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Abstract: The number of patients with Alzheimer’s disease (AD) is rapidly increasing in Asia.
Mutations in the amyloid protein precursor (APP), presenilin-1 (PSEN1), and presenilin-2 (PSEN2)
genes can cause autosomal dominant forms of early-onset AD (EOAD). Although these genes have
been extensively studied, variant classification remains a challenge, highlighting the need to colligate
mutations across populations. In this study, we performed a genetic screening for mutations in the
APP, PSEN1, and PSEN2 genes in 200 clinically diagnosed EOAD patients across four Asian countries,
including Thailand, Malaysia, the Philippines, and Korea, between 2009 and 2018. Thirty-two (16%)
patients presented pathogenic APP, PSEN1, or PSEN2 variants; eight (25%), 19 (59%), and five (16%)
of the 32 patients presented APP, PSEN1, and PSEN2 variants, respectively. Among the 21 novel
and known non-synonymous variants, five APP variants were found in Korean patients and one
APP variant was identified in a Thai patient with EOAD. Nine, two, and one PSEN1 mutation
was found in a Korean patient, Malaysian siblings, and a Thai patient, respectively. Unlike PSEN1
mutations, PSEN2 mutations were rare in patients with EOAD; only three variants were found
in Korean patients with EOAD. Comparison of AD-causative point mutations in Asian countries;
our findings explained only a small fraction of patients, leaving approximately 84% (p = 0.01) of
autosomal dominant pedigrees genetically unexplained. We suggest that the use of high-throughput
sequencing technologies for EOAD patients can potentially improve our understanding of the
molecular mechanisms of AD.

Keywords: Alzheimer’s disease; Asian; genetics; mutation; EOAD

1. Introduction

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which accounts
for up to 75% of all dementia cases [1,2]. AD can be categorized into two major types: Early-onset AD
(EOAD) and late-onset AD (LOAD). EOAD is usually inherited autosomal dominantly, and occurs before
the age of 60–65 years. Presenilin-1 (PSEN1; MIM #104311) [3], presenilin-2 (PSEN2; MIM #600759) [4],
and amyloid protein precursor (APP; MIM #104760) gene mutations [5,6] and duplications [7] can cause
autosomal-dominant EOAD. Mutations in these genes have been relatively rarely observed [8–12],
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since the prevalence is estimated to be 5.3 per 100,000 individuals [13]. The significance of APP, PSEN1,
and PSEN2 in AD were confirmed by different genetic studies, and majority of these mutations share a
common feature of exhibiting increased production of the Aβ1-42 peptide, associated with altered
gamma secretase activity [5,14]. Among these three genes, PSEN1 mutations were more frequently
observed in AD, since approximately 252 different mutations were reported (http://www.alzforum.
org/mutations, accessed in June 2019). Mutations in APP and PSEN2 were less frequently observed,
since only 35 pathogenic APP mutations and 20 pathogenic PSEN2 mutations have been reported
(http://www.alzforum.org/mutations, accessed in June 2019).

Despite the fact that genomic sequencing and bioinformatics have dramatically improved the
identification of other genetic risk factors over the last few years, the interpretation of rare variants
remains a challenge [1,2,8,10,15,16]. Remarkably, the age of onset and disease progression is not only
influenced by genetics, but also by both lifestyle and environmental factors [17–21]. These factors may
cause altered gene expression by epigenetic modifications, thereby affecting AD pathology [1,17,19,22].
Although majority of these mutations of these three genes are associated with familial EOAD, follow
the Mendelian rules, several de novo cases of AD have been reported in patients without any family
history of dementia [10,23].

The fastest increase in the number of elderly individuals has been observed in the East Asian
countries. Approximately 60% of all patients diagnosed with dementia inhabit the Asian countries [24].
However, the genetics of EOAD are not well characterized, since only a few reports are available
regarding mutations in EOAD causative genes (Figure 1) [25–44]. Therefore, the aim of the present
study was to report mutations in additional cases, including sporadic ones, since our last update from
2009 for Asian patients with EOAD. We performed a genetic screening for mutations in the PSEN1,
PSEN2, and APP genes in 200 patients with EOAD.
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2. Results

2.1. Identified Gene Mutations of APP

Considering that the genetic background of EOAD in the Asian population is not well
characterized [10,15], we reported non-synonymous mutations in 200 clinically diagnosed patients with
EOAD across four Asian countries, including Thailand, Malaysia, the Philippines, and Korea between
2009 and 2018. A total of 32 mutation carriers, including affected relatives in EOAD families and
sporadic cases, were found among the 200 patients. From the 21 novel and known non-synonymous
variants, five APP variants were found in Korean patients, and one APP variant was identified in a
Thai patient. Nine, two, and one PSEN1 variant was identified in Korean patients, Malaysian siblings,
and a Thai patient, respectively. Unlike PSEN1 mutations, PSEN2 mutations were a rare in EOAD,
with only three variants identified in Korean patients (Table 1). Moreover, the mutation spectrum
associated with AD for all Asian countries is shown in Table 2 [29,31,32,45–53].

