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Abstract: Nickel (Ni) is known to be a major carcinogenic heavy metal. Occupational and
environmental exposure to Ni has been implicated in human lung and nasal cancers. Currently, the
molecular mechanisms of Ni carcinogenicity remain unclear, but studies have shown that Ni-caused
DNA damage is an important carcinogenic mechanism. Therefore, we conducted a literature search of
DNA damage associated with Ni exposure and summarized known Ni-caused DNA damage effects.
In vitro and vivo studies demonstrated that Ni can induce DNA damage through direct DNA binding
and reactive oxygen species (ROS) stimulation. Ni can also repress the DNA damage repair systems,
including direct reversal, nucleotide repair (NER), base excision repair (BER), mismatch repair (MMR),
homologous-recombination repair (HR), and nonhomologous end-joining (NHEJ) repair pathways.
The repression of DNA repair is through direct enzyme inhibition and the downregulation of DNA
repair molecule expression. Up to now, the exact mechanisms of DNA damage caused by Ni and
Ni compounds remain unclear. Revealing the mechanisms of DNA damage from Ni exposure may
contribute to the development of preventive strategies in Ni carcinogenicity.
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1. Introduction

Nickel (Ni) is the 24 th most abundant element in Earth’s crust [1]. On the one hand, at a low
concentration, Ni is a nutritionally essential trace element for animals [2–4]. Ni is also a required trace
element for several enzymes that play critical roles in energy and nitrogen metabolism [5]. On the
other hand, at a high concentration, Ni is a toxic element [6–9]. The unique physical and chemical
properties of Ni make it and its compounds suitable materials for many applications widely found
in modern industries [1]. The widespread use of Ni increases its concentration in biogeochemical
cycles and enhances human exposure to it and its compounds through environmental contamination
and occupational exposure [10]. Human exposure to Ni occurs primarily via inhalation, ingestion,
and dermal absorption [11]. In humans, Ni has been known to cause liver, kidney, spleen, brain,
and tissue damage [12–14]. The International Agency for Research on Cancer (IARC) has classified
Ni compounds such as nickel sulfate (NiSO4), nickel oxide (NiO), nickel hydroxides, and crystalline
nickel as carcinogenic agents to humans (Group 1) [15].
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It has been confirmed in many in vitro and vivo studies that Ni and Ni compounds have
carcinogenicity [16–22]. Epidemiological studies presented that the probability of lung and nasal
cancers are significantly increased in nickel-exposed workers [6]. Up to now, the exact mechanism of
Ni carcinogenicity is still unclear, but it is clear that DNA damage is an important part of it [21,23–25].
After DNA damage occurs, cells activate several response signals, such as cell-cycle arrest, DNA
repair, and cell death [26–28]. Numbers in in vitro and in vivo studies have presented that Ni and Ni
compounds can induce DNA damage [29–33]. We also found that DNA oxidative damage and cell
cycle arrest can be induced by dietary nickel chloride (NiCl2) in excess of 300 mg/kg in the thymus,
the bursa of Fabricius, the kidney, and the liver of broiler chickens [34–37]. If the DNA repair system
cannot repair the damaged DNA, and the damaged DNA is passed onto the daughter DNA, this causes
genomic instability, which finally promotes cancer development [38–41]. In this review, we paid
attention to the effects of DNA damage and DNA repair system inhibition induced by Ni.

2. Ni-Induced DNA Damage

In general, several chemicals, radiation, and free radicals can affect the DNA and induce DNA
damage [42]. The process of carcinogenesis is always initiated by the DNA damage [43], and damaged
DNA replication may lead to gene mutation, which in turn induces protein alteration and cancer
development [39,44–46].

In humans, DNA damage is very serious among Ni-smelting workers [47]. Previous studies found
that Ni2+ can also induce DNA damage in various human cell systems, including human hepatocellular
carcinoma (HepG2) [48], human TK6 [49], Chinese hamster lung fibroblast [50], A375 [51] and HCT-116
cells [52]. When human B lymphoblastoid cells were exposed to NiCl2 (0.63mM) for 24 and 48 h,
cellular DNA damage was significantly increased when compared to the control cells [53]. A comet
assay and γ-H2AX immunofluorescence staining showed that nickel acetate-induced significant DNA
damage in human colon-cancer cells (RKO) [54].

Animal studies have also shown that Ni or Ni compounds can cause DNA damage. In rats,
comet-assay studies showed that single-strand breaks were observed in rat lungs and kidneys after
acute treatment of animals with injected NiCl2 (44.4 mg/kg body weight), and the lung was the
most susceptible tissue to NiCl2 [55]. Our studies have also indicated that dietary NiCl2 in excess of
300 mg/kg can induce DNA damage in the lung and the kidney of broiler chickens [56,57]. In addition,
overexposure of nickel nitrate [Ni(NO3)2] can induce DNA damage in earthworms (Eisenia foetida) [58],
and NiCl2 can induce DNA damage in Caenorhabditis elegans [59].

