] + k_{dsre}[RE] + k_{prb}[CycE] \frac{[RE]}{[RE] + j_{prb}} - k_{de2f1}[E2F1]$$
(25)

$$\frac{d[E2F1_{tot}]}{dt} = k_{se2f1} - k_{de2f1}[E2F1_{tot}]$$
(26)

$$k_{\rm de2f1} = k_{\rm de2f10} + k_{\rm de2f11} \frac{j_{\rm DD2f}}{j_{\rm DD2f} + \rm DD}$$
(27)

$$[RE] = [E2F1_{tot}] - [E2F1]$$
(28)

$$\frac{d[Rb_{p}]}{dt} = k_{prb}[CycE]\frac{[Rb]}{[Rb] + j_{prb}} - k_{dprb}\frac{[Rb_{p}]}{[Rb_{p}] + j_{dprb}} + k_{prb}[CycE]\frac{[RE]}{[RE] + j_{prb}}$$
(29)
$$[Rb] = [Rb_{tot}] - [Rb_{p}] - [RE]$$
(30)

$$\frac{d[\text{Bax}]}{dt} = k_{\text{sbax0}} + k_{\text{sbax}} \frac{[\text{p53}^*]^4}{[\text{p53}^*]^4 + j_{\text{sbax}}^4} - k_{\text{dbax}}[\text{Bax}]$$
(31)

$$\frac{d[CytoC]}{dt} = (k_{accytoc0} + k_{accytoc1}[Bax] \frac{[Casp3]^4}{[Casp3]^4 + j_{cap3bx}^4})(CytoC_{tot} - [CytoC]) -k_{decytoc}[CytoC]$$
(32)

$$\frac{d[\text{Apaf1}]}{dt} = k_{\text{sapaf10}} + k_{\text{sapaf1}} \frac{[\text{E2F1}]^2}{[\text{E2F1}]^2 + j_{\text{sapaf1}}^2} - k_{\text{dapaf1}} [\text{Apaf1}]$$
(33)

$$\frac{d[\text{Apops}]}{dt} = k_{\text{acapops}}(([\text{CytoC}] - 7[\text{Apops}])([\text{Apaf1}] - 7[\text{Apops}]))^7 - k_{\text{deapops}}[\text{Apops}] (34)$$

$$\frac{d[\text{Casp9}]}{dt} = (k_{\text{accasp90}} + k_{\text{accasp91}} \frac{[\text{Casp3}]^4}{[\text{Casp3}]^4 + j_{\text{casp3}}^4} \frac{[\text{Apops}]^4}{[\text{Apops}]^4 + j_{\text{apops}}^4})(\text{Casp9}_{\text{tot}} - [\text{Casp9}]) -k_{\text{decasp9}}[\text{Casp9}]$$
(35)

$$\frac{d[\text{Casp3}]}{dt} = (k_{\text{accasp30}} + k_{\text{accasp31}} \frac{[\text{Casp9}]^4}{[\text{Casp9}]^4 + j_{\text{casp9}}^4})(\text{Casp3}_{\text{tot}} - [\text{Casp3}]) -k_{\text{decasp3}}[\text{Casp3}]$$
(36)

Supplemental Table S1: Variables and their initial values

Variable	initial	Variable	initial	Variable	initial	Variable	initial
	values		values		values		values
[p53*]	0.0009	[miR-192]	0.1	[miR-22]	0.1	[Bax]	0.1
[p53]	0.0343	[Akt _p]	0.9415	[p21CE]	0.08	[CytoC]	0.197
[mdm2m]	0.05	[PIP3]	0.8944	[CycEtot]	0.166	[Apaf1]	0.01
[Mdm2 _n]	0.6413	[PTEN]	0.1	[E2F1]	0.1	[Apops]	0
[Mdm2c]	0.0314	[p21m]	0.15	[E2F1tot]	1	[Casp9]	0.0588
[Mdm2 _{cp}]	0.9939	[p21 _{tot}]	0.188	[Rb _p]	0	[Casp3]	0.0727