Six novel APP mutations were found in six out of 200 EOAD patients (Table 1). A novel mutation,
c.2005G > C, p.(Val669Leu) substitution, present in a 56-year-old Korean female and two of her
daughters [67]. The clinical features were typical of AD with aggravated diffuse brain atrophy and a
small vessel ischemic lesion. The c.1810C > T, p.(Val604Met) mutation was found in a Thai patient with
EOAD [12]. The patient was diagnosed in 2013 with AD presenting logopenic aphasia, and this variant
appeared to be associated with the phenotype [12]. Three APP variants—c.674T > C (p.Val225Ala);
c.1450C > T, (p.Pro484Ser); and c.890C > T, (p.Thr297Met)—were found in Korean patients with EOAD
at an onset age between 60 and 65 years. Although these three variants have not been previously
reported in the literature, their allele frequencies in the ExAC database are 0.00002471, 0.00003304,
and 0.0002062, respectively. Only one novel APP mutation—c.1810C > T p.(Val604Met)—was identified
during this screen in a Thai patient with EOAD; this mutation is presumed to be associated with altered
APP function due to increased hydrophobicity of methionine in the helix [12]. Over 35 APP variants
have been discovered in exons 16 and 17; of them, 10 have been reported in Asia (Table 2, Figure 2a).
Remarkably, a novel mutation in the APP gene, Val669Leu, was discovered in a Korean female patient
with AD [67]. She developed cognitive decline at the age of 56 years, and MRI scans showed mild
global atrophy with medial temporal lobe predominance and hippocampal atrophy. The patient may
have a positive history of the disease, since her mother was also diagnosed. APP V669L was predicted
as the non-damaging variant by the PolyPhen2 and Sorting Intolerant From Tolerant (SIFT) tools.
APP mutations are rare in Korean populations because of the presence of only one mutation in APP,
V715M (V715M). APP V669L is located near the β-secretase cleavage site, adjacent to the Swedish APP
(KM670/671NL) mutation (Figure 2b) [68]. This mutation may disrupt amyloid-beta metabolism.
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Table 1. APP, PSEN1, and PSEN2 mutations discovered in Asian early-onset Alzheimer’s disease (EOAD) patients between 2009 and 2018.

Gene
Protein
Change

Nucleotide
Change Exon APOE

AOO
(Years) Gender

Family
History

Pathogenicity Prediction Clinical Significance Population
PolyPhen SIFT

APP

p.Glu145Lys c.433G > A 4 ε3/ε3 55 F Y D: 0.932 T:0.496
Located outside of the
amyloid progressing

region

Koreanp.Val225Ala c.674T > C 7 ε3/ε3 65 F Y D: 932 T: 0.496

p.Thr297Met c.890C > T 7 ε3/ε3 60 F Y D: 0.98 D: 0.0

p.Pro484Ser c.1450C > T 11 ε4/ε4 61 F Y P: 0.765 T: 0.063

p.Val604Met c.1810C > T 14 ε3/ε3 55 M Y B: 0.450 T: 0.095 Thai

p.Val669Leu c.2005G >
C 17 ε3/ε3 55 F Y B: 0.017 T: 0.16 Novel mutation, may

cause EOAD Korean

PSEN1

p.Val96Phe c.286G > T 4
ε3/ε4 40 M Y

D: 1.0 T: 0.002
Known pathogenic
mutation (EOAD)

Malaysian
ε3/ε4 40 F N

p.Thr116Ile c.335C > T 5
ε3/ε3 38 F Y

D: 1.00 D: 0
Known pathogenic
mutation (EOAD)

Korean

ε3/ε3 41 F Y

p.Thr119Ile c.356C > T ε3/ε3 64 F Y D: 1.00 D: 0 Novel mutation, may be
involved in EOAD

p.His163Pro c.488A > C 4 ε3/ε3 37 F Y D: 1.00 D: 0 Novel mutation, may be
involved in EOAD

p.Trp165Cys c.695G > T 6 ε3/ε3 53 M Y D: 1.00 D: 0.001 Known pathogenic
mutation (EOAD)

p.Glu184Gly c.551A > G 7 ε3/ε3 37 F Y D: 0.878 D: 0.005 Known pathogenic
mutation (EOAD)

p.Gly209Ala c.626G > C 7 ε3/ε3 54 F Y D: 1.00 D: 0 Novel mutation, may be
involved in EOAD
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Table 1. Cont.

