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Abstract: CRISPR/Cas9-mediated genome editing is a powerful technology that has been used for
the genetic modification of a number of crop species. In order to evaluate the efficacy of CRISPR/Cas9
technology in the root crop, sweet potato (Ipomoea batatas), two starch biosynthetic pathway genes,
IbGBSSI (encoding granule-bound starch synthase I), and IbSBEII (encoding starch branching enzyme
II), were targeted in the starch-type cultivar Xushu22 and carotenoid-rich cultivar Taizhong6. I.
batatas was transformed using a binary vector, in which the Cas9 gene is driven by the Arabidopsis
AtUBQ promoter and the guide RNA is controlled by the Arabidopsis AtU6 promoter. A total of
72 Xushu22 and 35 Taizhong6 transgenic lines were generated and analyzed for mutations. The
mutation efficiency was 62–92% with multi-allelic mutations in both cultivars. Most of the mutations
were nucleotide substitutions that lead to amino acid changes and, less frequently, stop codons.
In addition, short nucleotide insertions or deletions were also found in both IbGBSSI and IbSBEII.
Furthermore, a 2658 bp deletion was found in one IbSBEII transgenic line. The total starch contents
were not significantly changed in IbGBSSI- and IbSBEII-knockout transgenic lines compared to the
wild-type control. However, in the allopolyploid sweet potato, the IbGBSSI-knockout reduced, while
the IbSBEII-knockout increased, the amylose percentage. Our results demonstrate that CRISPR/Cas9
technology is an effective tool for the improvement of starch qualities in sweet potato and breeding of
polyploid root crops.
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1. Introduction

Genome-editing mediated by CRISPR/Cas9 is a revolutionary technology that enables the loss or
gain of function of specific genes to produce desired qualities in plants [1,2]. The CRISPR/Cas9-knockout
technique is relatively simple to perform with high accuracy [3,4]. The CRISPR/Cas9 system has been
successfully used in plant breeding of crops with valuable traits, such as antioxidant-rich purple
tomatoes, omega-3 fatty acid-enriched oil crop, starch altered potato, and high-yielding rice [5–10].
As removal of the transgenes in CRISPR/Cas9-edited plants is a prerequisite for gaining regulatory
approval for commercial applications, T-DNA-free genome editing can potentially speed up the
breeding process in agriculture [11,12].

Sweet potato (Ipomoea batatas), is one of the top starch-rich root crops worldwide, as well as a source
for human nutrition and industrial raw materials [13]. The biosynthesis of starch requires five classes
of core enzymes, including ADP-glucose pyrophosphorylase (ADPG), starch synthases (SS), starch
branching enzymes (SBEs), starch debranching enzymes (DBEs), and granule-bound starch synthase I
(GBSSI), that are located in the chloroplast or amyloplast [14–16]. GBSSI is responsible for amylose
biosynthesis, and SBEs, including starch branching enzyme I (SBEI) and starch branching enzyme II
(SBEII), are involved in amylopectin biosynthesis [17]. Suppression of GBSS by co-suppression or RNA
interference (RNAi) results in the production of amylose-free starch [18–20]. Shimada et al. successfully
obtained a higher amylose content by RNA interference of the IbSBEII gene [21]. Compared to SBEI,
SBEII generates a higher rate of branching due to an apparent higher affinity towards amylopectin for
the transferring of shorter glucan chains [22]. Nevertheless, starch biosynthesis in sweet potato is still
insufficiently understood. Compared to many other major crops, such as rice, maize, soybean, and
cassava, the functional genomic study of the sweet potato has been difficult due to the low efficiency
of gene transformation, allopolyploidy (2n = 6x = 90), and limited genomic information. The recent
achievements of gene transformation and genome mapping of sweet potato have opened the door to
studying gene functions in this important crop using CRISPR/Cas9-mediated genome-editing [23–25].

In this study, targeted mutagenesis of two starch biosynthetic pathway genes, IbGBSSI and IbSBEII,
were achieved by using the CRISPR/Cas9 system in two sweet potato cultivars, starch-type cultivar
Xushu22 and carotenoid-rich cultivar Taizhong6. Our results provide the first demonstration of
CRISPR-Cas9-mediated genome editing of the sweet potato, confirming that multi-copy gene knockout
in polyploid plants is achievable with phenotypic consequences.