3. Binding of Ni to DNA and Nuclear Proteins in Ni-Induced DNA Damage

Previous data have demonstrated that a portion of Ni ions can enter the nucleus after exposure
to Ni and Ni compounds [60,61]. Fletcher et al. [62] found that exposure of cells to water-soluble Ni
salts resulted in very low nuclear but high cytosolic Ni levels, while exposure to insoluble Ni salts
caused relatively high nuclear levels. It has also been confirmed that Ni ions exhibit a lower binding
affinity for DNA, thus most nickel ions in the cell nucleus could interact with the histone [63–67].
Oliveria et al. [68] clearly demonstrated that Ni2+ interacts by binding to dsDNA strands causing
conformational changes. The interaction of DNA with Ni has been extensively investigated since
they are involved in processes leading to DNA damage [68]. Ciccarelli et al. [69] demonstrated the
presence of Ni-nucleic acid histone complexes in Ni-treated rats and suggested that Ni may initiate
DNA damage by forming this complex. Binding of Ni to chromatin DNA and associated proteins
has been reported to cause DNA damage, which consists of DNA single-strand breaks and DNA
intrastrand cross-linking [70,71]. In recent decades, coordination compounds with Ni have become
quite important in medicinal chemistry, and their research data show that Ni(II) complexes can wind
DNA strands through groove interactions and promote strand breakage [71].
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4. Reactive Oxygen Species (ROS) in Ni-Induced DNA Damage

ROS are a group of short-lived, highly reactive, oxygen-containing molecules [72]. ROS play an
important role in cancer development [73]. Excessive ROS attack the DNA, which then results in
genomic instability that is a promoter of tumorigenesis [72]. Genomic instability has been suggested to
be a major driving force of oncogenesis and can account for genetic diversity in many cancers [72]. It has
been shown that oxidative stress is the basic toxicological mechanism of Ni overexposure [33,51,74,75].
Ni and Ni compounds increase ROS accumulation through both a direct increase in ROS generation
and an antioxidant-system suppression, which then damages the DNA (as shown in Figure 1).
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Figure 1. Ni induced reactive oxygen species (ROS) accumulation. Excessive exposure of Ni can
increase ROS accumulation through directly increasing ROS generation and through an antioxidant
system suppression, which then damages the DNA.

4.1. Ni-Induced ROS Accumulation

Numerous in vitro and in vivo studies have shown that Ni and Ni compounds can induce ROS
accumulation and oxidative stress [76–83]. Ni and Ni compounds induce ROS accumulation in two
ways: (i) increasing ROS generation and (ii) impairing the antioxidant system [84,85]. Our previous
data indicated that dietary NiCl2 in excess of 300 mg/kg can suppress the activities of antioxidant
enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px),
and glutathione (GSH) contents in kidney, lung, thymus, spleen, bursa of Fabricius, intestine, and
cecal tonsil [56,57,86–90]. Ni nanoparticles (NiNPs) (45 mg/kg) treatment for 10 weeks increased ROS
generation and decreased SOD, CAT activities, and GSH contents in rat testes [76]. Ahamed et al.
also reported that culturing with 25–100 µg/mL nickel oxide nanoparticles (NiONPs) for 24 h can
promote ROS accumulation in human hepatocytes (HepG2), and NiONPs caused cytotoxicity mainly
via ROS [91]. ROS play a critical role in Ni-induced apoptosis and DNA damage [92–96]. Ni exposure
can generate ROS in exposed cells, and ROS generation mediates biological effects in nickel-treated
cells, which may play a role in nickel-induced carcinogenesis. ROS production is a critical factor in Ni
toxicity and is also an indispensable element in Ni carcinogenesis [97–99].

4.2. ROS-Dependent Ni-Induced DNA Damage

Excessive ROS can directly attack the DNA by oxidizing nucleoside bases, producing modified
nucleotides (8-hydroxy-2′-deoxyguanosine, 8-OHdG) [100–102]. The elevated 8-OHdG level is regarded
as an indicator of DNA oxidative damage [103]. It has been suggested that synergistic DNA damage
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induced by simultaneous exposure of Ni compounds is possibly related to ROS [53,104,105]. Several
in vitro and in vivo studies have demonstrated that Ni and Ni compounds can increase DNA oxidative
damage marker levels (8-OHdG) [106–111]. In vivo, our previous studies showed that dietary NiCl2
in excess of 300 mg/kg inhibits the antioxidant system, which leads to an increase in DNA oxidative
damage markers, e.g., 8-OHdG contents in the lung and the kidney [56,57]. Liu et al. found that
treatment with NiSO4 (20 mg/kg) for 20 days induced ROS accumulation and increased 8-OHdG levels
in mouse livers [107]. Treatment of cultured HeLa cells with Ni3S2 (10 µg/mL) can largely increase
8-OHdG contents, whereas NiO (black), NiO (green), and NiSO4 do not enhance the production of
8-OHdG [111]. NiCl2 (0.125, 0.25, and 0.5 mM) treatment for 24 h can also induce mitochondrial DNA
(mtDNA) damage, including increased mitochondrial 8-OHdG contents and reduced mtDNA contents
and mtDNA transcript levels in Neuro2a cells [112]. In recent decades, several studies have reported
that Ni and Ni compounds nanoparticles of can also induce DNA damage [113–118]. Mo et al. [113]
reported that oxidative DNA damage was significantly upregulated in the lungs of mice after being
intratracheally instilled with 50 µg Nano-Ni. In vitro, Abudayyak et al. reported that NiO NPs
induced excessive ROS generation and then caused DNA oxidative damage (8-OHdG up-regulation)
in NRK-52E kidney epithelial cells and SH-SY5Y neuronal cells [114,115]. It has been also shown that
Ni and NiO NPs at higher doses (25 and 50 ug/mL) can induce DNA strand breaks, and an increase in
the DNA strand breaks is due to intracellular ROS generation [119].