Gene
Protein
Change

Nucleotide
Change Exon APOE

AOO
(Years) Gender

Family
History

Pathogenicity Prediction Clinical Significance Population
PolyPhen SIFT

p.Leu226Phe CTC > TTC 7 ε3/ε3 37 F Y D: 1.00 D: 0 Known pathogenic
mutation (EOAD)

p.Leu232Pro c.695T > C 7 ε3/ε3 37 M Y D: 1.00 D: 0 Novel mutation, may be
involved in EOAD

p.Glu280Lys c.826G > A 8
ε3/ε3 48 M Y

D: 1.00 D: 0 Novel mutation, may be
involved in EOAD

Malaysian
ε3/ε3 55 F Y

ε3/ε3 57 M Y

p.Ala285Val c.854C > T 8 ε3/ε3 46 F N D: 1.0 D: 0.015 Known pathogenic
mutation (EOAD) Korean

p.Gly417Ala c.1250G >
C 12 ε3/ε3 37 M N D: 1.00 D: 0 Novel mutation, may be

involved in EOAD

PSEN2

p.Arg62Cys c.184C > T 5 ε3/ε3 49 M N D: 0.877 D: 0.05 Known mutation, may be
involved AD

Korean
p.His169Asn c.505C > A 6 ε3/ε3 56 F Y D: 1.00 D: 0 Known mutation, May be

involved AD

p.Val214Leu c.640G > A 7
ε3/ε3 56 M Y D: 0.836 D: 0.09 May be involved AD

ε3/ε4 70 F Y D: 0.836 D: 0.09 May be involved AD

Abbreviations: MC, number of mutations carriers in the family; AOO, age of onset ranges in the family; DD, disease duration (at death or last examination); APOE, apolipoprotein E
genotype; F, familial; S, sporadic; Y, yes, U, unknown; D, damaging; AD, Alzheimer’s disease; EOAD: early-onset Alzheimer’s disease.
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Table 2. The spectrum of APP, PSEN1, and PSEN2 mutations found in Asian countries.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

APP

3 p.Glu145Lys N-terminal 50s/Familial, EOAD
Located outside of the amyloid

progressing region Korea

This study

4 p.Val225Ala N-terminal 65/Familial, EOAD This study

7 pThr297Met N-terminal 60s/Familial, EOAD This study

8 p. Pro484Ser N-terminal 60s/Familial, EOAD This study

14 p.Val604Met N-terminal 55/Familial, EOAD Pathogenic Thailand This study

16
p.Val669Leu N-terminal 56 years; AD with a

positive family history

Located nearby the β-secretase
cleavage site of APP, right next to

the Swedish APP (Lys,
Met670/671Asn, Leu) mutation

Korea This study

p.Asp678Asn N-terminal 59–65 years/familial,
EOAD

Probably pathogenic, may
enhance the toxic amyloid

oligomer formation
Japan Wakutani et al.,

2004 [25]

17

p.Glu693del N-terminal 44 years/familial,
EOAD/MCI

Enhances the toxic amyloid
oligomer formation Japan Tomiyama et al.,

2008 [26]

p. Val710Gly TM-I 65–82 years/Familial,
AD, Parkinsonism Probably pathogenic China,

Taiwan
Thajeb et al.

2009 [27]

p. Thr714Ala TM-I 47–55 years/Familial,
EOAD, epilepsy Probably pathogenic Iran Pasalar et al.

2002 [28]

p.Val715Met TM-I 41 years/
Familial EOAD

Expressed in HEK293 cells,
revealed 2* decrease in Abeta 40

levels. Might destroy the
cleavage of gamma secretase at

site at Abeta40

Korea Park et al., 2008
[29]

p.Val717Ile TM-I
53 years/Familial, EOAD Increased Abeta42/Abeta40 ratio

in CHO and HEK293 cells
Japan Yoshioka et al.,

1991 [30]

54 years/unknown,
EOAD Thailand Jiao et al., 2014

[31]

p. Ile718Leu TM-I 65–82 years/Familial,
AD, Parkinsonism Probably pathogenic China,

Taiwan
Thajeb et al.,

2009 [27]

p.Leu720Ser TM-I 65–82 years/Familial,
AD, Parkinsonism Probably pathogenic China,

Taiwan
Thajeb et al.

2009 [27]
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

4

p.Leu85Pro TM-I 26 years, Juvenile EOAD Abeta42/Abeta40 ratio increased
in HEK293 Japan Ataka et al. 2004

[54]

p. Val96Phe TM-I EOAD, 49–60 years 2.1 * increased Abeta 42/40 ratio
in COS-1 cells Japan Kamino et al.