2. Results

2.1. Single or Dual gRNA Vectors Allow Evaluation of Efficiency for Targeted Mutagenesis

CRISPR/Cas9-based vectors were constructed for the transformation of I. batatas. We designed
the gRNAs using online gRNA design tools and the available I. batatas draft genome sequences [24].
To evaluate the editing efficiency, two vectors, harboring either a single gRNA or a double gRNA
cassette with the Cas9 endonuclease, were constructed and used for transformation (Figure 1a). The
U6 promoter from Arabidopsis (pAtU6), was used to drive the gRNA expression. The Arabidopsis
ubiquitin-1 promoter (AtUBQ1) was used to control Cas9 expression. The IbGBSSI gene contains nine
exons. Two vectors, one containing a single gRNA (sgRNA2) and the other having double gRNAs
(sgRNA12: sgRNA2 + sgRNA1), were used to target the first exon (Figure 1b). For the IbSBEII gene
knockout, the single gRNA vector (IbSBEII-sgRNA2) aimed to mutate exon 15, and the dual gRNA
vector IbSBEII-sgRNA12 (IbSBEII-sgRNA2 + IbSBEII-sgRNA1) were used to target exons 12 and 15
(Figure 1c, Supplementary 1). I. batatas is self-incompatible, we thus chose two cultivars, Xushu22 and
Taizhong6, for the transformation and subsequent removal of CRISPR/Cas9 T-DNA by crossing. The
gene-knockout cultivars thus generated will be used as parental lines in future breeding programs to
obtain desirable starch quality.
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Figure 1. Schematic representations of the sweet potato granule-bound starch synthase I (IbGBSSI), 
and starch branching enzyme II (IbSBEII) target genes, location of the gRNAs, and CRISPR/Cas9 gene-
editing construct. (a) Structural organization of the CRISPR/Cas9 binary vector pCAMBIA1301s used 
for stable Agrobacterium-mediated transformation in the sweet potato. Arabidopsis thaliana promoter 
AtU6 drives expression of each gRNA. The cauliflower mosaic virus promoter (CaMV 35S) drives 
expression of the Cas9 gene. Abbreviations: 1, single gRNA vector; 2, double gRNAs vector; NLS, 
nuclear localization signal; Nos, Nos terminator. (b) Schematic representation of encoding granule-
bound starch synthase I (IbGBSSI) target region and location of the gRNAs. Exons are shown as 
square frames and surrounding introns appear as lines. sgRNA and PAM are highlighted in yellow 
and green, respectively. (c) Schematic representation of IbSBEII target region and location of the 
gRNAs. Exons shown as square frames and surrounding introns appear as lines. sgRNA and PAM 
are highlighted in yellow and green, respectively. 

2.2. Efficient Gene Mutagenesis in Sweet Potato 

The I. batatas genome is comprised of two B1 and four B2 component genomes (B1B1B2B2B2B2) [26]. 
A multi-step scheme was deployed to mutate the target genes (Figure 2). First, the four vectors were 
transformed into Xushu22 and Taizhong6 via Agrobacterium-mediated method and putative 
transgenic plants were generated. PCR analysis using genomic DNA isolated from the transgenic 
lines confirmed the stable integration of the T-DNA into the genome. Next, we used gene-specific 
primers, more than 200 bp flanking the target sites, in a series of combinatorial PCR using genomic 
DNA isolated from the transgenic lines. In the events in which significant deletions or insertions 
occur, band size shift might appear in gel electrophoresis. In most cases, point mutations and small 