Parameter	Description	Value	Reference
<i>j</i> DDp53	Michaelis constant of DNA damage-dependent p53 activation	20	estimated
jDDm2	Michaelis constant of DNA damage-dependent nuclear Mdm2 degration	22	estimated
k _{smdm20}	Basal induction rate of mdm2 mRNA	0.002	[1]
k _{smdm2}	p53-dependent transcription rate of mdm2	0.02	[1,3]
jsmdm2m	Michaelis constant of p53-dependent mdm2 mRNA production	1	[2,3]
<i>k</i> _{dmdm2m}	Degradation rate of mdm2 mRNA	0.04	estimated
k _{tmdm20}	MiR-192-dependent translation rate of mdm2 mRNA	0.2	estimated
<i>j</i> mir192	Michaelis constant of miR-192-induced mdm2 mRNA translation repression	0.1	estimated
k _{dmdm2n0}	Basel degradation rate of nuclear Mdm2	0.03	[3,4]
k _{dmdm2n1}	DNA damage-dependent degradation rate of nuclear Mdm2	0.5	estimated
kdmdm2c	Degradation rate of cytoplasmic Mdm2	0.03	[4]
<i>k</i> dpmdm2	Dephosphorylation rate of cytoplasmic Mdm2	0.3	[3]
\dot{j} dpmdm2	Michaelis constant of Mdm2 dephosphorylation	0.1	[2,3]
$k_{\rm pmdm2}$	Akt-dependent phosphorylation rate of cytoplasmic Mdm2	3.6	[3]
j_{pmdm2}	Michaelis constant of Akt-dependent Mdm2 phosphorylation	0.3	[2,3]
ki	Nuclear import rate of Mdm2 _{cp}	0.6	[2]
ko	Nuclear export rate of Mdm2 _n	0.9	[2]
<i>k</i> smiR1920	Basal induction rate of miR-192	0.0008	estimated
k _{smiR192}	p53-dependent induction rate of miR-192	0.01	estimated
j smiR192	Michaelis constant of p53-dependent miR-192 production	0.4	estimated
<i>k</i> dmiR192	Degradation rate of miR-192	0.008	Estimated
kacp 531	DNA damage-dependent activation rate of p53	0.016	estimated
$k_{\rm acp530}$	Basal activation rate of p53	0.0016	estimated
k _{dep53}	Deactivation rate of p53	0.008	estimated
kdp53p	Mdm2-dependent degradation rate of p53 _p	0.008	[1]
<i>k</i> sp53	Production rate of p53	0.08	[1,3]
k _{dp53n}	Basal degradation rate of p53	0.04	[1,3]
<i>k</i> _{dp53}	Mdm2-dependent degradation rate of p53	0.48	[1]
<i>j</i> 1p53n	Michaelis constant of Mdm2-dependent p53 degradation	0.1	[2,3]
kacakt	Phosphorylation rate of Akt	0.25	[2,3]
\dot{J} acakt	Michaelis constant of Akt phosphorylation	0.1	[2,3]
$k_{ m deakt}$	Dephosphorylation rate of Akt _p	0.1	[2,3]
\dot{j} deakt	Michaelis constant of Akt _p dephosphorylation	0.2	[2,3]
k_{p2}	Phosphorylation rate of PIP2	0.1	[2]

Supplemental Table S2: Parameter Values

<i>j</i> p2	Michaelis constant of PIP2 phosphorylation	0.2	[2]
k _{p3}	PTEN-dependent dephosphorylation rate of PIP3	0.5	[2]
jp3	Michaelis constant of PIP3 dephosphorylation	0.4	[2]
PIP _{tot}	Total concentration of PIP2 and PIP3	1	[2,3]
Akt _{tot}	Total concentration of Akt	1	[2,3]
k _{sPTEN0}	Basal induction rate of PTEN	0.001	[5]
<i>k</i> _{sPTEN}	p53-inducible production rate of PTEN	0.06	[5]
<i>j</i> spten	Michaelis constant of p53-dependent PTEN production	2.5	[5]
k _{dPTEN}	Degradation rate of PTEN	0.01	[5]
ksp21m0	Basal induction rate of p21 mRNA	6.8*E-5	estimated
ksp21m	p53-dependent transcription rate of p21	0.0035	estimated
<i>j</i> sp21m	Michaelis constant of p53-dependent p21 mRNA production	0.75	[5]
kdp21m0	Basal degradation rate of p21 mRNA	7.5*E-5	estimated
<i>k</i> dp21m1	MiR-22-dependent degradation rate of p21 mRNA	0.003	estimated
<i>j</i> 22p21d	Michaelis constant of miR-22-dependent p21 mRNA degradation	0.7	estimated
<i>k</i> _{tp210}	MiR-22-dependent translation rate of p21 mRNA	0.01	estimated
j 22p21f	Michaelis constant of miR-22-induced p21 mRNA translation repression	0.3	estimated
<i>k</i> _{dp21}	Degradation rate of p21	0.02	[6]
k _{smiR220}	Basal induction rate of miR-22	0.0006	estimated
k _{smiR22}	p53-dependent induction rate of miR-22	0.0075	estimated
jsmiR22	Michaelis constant of p53-dependent miR-22 production	1.9	estimated
k _{dmiR22}	Degradation rate of miR-22	0.006	estimated
kasp21ce	Combining rate of p21 and CycE	2	estimated
<i>k</i> dsp21ce	Dissociation rate of p21-CycE complex	0.1	estimated
kscyce0	Basal induction rate of CycE	0.01	estimated
kscyce	E2F1-dependent induction rate of CycE	0.15	estimated
jscyce	Michaelis constant of E2F1-dependent CycE production	0.4	estimated
k _{dcyce}	Degradation rate of CycE	0.06	estimated
kasre	Combining rate of Rb and E2F1	0.8	estimated
kdsre	Dissociation rate of Rb-E2F1 complex	0.1	estimated
kse2f1	Production rate of E2F1	0.0005	estimated
k _{de2f10}	Basal degradation rate of E2F1	6*E-5	[7]
k _{de2f11}	DNA damage-dependant degradation rate of E2F1	4.4*E-4	[7]
<i>j</i> DD2f	Michaelis constant of DNA damage-induced E2F1	60	estimated
karb	Phosphorylation rate of Rb by CycE	0.4	estimated
İnth	Michaelis constant of Rb phosphorylation by CycE	3.9	estimated
kdprb	Dephosphorylation rate of Rb	0.2	estimated