1996 [32]

p.Val97Leu TM-I EOAD Higher beta secretase activity in
human neuroblastoma cells China Fang et al. 2006

[33]

p. Phe105Cys HL-I 59 years/Familial, EOAD Survival of mutant
neuroblastoma cells dropped China Jiao et al., 2014

[31]

5

p. Gly111Val HL-I EOAD; 59 years/Familial Increased ratios of secreted
Aβ42/Aβ40 in vitro study China Qiu et al., 2019

[53]

p. Thr116Ile HL-I
Late 30s–early-40s years;
EOAD with a probable

familial
Possible pathogenic mechanisms

of mutation
Korea This study

p. Thr119Ile HL-I 49–64 years; EOAD with
a probable familial

p.Glu120Lys HL-I 40–65 years/Familial,
EOAD Probably pathogenic Iran Akbari et al.,

2013 [34]

p.Glu123Lys HL-I 26–45 years, EOAD,
myoclonus, epilepsy

Abeta42/total Abeta increased in
COS-1 cells (2.7 *) and in HEK293

(4 *) cells
Japan Yasuda et al.

1999 [35]

p.Ala136Gly TM-II Unknown, EOAD
Survival of mutant

neuroblastoma cells dropped,
deleterious effects

China Fang et al., 2007
[36]

p.Met139Ile TM-II 38 years/Familial, EOAD Ratio of Abeta42/total Abeta
increased in COS-1 cell lines. Korea Kim et al., 2010

[37]

p. Ile143Thr TM-II 26–45 years, EOAD,
myoclonus, epilepsy

Abeta42/total Abeta increased in
COS-1 cells (2.7 *) and in HEK293

(4 *) cells
Japan Arai et al., 2008

[38]

p.Tyr154Asn TM-II 40–60 years, EOAD,
spastic paraparesis

Pathogenic nature might be
associated with the missing

aromatic ring.
Japan Hattori et al.,

2004 [47]
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

6

p.His163Arg HL-II 43–50 years/5 Japanese families,
both familial and de novo cases

Abeta42/Abeta40 ratio increased
2 * in COS1 cell lines Japan Kamino et al.,

1996 [32]

p.His163Arg HL-II 43–50 years/5 Japanese families,
both familial and de novo cases

Abeta42/Abeta40 ratio increased
2 * in COS1 cell lines Korea Hong et al., 1997

[48]

p.His163Pro HL-II 35 years/de novo EOAD,
parkinsonism

The rigid proline might result
abnormalities in the border of

HL-II and TM-III
Korea This study

p.Trp165Gly TM-III 34–38 years; EOAD with strong
familiar

The small glycine is a rare amino
acid in the helix Japan Higuchi et al.,

2000 [55]

p.Trp165Cys TM-III

55 years; memory decline,
followed by difficulty in finding

ways and had a strong family
history of dementia

Increased Aβ42 and decreased
Aβ40 production in vitro;
elevated Aβ42/Aβ40 ratio

Korea This study

45 years; EOAD, a severe form of
the illness, with cerebral and

cerebellar atrophies and rapid
deterioration

India Syama et al.,
2018 [49]

p.Ile167del TM-III 38 years/familial; EOAD, spastic
paraparesis

Deletion might result abnormal
conformation in TM-III China Jiao et al., 2014

[31]

p.Ser169del TM-III EOAD, 42–50 years/familial Missing –OH group might result
a missing H-bound in the TM-III China Guo et al., 2010

[43]

p.Leu173Phe TM-III 47–50/familial; EOAD with
parkinsonism

Elevated Abeta42 levels and
Abeta42/Abeta40 ration in

neuroblastoma cells
Japan Kasuga et al.

2009 [50]
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

7

p.Glu184Asp HL-III 40s years; EOAD, DLB-like
phenotype

The smaller asparatic acid might
change the loop conformation Japan Yasuda et al.

1997 [35]

p.Glu184Gly HL-III
40s years; probable autosomal

dominant EOAD, frontal variant
form

Resulting potential functional
alterations; may also disturb the

splicing near exon 7
Thailand This study

p.Gly206Ser TM-IV 30–35 years/familial, EOAD Probably pathogenic Korea Park et al., 2008
[29]

p.Gly209Arg TM-IV 46–53 years, EOAD
Arginine might result extra stress

inside the helix and form
abnormal hydrogen bonds

Japan Sugiyama et al.,
1999 [44]

p.Gly209Ala TM-IV

54 years; MCI with depression,
followed by progressive

deterioration in verbal and visual
memory

The extra –CH3 group in alanine
might result extra stress inside

the TM-IV region
Korea This study

p.Ile213Thr TM-IV 42–47 years, EOAD Increased (1.7 * Abeta) Japan Kamino et al.,
1996 [32]

p.Gly217Asp HL-IV 42–47 years/familial, EOAD Increased (1.7 * Abeta) Japan Takao et al., 2002
[52]

p.Leu226Phe TM-V 37 years; de novo, Aβ plaques
observed

Results elevated Abeta42/Abeta40
ratio in HEK293 cells Korea This study

p.Leu226Arg TM-V 60 years/familial, EOAD Probably pathogenic China Ma et al., 2019
[41]

p.Glu311Arg TM-V > 65 years, familial, LOAD
Overproducing toxic Aβ species

and enhancing tau
phosphorylation

China Dong et al., 2017
[56]

p.Leu232Pro TM-V 37 years/familial; EOAD
The rigid proline might result

serious torsion in the TM-V since
proline is helix breaker

Korea This study
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

p.Met233Thr TM-V 34 years/de novo, EOAD, rapid
progressive memory impairment

Elevated (3.2 *) Abeta42/Abeta40
levels in CHO cells Korea Park HK et al.,

2008 [29]

p.Phe237Ile TM-V 35 years/de novo, EOAD, spastic
paraparesis Probably pathogenic Japan Sodeyama et al.