Figure 1. Schematic representations of the sweet potato granule-bound starch synthase I (IbGBSSI), and
starch branching enzyme II (IbSBEII) target genes, location of the gRNAs, and CRISPR/Cas9 gene-editing
construct. (a) Structural organization of the CRISPR/Cas9 binary vector pCAMBIA1301s used for stable
Agrobacterium-mediated transformation in the sweet potato. Arabidopsis thaliana promoter AtU6 drives
expression of each gRNA. The cauliflower mosaic virus promoter (CaMV 35S) drives expression of the
Cas9 gene. Abbreviations: 1, single gRNA vector; 2, double gRNAs vector; NLS, nuclear localization
signal; Nos, Nos terminator. (b) Schematic representation of encoding granule-bound starch synthase I
(IbGBSSI) target region and location of the gRNAs. Exons are shown as square frames and surrounding
introns appear as lines. sgRNA and PAM are highlighted in yellow and green, respectively. (c)
Schematic representation of IbSBEII target region and location of the gRNAs. Exons shown as square
frames and surrounding introns appear as lines. sgRNA and PAM are highlighted in yellow and
green, respectively.

2.2. Efficient Gene Mutagenesis in Sweet Potato

The I. batatas genome is comprised of two B1 and four B2 component genomes (B1B1B2B2B2B2) [26].
A multi-step scheme was deployed to mutate the target genes (Figure 2). First, the four vectors were
transformed into Xushu22 and Taizhong6 via Agrobacterium-mediated method and putative transgenic
plants were generated. PCR analysis using genomic DNA isolated from the transgenic lines confirmed
the stable integration of the T-DNA into the genome. Next, we used gene-specific primers, more than
200 bp flanking the target sites, in a series of combinatorial PCR using genomic DNA isolated from
the transgenic lines. In the events in which significant deletions or insertions occur, band size shift
might appear in gel electrophoresis. In most cases, point mutations and small deletions/insertions
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were detected by DNA sequencing of the PCR products. We identified 107 transgenic sweet potato
lines using PCR. We subsequently sequenced the gene-specific PCR fragments, flanking the target
sites, amplified using DNA isolated from the putative transgenic lines. Of the 25 IbGBSSI-sgRNA
transgenic lines of Xushu22, 23 contained mutations, a 92% mutation rate. Of the 24 IbGBSSI-sgRNA
transgenic lines of Taizhong6, 15 contained mutations in the target gene, a 62% mutation rate. In total,
40 of the 47 IbSBEII transgenic lines of Xushu22 contained gene-specific mutations, including 24 of
the 25 double sgRNA transgenic lines and 16 of the 22 single sgRNA transgenic lines. Additionally,
11 transgenic IbSBEII-sgRNA lines were obtained for Taizhong6, of which 63% had mutations in the
target gene. The overall mutation rates of Xushu22 appeared to be higher than those of Taizhong6
(Table 1). Vectors with double gRNAs also appeared to generate higher mutation rates compared with
those containing single gRNA. Sequencing of the PCR products of IbGBSSI and IbSBEII genes from the
transgenic lines revealed various mutations, including nucleotide deletion, insertion, and substitution.
In Xushu22, six of the eight IbGBSSI-sgRNA2 transgenic lines contained mutations, of which one line
had a short deletion, four lines had single point mutations, and one line had a combination of point
mutation and deletion (Supplementary, Table S1). In contrast, all 17 IbGBSSI-sgRNA12 transgenic
lines had single nucleotide insertions at the +89 bp position. Moreover, sequence analysis showed
that IbGBSSI-sgRNA12-1 and IbGBSSI-sgRNA12-2 lines have 12 bp and 15 bp deletions close to the
PAM sequence, respectively. Further, 24 of the 25 transgenic lines of IbSBEII-sgRNA12 contained
mutations, as did 16 of the 22 IbSBEII-sgRNA2 transgenic lines. It thus appears that vectors with two
gRNA (IbSBEII-sgRNA12) have higher mutation efficiency than that with a single gRNA. As a typical
example, IbSBEII-sgRNA2-21 in Xushu22 produced one PCR band with similar size as the wild-type
(WT), and DNA sequencing revealed the presence of nucleotide substitutions, insertion (A-TC) and a
short deletion (TTTACTGGCTTTAAGCAGCCTA) (Figure 3, Table S1). Similarly, IbSBEII-sgRNA12-24
produced a single small PCR band by PCR amplification. Sequencing of small bands just revealed a
major peak that contains a 2658 bp deletion between two of the sgRNA in Xushu22 (Figure 3b; Table S1).
IbSBEII-sgRNA12-4 generated a mutation at +6811 bp (CC to GG), a 6 bp deletion (TGATAA) at +6802
bp in exon 12, and a single nucleotide (T) insertion at +6484 bp and an 8 bp deletion (AAGCAGCC) at
+9475 bp in exon 15.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 13 

 

 
Figure 2. Schematic representation of the workflow designed to analyze targeted gene mutations of 
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running gel electrophoresis to roughly estimate the mutation types. PCR products sequencing 
analysis was performed by examining their sequencing chromatograms for accurate mutation status. 