<i>j</i> dprb	Michaelis constant of Rb dephosphorylation	1	estimated
[Rb _{tot}]	Total concentration of Rb	2	estimated
k _{sbax0}	Basal induction rate of Bax	0.002	estimated
k _{sbax}	p53-dependent induction rate of Bax	0.06	estimated
<i>j</i> sbax	Michaelis constant of p53-dependent Bax production	2.3	estimated
k _{dbax}	Degradation rate of Bax	0.02	estimated
kaccytoc0	Basal release rate of mitochondrial cytochrome c	0.001	[2]
kaccytoc1	Bax-dependent release rate of mitochondrial cytochrome c	1.5	[2]
jcap3bx	Michaelis constant of caspase-3 dependent cytochrome c release	0.2	[2]
k _{decytoc}	Mitochondrial influx rate of cytochrome c	0.05	[2]
Cytoc _{tot}	Total concentration of cytochrome c	3	[2]
k _{sapaf10}	Basal induction rate of Apaf-1	0.001	[5]
$k_{\text{sap af 1}}$	E2F1-dependent induction rate of Apaf-1	0.25	[5]
jsapaf1	Michaelis constant of E2F1-dependent Apaf-1 production	0.8	[5]
k _{dapaf1}	Degradation rate of Apaf-1	0.1	[5]
kacapops	Rate of Apaf-1 and cytochrome c assembling into	0.7	estimated
	apoptosome		
kdeapops	Deactivation rate of apoptosome	0.5	[5]
Casp9 _{tot}	Total concentration of caspase-9	3	[5]
kaccasp90	Basal activation rate of caspase-9	0.001	[5]
kaccasp91	Caspase-3- and Apoptosome-dependent activation rate of caspase-9	3	[5]
<i>j</i> casp3	Michaelis constant of caspase-3-dependent caspase-9 activation	0.3	estimated
<i>j</i> apops	Michaelis constant of apoptosome-dependent caspase-9 activation	0.35	estimated
kdecasp9	Deactivation rate of caspase-9	0.05	[5]
Casp3 _{tot}	Total concentration of caspase-3	3	[5]
kaccasp 30	Basal activation rate of caspase-3	0.001	[5]
kaccasp31	Caspase-9-dependent activation rate of caspase-3	0.5	estimated
jcasp9	Michaelis constant of caspase-9-dependent caspase-3 activation	0.3	estimated
kdecasn3	Deactivation rate of caspase-3	0.07	[5]

- Ma, L., J. Wagner, J. J. Rice, W. Hu, A. J. Levine, and G. A. Stolovitzky. 2005. A plausible model for the digital response of p53 to DNA damage. *Proc. Natl. Acad. Sci. USA.* 102:14266-14271.
- [2] Zhang, X. P., F. Liu, and W. Wang. 2011. Two-phase dynamics of p53 in the DNA damage response. *Proc. Natl. Acad. Sci. USA*. 108:8990-8995.

- [3] Wee, K. B., and Aguda, B. D. 2006. Akt versus p53 in a network of oncogenes and tumor suppressor genes regulating cell survival and death. Biophys. J. 91, 857-865.
- [4] Stommel, J. M., and G. M. Wahl. 2004. Accelerated MDM2 autodegradation induced by DNA-damage kinases is required for p53 activation. *EMBO J*.23:1547-1556
- [5] Li H, Zhang X-P, Liu F. 2013. Coordination between p21 and DDB2 in the Cellular Response to UV Radiation. *PLoS ONE* 8(11): e80111
- [6] Maki CG and Howley PM. (1997). Ubiquitination of p53 and p21 Is Differentially Affected by Ionizing and UV Radiation Mol. Cell. Biol., 17, 355-363.
- [7] Qi Xie, Yujie Bai, et al. (2011). Methylation-mediated regulation of E2F1 in DNA damage induced cell death. Journal of Receptors and Signal Transduction., 31(2): 139–146

Figure S1: Heat map of [Bax] (A) and [Apaf-1] (B) as a function of Time and DD.