2001 [57]

p.Leu248Pro TM-VI 42 years/familial, EOAD Proline is a helix breaker, resulting in
torsion in TM-IV China Jiao et al., 2014

[31]

p.Leu250Val TM-VI 40–51 years/Familial, EOAD,
myoclonus, seizures Probably pathogenic Japan Furuya t al., 2003

[58]

8

p.Ala260Val TM-VI 27–46 years/Familial, EOAD, Pick
inclusions

1.5 * Increased Abeta42/total Abeta in
COS1 cells Japan Ikeda et al., 1996

[59]

p.Gly266Ser HL-VI(a) 35–44 years, EOAD, spastic
paraparesis, aphasia Probably pathogenic Japan Matsubara-Tsutsui

et al., 2002 [60]

p.Arg
269His HL-VI(a) 46–67 years/Familial, EOAD,

myoclonus Unknown Japan Kamimura el al.,
1998 [61]

p.Glu273Ala HL-VI(a) 46–67 years/Familial, EOAD,
myoclonus Unknown Japan Kamimura el al.,

1998 [61]

p.Glu280Ala HL-VI (MA) 48–57 years/Familial, EOAD,
parkinsonism Probably pathogenic Japan Tanahashi et al.,

1996 [62]

p.Glu280Lys HL-VI (MA) 48–57; EOAD Probably pathogenic Malaysia This study

p.Leu282Phe HL-VI (MA) 51 years, familial, EOAD Probably pathogenic Japan Hamaguchi et
al., 2009 [63]

p.Pro284Leu HL-VI (MA)
32 years, cotton-wool plaques
and neurofibrillary tangles or
amyloid angiopathy in brain

Probably pathogenic Japan Tabira et al., 2002
[64]

p.Ala285Val HL-VI (MA) 46 year/de novo, EOAD The Abeta42/total Abeta ratio
increased; Abeta40/total Abeta and

Abeta38/total Abeta ratios decreased

Korea This study

50.5 years, two families Japan Ikeuchi et al.,
2008 [65]

p.Leu286Val HL-VI (MA) 47 years
Increases in the Abeta42/total Abeta

ratio (1.5 *) and Abeta42/Abeta40
ratio (2.1 *)

Japan Ikeuchi et al.,
2008 [65]

Intron 8 Exon9 del - 47.5 years, in EOAD with spastic
paraparesis

elevated Abeta42 levels and
Abeta42/40 ratio were observed Japan Tabira et al., 2002

[64]
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

10 p.Arg352Cys HL-VI (b) 56–62 years, EOAD, psychiatric,
behavioral symptoms

Cysteine could result
intramolecular disulfide bound China Jiang et al., 2015

[66]

11

p.Gly378Glu TM-VII 37 years, EOAD, familiar positive Abeta42/Abeta40 ratio increased
(3.2 *) Japan Ikeda et al., 1996

[59]

p.Leu381Val TM-VII 30s years, AD and spastic
paraparesis

Abeta42/Abeta40 ratio increased
(1.9 *) Japan Ikeuchi et al.,

2008 [65]

p.Gly384Ala TM-VII
31–37 years, EOAD, senile
plaques and tangles inside

proband’s brain

Beta40 and the Abeta42/Abeta40
ratio decreased and increased

significantly. Abeta42/total Abeta
ratio increased (3.8 *)

Japan Kamimura et al.
1998 [61]

p.Leu392Val TM-VII 42 years, EOAD
Abeta42/Abeta40 ratio (2.4*). An
increase in the Abeta42/Abeta40

ratio (2.9 *)
Japan Ikeuchi et al.

2008 [65]

p.Asn405Ser HL-VII
EOAD, the patient has several

senile plaques and tangles in the
brain

It caused disturbances in the
motor neuronal systems, leading

to spastic paraparesis
Japan Yasuda et al.,

2000 [46]

p.Gly417Ala HL-VIII 37 years; EOAD, parkinsonism,
positive familiar Pathogenic mechanism Korea This study

12
p.Ala431Val HL-VIII

16 months, t-tau and
phospho-Tau levels increased in
the CSF, and metabolic deficits

were detected in several parts of
the brain

Possibly pathogenic Japan Matsushita et al.,
2002 [45]

p.Ala434Thr HL-VIII 38 years, EOAD,
Hallucinations, delusions

Threonine might result
extramolecular or intramolecular

hydrogen bound
China Jiao et al., 2014

[31]

p.Thr440del HL-VIII 52 years, strong familiar history,
EOAD and parkinsonism

Probably pathogenic, may alter
the normal amyloid production Japan Ishikawa et al.,

2005 [42]
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Table 2. Cont.