 

 

Figure 2. Schematic representation of the workflow designed to analyze targeted gene mutations of
CRISPR/Cas9 editing. Transgenic lines were identified by PCR detection of Cas9 genes. Mutation
detection in transgenic lines by PCR amplification with primers flanking the sgRNA target sites and
running gel electrophoresis to roughly estimate the mutation types. PCR products sequencing analysis
was performed by examining their sequencing chromatograms for accurate mutation status.
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Table 1. Mutation rates of CRISPR/Cas9 in sweet potato.

Cultivar Target Gene No. of Plants with
Cas9 Gene

No. of Plants with
Mutation

Mutation Rates of
Transgenic Plants

Xushu22 IbGBSSI 25 23 92.0%
Xushu22 IbSBEII 47 40 85.1%

Taizhong6 IbGBSSI 24 15 62.5%
Taizhong6 IbSBEII 11 7 63.6%
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 Figure 3. The typical sequence chromatograms of CRISPR/Cas9 editing produced targeted gene
mutations. (a) Xushu22-IbSBEII-sgRNA2-21 multiple peaks appearance. Majority peak TC replace
of A in wildtype sequence, while minority peak has a short sequence deletion compared with WT
sequence. Dots indicate deletion sequences. Orange triangles indicate the position of sgRNA target
site. (b) Xushu22-IbSBEII-sgRNA12-24 has a 2658 bp sequence deletion compared with WT sequence.
Black dots indicate deletion sequences. An orange triangle indicates the position of sgRNA target site.
Red line: T; green line: A; blue line: C; black line: G.

In Taizhong6, of the 15 IbGBSSI-sgRNA2 transgenic lines, two lines had insertions, five lines
had single point mutations, one line combined a single site mutation and an insertion, and another
line had both a point mutation and a deletion (Table S1). The same mutation, AAC to GTT, occurred
in IbGBSSI-sgRNA12 lines 3, 5, 6, and 7. A single point mutation and a deletion occurred in
IbGBSSI-sgRNA12-10 transgenic line. In IbGBSSI-sgRNA2 transgenic lines, six lines had single point
mutations and one line had both a single point mutation and a deletion. In IbSBEII-sgRNA12 transgenic
lines, two lines had short deletions (Table S1). Sequencing results revealed that IbSBEII-sgRNA12-6
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has a 6 bp deletion from 6826–6831 bp (GTTATC) and an 11 bp deletion (GGGTTATCATT) from
6829–6839 bp. IbSBEII-sgRNA2-12 and IbSBEII-sgRNA2-15 have 1 bp deletions that result in frame
shifts. Collectively, our findings suggest that PCR combined with sequencing can be used to analyze
the precision of CRISPR/Cas9-targeted mutagenesis in the polyploid sweet potato.

2.3. The Starch and Amylose Contents and Chain Length Distribution in Mutated Plants

The starch and amylose contents were quantified in the storage roots of IbGBSSI-sgRNA and
IbSBEII-sgRNA transgenic lines of Xushu22 and Taizhong6 (Figure 4). The starch contents of all
transgenic lines were not significantly changed compared to WT (Figure 4a). However, because IbGBSSI
controls amylose biosynthesis, relative proportions of amylose in IbGBSSI-knockout transgenic lines
were significantly reduced compared to WT (Figure 4b). In Xushu22 knockout lines, amylose contents
ranged from 5.75% (IbGBSSI-sgRNA12-7) to 22.4% (IbGBSSI-sgRNA2-5). Low amylose contents
were also achieved in Taizhong6 knockout lines, ranging from 5.50% to 14.8%. SBEII is involved
in amylopectin biosynthesis; knocking out SBEII led to the decrease of amylopectin and increase of
amylose. The proportions of amylose in IbSBEII-sgRNA lines were higher compared to WT. The highest
increase (38–40.3%) of amylose was found in lines IbSBEII-sgRNA12-26 and IbSBEII-sgRNA12-23
compared to Xushu22 WT (27.2%). In the Taizhong6 background, amylose contents reached 37.8% in
IbSBEII-sgRNA2-15 and 37.4% in IbSBEII-sgRNA2-16 compared to 25.1% in WT. IbSBEII-sgRNA2-20
and IbSBEII-sgRNA2-7 were confirmed as transgenic lines by PCR amplification of the Cas9 gene.
Sequence analysis did not detect mutations; however, the amylose contents were significantly different
than that of WT. We speculated that a minor mutation peak in the mixed PCR products was masked by
the major peak.

To further identify the physicochemical properties of starches in transgenic lines, the amylopectin
chain length distribution was determined in the short chain of 90 > DP > 6 and the long chain of DP
>43 according to peak area. In Xushu22 background, significant differences were detected in short (DP
6–12) (Figure 5a) and long chains (DP ≥200) (Figure 5b) when the profiles of Xushu22, IbSBEII-sgRNA
and IbGBSSI-sgRNA were compared with each other. Chain length distribution in DP 6–12 reached
16.4% in IbSBEII-sgRNA12-26 and 19.4% in IbSBEII-sgRNA2-1 compared to 29.3% in Xushu22 and
30.5%–35.0% in IbGBSSI-sgRNA2 (Table 2). Therefore, the high-amylose starch in IbSBEII-sgRNAs had
fewer short chains and more long chains compared to WT and IbGBSSI-sgRNAs.

Table 2. Chain length distributions proportion in 90 > DP > 6 of debranched sweet potato starchesa,b.

Sample 6 < DP < 12 (%) 13 < DP < 24 (%) 25 < DP < 36 (%) 37 < DP < 90 (%)

Xushu22 29.2 d (0.42) 42.7 c (0.752) 14.7 c (0.40) 13.4 c (0.35)
IbSBEII-sgRNA12-24 24.6 e (0.63) 44.6 b (0.53) 15.0 c (0.16) 15.8 b (0.78)
IbSBEII-sgRNA12-26 16.4 g (0.03) 45.6 ab (0.06) 19.2 a (0.04) 18.8 a (0.05)
IbSBEII-sgRNA2-1 19.1 f (0.25) 46.3 a (0.34) 16.3 b (0.04) 18.3 a (0.62)
IbGBSSI-sgRNA2-2 33.7 b (0.07) 41.7 cd (0.27) 13.8 d (0.13) 11.2 d (0.23)
IbGBSSI-sgRNA2-6 34.7 a (0.21) 41.4 d (0.46) 13.1 e (0.13) 10.8 d (0.31)
IbGBSSI-sgRNA2-7 30.4 c (0.08) 42.6 c (0.10) 13.6 d (0.23) 13.4 c (0.23)

a Standard deviations are given within parenthesis. b The values in the same column with different two letters (a
and b, b and c, a and d, d and e, e and f, f and g) differ significantly (p < 0.05).
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plant lines. Significance was determined by the Student’s t-test at * p < 0.05. 

Figure 4. Total starch and amylose contents in transgenic lines produced using CRISPR/Cas9 systems.
(a) Total starch content in storage roots of wild-types (Xushu22 and Taizhong6) and transgenic plant
lines. (b) Amylose contents in storage roots of wild-types (Xushu22 and Taizhong6) and transgenic
plant lines. Significance was determined by the Student’s t-test at * p < 0.05.
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Figure 5. Chain length distributions of debranched sweet potato starches in transgenic lines. (a) Chain
length distributions detection for the short chain of 90 > DP > 6 in Xushu22 and transgenic plant
lines. (b) Chain length distributions detection for the long chain of DP >43 in Xushu22 and transgenic
plant lines.