Gene Exon Codon,
Mutation

Location in the
Protein

Age of Onset, Clinical
Characteristics Pathogenic Nature Country References

PSEN2

4 p.Arg62Cys N-term
49 years, EOAD Possibly pathogenic, may alter

the normal amyloid production.
Korea This study

40–65 years, EOAD Iran Akbari et al.,
2013 [34]

5 p.Asn141Tyr TM-II 43–49 years, EOAD No functional data China Niu et al., 2014
[39]

6 p.His169Asn TM-III

50 years; de novo It may result in major helix
torsion due to histidine to

asparagine substitution

Korea This study

62 years; AD, de novo
China

Shi Z et al., 2015
[40]68 years; FTD, progressive

nonfluent aphasia, Familial

63 years/Familial, LOAD China Ma et al., 2018
[41]

7 p.Val214Leu TM-IV 56–70 years; AD
The extra CH3 group in leucine
could result extra stress in the

TM-IV region
Korea This study

Abbreviation: APP, amyloid precursor protein; PSEN1, presenilin-1; PSEN2, presenilin-2; AD, Alzheimer’s disease; EOAD, early-onset Alzheimer’s disease; LOAD, late-onset Alzheimer’s
disease; MCI, mild cognitive impairment; DLB, dementia with Lewy bodies; FTD, frontotemporal dementia; HEK293, human embryonic kidney 293; CHO, Chinese hamster ovary; COS-1,
cercopithecus aethiops kidney; TM, transmembrane domain; * multiplication sign.
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site are the protective Ala673Thr and the pathogenic Ala673Val.

2.2. Identified Gene Mutations of PSEN1

Twelve PSEN1 mutations were identified in 20 patients with EOAD (Table 1).
Remarkably, a previously reported PSEN1 mutation—Val96Phe—was identified in two siblings
from Malaysia. This mutation was reported previously in a Japanese family with disease onset
in the late 40s or 50s [32]. Similar to Japanese patients, the disease onset in these siblings was in
the 40s, and they presented symptomatic changes in behavior and personality, such as apathy and
withdrawal. In addition, seven additional novel or known PSEN1 mutations, including Thr116Ile,
Thr119Ile His163Pro, Leu226Phe, Gly209Ala, Leu232Pro [69], and Gly417Ala [11], have been identified
in Korean patients with AD. Importantly, even though PSEN1 is the most commonly involved gene,
with > 231 mutations reported as pathogenic in the Alzforum database (www.alzforum.org/mutations),
this study did not find any PSEN1 mutation in the Thai and Philippine cohorts. Moreover, only three
Malaysian patients with AD have been identified to carry a novel mutation, Glu280Lys [70]. As Korea
is one of the fastest “aging countries” in the world, the number of AD, including EOAD, patients will
rapidly increase [24]. The carriers of PSEN1 mutation presented with isolated and progressive cognitive
decline. Another patient carrying the PSEN1 p.Gly417Ala substitution also exhibited an atypical
presentation: Cerebellar ataxia and extra pyramidal with pessimism syndrome. According to the
Alzheimer’s Research Forum database, more than 230 PSEN1 variants have been identified worldwide
(www.alzforum.org/mutations). Among them, > 55 variants have been identified in Japan, Korea,
the People’s Republic of China, Malaysia, and Thailand (Figure 3).

www.alzforum.org/mutations
www.alzforum.org/mutations
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2.3. Identified Gene Mutations of PSEN2

We also discovered the following three PSEN2 mutations in Korean patients for the first time:
Arg62Cys, His169Asn [9], and Val214Leu. Arg62Cys (CGC TGC) was discovered in the Asian
population for the first time by our research group. The mutation was identified in a patient with
dementia. Memory impairment, personality change, and disorientation appeared at the age of 49 years.
Val214Leu was one of the first PSEN2 mutations identified in an Asian population. In addition, it is
the first mutation identified in the TM-IV region of PSEN2. Val214Leu mutation was identified in the
following two unrelated patients: A 70-year-old patient with AD-type dementia and a 56-year-old
patient with memory impairment. The exact family history is unknown for both patients. A pathogenic
mutation p.His169Asn in the PSEN2 gene in a Korean patient with EOAD has also been identified [9].
PolyPhen-2 and SIFT software analyses predicted this mutation to be a probable damaging variant.
The mutation was identified in a 58-year-old woman who was presented with progressive memory
decline in her 50s. The patient had an apolipoprotein E genotype (APOE) ε 3/3 polymorphism.
The family history of the proband generations was negative for any neurological disease, indicative
of a de novo case of AD. All living family members declined genetic testing. Interestingly, PSEN2
p.His169Asn mutation was previously identified in one patient with familial LOAD and one patient with
sporadic frontotemporal dementia (FTD) from People’s Republic of China [40]; however, the pathogenic
nature has not been clarified yet. Compared with the two Chinese patients, the Korean patient showed
similar clinical manifestation with the proband with frontal variant AD. Although no additional
mutation was reported at residue 169 of the PSEN2 protein, the p.His169Asn mutation was found in
the conserved TM-III region of PSEN2, containing the pathogenic variants (p.M174V and p.S175C),
based on the algorithms to predict the pathogenicity of the mutations described by Guerreiro et al. [71]
More than 40 missense and frameshift mutations in the PSEN2 gene have been reported so far; however,
until 2019, no pathogenic mutation has been found in PSEN2 in any Asian country. The findings of
this study as well as those of recent studies revealed novel and known PSEN2 variants in Korean and
Chinese patients (Figure 4).
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3. Discussion