3. Discussion

Compared with other genome editing technologies, such as zinc finger nucleases (ZFNs) and
transcription activator-like effector nucleases (TALENs), the CRISPR/Cas9 system is simple to use
and cost-effective while having high mutagenic efficiency. It has been successfully used in a wide
range of plant species, including some allopolyploid crops (e.g., wheat, potato, soybean, rapeseed,
and cotton) [27–32]. However, an example has yet to be available for sweet potato. In this study, we
successfully achieved the first CRISPR/Cas9-meditated mutagenesis in two sweet potato cultivars
and produced higher amylose and amylopectin for improving the starch quality in sweet potato. A
62–92% mutation efficiency was observed in this study, suggesting the efficient expression of gRNA in
sweet potato driven by the AtU6 promoter and using the AtUBQ promoter to control Cas9 expression
seems to be highly effective. CRISPR/Cas9-mediated gene knockout with high mutation rates have
been reported in polyploid cotton (48–82%) and rapeseed (28–98%) [31,32]. Most of the mutations
were short nucleotide substitutions, insertions or deletions; a longer segment deletion was detected
in one line (Table S1). Similar to what has been shown in other works [33,34], vectors harboring two
gRNAs seem to generate higher mutation rates in I. batatas than those that only contain one gRNA. The
analysis of targeted mutagenesis is difficult in a hexaploid genome. Ideally, a gRNA recognizes a short
region, adjacent to the PAM sequence, that contains a restriction enzyme cutting site. However, we
were unable to identify restriction enzyme sites adjacent to the PAM sequences with the target genes,
and thus chose to use a PCR/sequencing approach to analyze the mutations.

The amylose/amylopectin ratio can affect the physicochemical properties of starches used
as raw materials [35]. Starches with very low amylose (<10%) tend to be waxy [36].
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High-amylose starch has higher viscosity, while high-amylopectin starch has lower gelatinization and
retrogradation temperatures [37]. In tuber crop potato, high-amylose starch has been produced by
CRISPR/Cas9-targeted SBEII knockout, and in cassava, RNAi knockdown of GBSSI has resulted in
waxy starch [10,38]. Therefore, targeting biosynthetic pathway genes of starch can effectively alter
starch functionality. Starch has been improved in several crops, such as corn, rice, and wheat, for
value-added utilization [39]. In our study, the amylose content reached 40.3% by targeted SBEII
mutagenesis. High-amylose, degradation-resistant starch (RS) can be specifically used as a dietary fiber
for controlling obesity and diabetes [40–43]. The high-amylopectin starch from the IbGBSSI-knockout
sweet potato, with an amylose content of only 5.5%, is potentially advantageous for frozen products
and polymer applications due to the suppression of retrogradation [44]. Although amylose-free and
moderately high-amylose starches have been obtained by RNA interference of GBSSI and SBEII genes
in sweet potato [19,20], products thus produced contain T-DNA. In our study, potentially T-DNA-free
plants can produce a wide range of mutations for improvement of starch quality. Moreover, the two
unique I. batatas cultivars, with varying compositions of starch and carotenoid, are excellent parental
lines in genetic crossing to produce novel properties for food and industrial applications.

In conclusion, we have developed targeted mutagenesis in sweet potato using a highly efficient
CRISPR/Cas9 system. We have demonstrated the approach to alter the amylose/amylopectin ratio
through selective knockout of IbGBSSI or IbSBEII. The CRISPR/Cas9 technology will also advance
gene function studies and breeding of new cultivars of sweet potato. Genome editing-assisted sweet
potato breeding, which allows simultaneous modifications of multiple genetic loci involved in starch
and carotenoids biosynthesis, will accelerate our efforts to improve the values of sweet potato as a
nutritional food and industrial raw material.

4. Materials and Methods

4.1. Vector Construction

The CRISPR/Cas9 vector was donated by Jian-Kang Zhu lab of Yanfei Mao. The plasmid contained
the Cas9 gene (under the AtUBQ1 promoter) with a nuclear localization signal (NLS) and the Arabidopsis
AtU6 gene promoter controlling a single guide RNA (sgRNA) gene (Figure 1A). The sgRNA scaffold
clones with 20 nt target sequences were obtained by polymerase chain reaction (PCR) using a pair of
synthetic primers according to the manufacturer’s instructions. This amplified fragment was inserted
into the KpnI and EcoRI sites of the intermediate vector to make a construct with both of the two
customized sgRNAs. This intermediate construct was further digested by EcoRI and HindIII and
ligated into the pCAMBIA1300 binary vector for plant transformation.