In this study, we performed genetic screening for mutations in the APP, PSEN1, and PSEN2 genes
in 200 clinically diagnosed EOAD patients across four Asian countries, including Thailand, Malaysia,
the Philippines, and Korea from 2009 to 2018, and identified 21 novel and known missense mutations.
According to Guerreiro’s algorithm [71], pathogenicity was considered as “definite” for two APP,
“probable” for nine PSEN1, and “possible” for three PSEN2 mutations. The pathological effect of the
known mutations deserves discussion because of incomplete penetrance, nonpathogenicity, or a wide
range of age onset [41,47,52,56–61,63–65].

This study detected six mutations in APP, among patients under 65 years of age. Among them,
only one APP, the Val669Leu mutation, was located in the amyloid processing area. The patient with
APP Val669Leu presented had a progressive short-term memory impairment, as observed in typical
AD. However, atypical symptoms of AD, including focal signs and symptoms, were also observed.
Frontal lobe impairment (depression, apathy, and disinhibition), epileptic seizures, and myoclonus
were also observed. As APP is responsible for the disease it is located relatively near to the beta
secretase cleavage site; therefore, Val669Leu may interfere with the normal proteolytic processing of
APP. This mechanism is thought to involve alternative proteolytic processing pathways [5–7,47,72].

PSEN1 c.286G > T, p.(Val96Phe) substitution was identified in two siblings from Malaysia.
This was the second report of the PSEN1 Val96Phe mutation among EOAD patients in Asia. Patients
presented similar phenotypes like the previously described Japanese patients: The disease onset was
in their 40s, and they presented a symptomatic change in behavior and personality, such as apathy
and withdrawal. PSEN1 Val96Phe mutation is considered pathogenic and can lead to an increase
in Aβ42 level and Aβ42/Aβ40 ratio in cell cultures [32]. These findings suggest that mutations in
TM-I may be responsible for pathogenic mutations in EOAD. Cellular studies with different mutations
(including Val96Phe) suggest that TM-I plays a significant role in APP trafficking and amyloid
peptide cleavage. Therefore, we speculate about an underestimation of its frequency. In addition,
two PSEN1 mutations—Trp165Cys [73] and p.Ala285Val—were identified in a 53-year-old male who
presented memory decline, followed by disorientation, and in a 46-year-old woman who presented
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with progressive memory dysfunction, respectively. Both patients had probable EOAD, and the family
history was positive in them. Both mutations were previously shown to have increased Aβ42 and
decreased Aβ40 levels. Moreover, both mutations could elevate the Aβ42/Aβ40 ratio by impairing the
gamma secretase functions [49,59,72,74–76].

Similar to APP and PSEN1 mutations, PSEN2 mutations can also enhance Aβ production and
contribute to AD development. An extensive literature search for PSEN2 mutations was conducted.
Thirty-eight PSEN2 mutations have been reported yet, and most of these mutations were identified in
European and African populations. Until now, only five missense mutations have been reported in
Asian populations. Asn141Tyr was identified in a Chinese Han patient with EOAD [77], Gly34Ser was
found in a Japanese patient [4], and three possibly pathogenic mutations—Arg62Cys, Val214Leu, and
His169Asn—were reported in this study. PSEN2 mutations are associated with variable penetrance and
a wide age range of disease onset, from 45 to 88 years [78,79]. PSEN2 is a transmembrane protein and
a component of γ-secretase intramembrane protease, and is involved in various signaling pathways in
AD development [80,81].

In an EOAD patient cohort, the estimated mutation frequencies for the three genes were < 1% for
APP, 6% for PSEN1, and 1% for PSEN2 [82]. Together, they explain only 5% to 10% of the mutational
profile in patients with EOAD [82,83]; however, approximately 90% of the mutations remain genetically
unexplained [1,84]. With the exception of Korea, the People’s Republic of China, Taiwan, and Japan,
limited reports are available on EOAD-associated mutations in Asian countries (Table 2). Two APP
mutations have been identified in patients from Thailand [12] and Iran [85]. Recently, a novel PSEN1
mutation was reported in a Malaysian family [70]. Our primary goal was to provide clinicians a list of
variants that can be accurately used in genetic counseling. Considering our whole cases, this goal is
achieved for 9% mutations reported in the Asian population. Limited reports are available regarding
EOAD-associated mutations in other East Asian countries. Hence, our investigators have begun efforts
for screening AD-related mutations across Asian countries through collaborations. Compared with
Caucasian patients, over 30 novel EOAD-associated mutations have been found in the APP, PSEN1,
and PSEN2 genes in Asian patients (http://www.alzforum.org/mutations). Since the overall population
and aging population in most Asian countries is increasing, genetic testing of patients with AD and
other types of dementia is important for the diagnosis of dementia.

A limitation of this study is the absence of functional assessment of the possible and probable
pathogenic variants, which could simplify their classification [8]. Moreover, only three genes were
analyzed. It is possible that de novo mutations in other genes are also involved in the genetic
determination of sporadic forms [16,18,86–90]. The limited number of resolved pedigrees and large
number of genetically unexplained EOAD patients indicate that additional causal genes remain to
be discovered. The next step involves performing whole exome/genome sequencing on negatively
screened families and sporadic cases.

In conclusion, among the distinct mutations in the Asian patients and isolated cases in the Asian
population, definite pathogenicity accounted for less than 16%, leaving a large group of autosomal
dominant pedigrees genetically unexplained. In addition, our findings suggest that continuing the
investigation of families harboring known mutations and the elucidation of the missing genetic etiology
in unexplained EOAD patients has a vast potential to improve our understanding about the complexity
of AD [1,10,15,90,91]. We also suggest that the use of high-throughput sequencing technologies
for patients with EOAD and data integration from other -omics analyses (epigenomics, proteomics,
transcriptomics, and metabolomics) might help in better understanding the underlying molecular
mechanisms of AD.

4. Materials and Methods

Two-hundred patients with EOAD from the University Hospitals of Korea, Malaysia, Thailand, and
the Philippines were recruited between 2009 and 2018. All patients underwent a comprehensive clinical
examination, including personal medical and family history assessment and neuropsychological
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assessment. For each patient, AD diagnosis was established using the National Institute of
Aging–Alzheimer’s Association (NIA–AA) criteria [92]. The project received ethics approval from
the Seoul National University College of Medicine of Seoul National Bundang Hospital (SNUH),
and written informed consent was obtained from all participants according to the requirements of the
Seoul National Bundang Human Research Committee (B-1302/192-006, approval date: 15/03/2013).
All procedures involving human participants were conducted in accordance with the ethical standards
of the institutional and/or national research committee and 1964 Helsinki Declaration and its
later amendments.

4.1. Genetic Analyses

Genetic analyses were performed on DNA extracted from whole blood. Sanger sequencing,
next-generation sequencing (NGS) and whole exon sequencing (WES) were employed to search for
mutations in the APP, PSEN1, and PSEN2 genes in patients with both sporadic and family history of AD.
APOE genotypes comprising the APOE ε2, ε3, and ε4 alleles were assayed [15]. To confirm the presence of
the identified mutations, standard sequencing was performed in both directions using the previously used
primer set [1,2]. Prior to sequencing, PCR products were purified using the GeneAll PCR protocol kit (Seoul,
Korea), following the manufacturer’s protocol. Big Dye Terminator Cyclic sequencing was performed
on an ABI 3730XL DNA Analyzer (http://eng.bioneer.com/home.aspx, Bioneer Inc., Dajeon, Korea). The
sequenced product was aligned using the NCBI Blast tool (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and
chromatograms were screened using the DNA BASER (http://www.dnabaser.com). Mutations and
sequence variants were identified from the NCBI Gene (http://www.ncbi.nlm.nih.gov/gene) and UniProt
(http://www.uniprot.org) databases. Briefly, patients with EOAD were analyzed by high-throughput
sequencing, following the schematic diagram shown in Figure 5.
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4.2. Bioinformatics

To determine whether APP, PSEN1, and PSEN2 variants presented rare or common polymorphisms,
the variants were checked in the Korean Genome Reference Database (http://152.99.75.168/KRGDB/

menuPages/firstInfo.jsp) for their novelty. The full genome sequences of 622 asymptomatic individuals
were obtained by whole genome sequencing. In addition, variants were also checked in other large-scale
genome reference databases, including the 1000 Genomes (http://www.internationalgenome.org/) and
Exome Aggregation Consortium (ExAC; http://exac.broadinstitute.org) databases. Polymorphism
phenotype v2 (PolyPhen-2) and Sorting Intolerant From Tolerant (SIFT) were used to predict whether
the amino acid change would be disruptive to the encoded protein.
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