4.2. Agrobacterium-Mediated Transformation of Sweet Potato

The stable transformation of sweet potato was performed using the protocol of Yang et al. [18].
Briefly, Xushu22 and Taizhong6 embryogenic calli were induced from the bud tissues in one month.
Calli were then sub-cultured in Murashige and Skoog (MS) medium with 2,4-D for multiplication
before being transferred to liquid cell suspension (LCP) medium for further multiplication. The
embryogenic suspensions were transformed with Agrobacterium tumefaciens strain LB4404 harboring
CRISPR/Cas9 vector and co-cultivated for three days in darkness. The transformed calli were selected
on fresh MS medium containing 200 mg·l−1 cefotaxime to eliminate Agrobacterium, and 10 mg·l−1

hygromycin for selection. The hygromycin-resistant embryogenic calli were transferred onto plant
regeneration medium to develop into plantlets.

4.3. Detection of the Mutation of Target Genes

Genomic DNA was isolated by using the cetyltrimethyl ammonium bromide (CTAB, Sigma,
Shanghai, China) method according to the manufacturer’s protocol. To detect mutations of target
genes in transgenic sweet potato, primer pairs were designed at a distance of approximately 200 bp
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from the PAM site for precise sequencing of the target genes (Table S2). The target fragments were
amplified using the genomic DNA as a template and purified for sequencing. The mutation rate in
transgenic plants were measured by directly sequencing the PCR products. Comparing PCR products
separated by gel electrophoresis to the target genes revealed that the PCR products included insertions,
deletions, or substitutions.

4.4. Detection of Total Starch and Amylose Content in the Mutants

The total starch was isolated and determined from the storage roots of sweet potato plants as
described by Wang et al. [45]. Storage roots (100 mg) were ground to extract starch. In brief, the sample
was suspended in 0.2 mL of aqueous ethanol (80% v/v) and shaken on a vortex. After this step, 3 mL of
thermostable α-amylase solution (100 U/mL) was added to degrade the starch into sugar, and then
samples were boiled for 6 min and vigorously shaken three times. The final volume was diluted into
10 mL with distilled water. Starch content was measured by using the Megazyme kit (Megazyme
International Ireland Ltd. Co., Wicklow, Ireland). Changes in sugar content were measured by using
a spectrophotometer at a wavelength of 510 nm and mathematically converting the measurements
into starch content. The total starch content was counted from the glucose content according to the
following formula: starch content (mg/g FW) = glucose content × 162/180 (adjustment from free
D-glucose to anhydro-D-glucose, as occurs in starch). The amylose ratio was then quantified by using
the pure potato amylose and amylopectin as a standard sample (Sigma, Shanghai, China). Amylose
content was measured using a spectrophotometer at a wavelength of 710 nm.

4.5. Detection of Chain Length Distribution

According to Zhou et al. and Zhang et al., the chain length distributions of amylopectin
were quantitatively analyzed using high-performance anion-exchange chromatography with pulsed
amperometric detection (HPAEC-PAD; Dionex-ICS 3000; Dionex Corporation, Sunnyvale, CA, USA)
for DP6-90, and the Agilent 1100 Series SEC system was used with GRAM precolumn, GRAM 100 and
GRAM 1000 columns (PSS, Mainz, Germany) for measurement of longer chain distributions [46,47]. To
obtain the chain length distributions (CLDs) of debranched starch molecules, the starch samples (5 mg)
were debranched using isoamylase (I5284; Sigma, Louis, USA) before analysis.

4.6. Statistical Analysis

All data were represented as mean ± SD from at least three independent experiments with three
replicates each. Significant differences between treatments were analyzed with one-way analysis
of variance (ANOVA) and differences in means were compared using Duncan’s multiple range test.
Statistical analysis was performed using SPSS Statistics 17.0 software (IBM Corp, Armonk, NY, USA).
A value of p < 0.05 was considered a statistically significant difference.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/19/
4702/s1.
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