Through co-treatment with the antioxidant N-acetylcysteine (NAC) and NiNPs, NAC can mitigate
NiNPs-induced ROS generation and DNA strand breaks, suggesting the potential mechanism of ROS
in DNA damage [120]. Ni acetate can increase intracellular ROS generation and DNA strand breaks in
Nrf2 knockdown cells, indicating that ROS play an important role in Ni-induced DNA damage [54].

4.3. ROS-Independent Ni-Induced DNA Damage

In contrast to most studies, Kumar et al. demonstrated that NiSO4 affected DNA replication and
damaged DNA but did not induce any detectable ROS production in Escherichia coli, concluding that
Ni-induced DNA damage is through an ROS-independent pathway [121]. They also demonstrated that
Ni exposure specifically affected DNA polymerization and thereby induced DNA damage. A major
reason for the differing results may be related to differences between mammals and bacteria.

5. Interference of Ni with DNA Damage Repair Systems

After DNA damage occurs, specific pathways are activated to facilitate the identification of the
damaged regions and their repair [122]. The DNA repair system contributes to the maintenance of the
genetic sequence, the correction of DNA damage, and genomic instability [123,124].

Some studies showed that Ni can inhibit the DNA repair function and promote
carcinogenesis [121,125–129]. Arita et al. reported that 29 DNA repair genes were repressed, and two
DNA repair genes were overexpressed in the isolated peripheral blood mononuclear cells (PBMC) in
Ni-refinery workers [130]. In addition, Scalon et al. [129] reported that DNA double-strand breaks
were significantly higher in the NiCl2 (250 and 500 µM, 48 h) treatment cells than non-NiCl2 treatment
cells after ionizing radiation (IR) exposure. Likewise, Ni also causes DNA damage repair-system
repression, which results in damaged DNA not being removed. The accumulation of DNA lesions
facilitates the process of tumorigenesis [131]. At present, an increasing number of studies indicate that
DNA repair suppression is a non-ignorable mechanism of oncogenesis [43,132,133].

In general, the DNA repair system can always fix and clear damaged DNA that is induced by
normal metabolic activities and environmental factors [134]. Recently, the DNA repair mechanism
was found to contain direct reversal, nucleotide repair (NER), base excision repair (BER), mismatch
repair (MMR), and double strand break repair including homologous recombination repair (HR) and
nonhomologous end joining (NHEJ) repair [135,136], as shown in Figure 2. Next, we review the effect
of Ni on every DNA damage-repair pathway (Table 1).
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Table 1. Effect of Ni on DNA damage-repair systems.

Item Suppression Enhancement No Alteration

Direct reversal Ji et al. [137], Iwitzki et al. [138], Chen et al.
[139], Chervona et al. [140]

BER Wu et al. [47], Wozniak and Blasiak [141]

NER

Hartwig et al. [127], Hu et al. [142],
Lee-Chen et al. [143], Wozniak et al. [144], [145],

Hartmann and Hartwig [146],
Hartwig et al. [128], Hu et al. [125], Wozniak

and Blasiak [25], Kim et al. [147]
MMR Scanlon et al. [129] Ji et al. [137]

HR Scanlon et al. [129]
NHEJ Morales et al. [148] Scanlon et al. [129]

5.1. Effect of Ni on Direct Reversal

For reversible DNA damage, our body first uses the direct-reversal repair mechanism to correct
damaged bases [149]. The basic means of DNA repair way is direct reversal, which corrects damaged
DNA with DNA alkylating agents [149]. O6-methylguanine DNA methyltransferase (MGMT) and
ALKBH α-ketoglutarate Fe(II) dioxygenases (FeKGDs) are the main direct reversal repair proteins [150].

In nickel sulfide (NiS)-treated or NiS-transformed human 16HBE cells, the DNA repair gene MGMT
mRNA and protein-expression levels are significantly reduced, suggesting that the downregulation of
MGMT expression levels may be an early event involved in NiS-induced cell transformation [137].
MGMT is unique among DNA repair proteins because it acts alone to remove DNA adducts [151].
MGMT repair can remove both methyl and ethyl adducts, and this reaction is a nonenzymatic
(stoichiometric) reaction. Previous studies confirmed that MGMT overexpression can increase the
resistance to cancer. MGMT silencing is also associated with DNA hypermethylation, histone
modifications, and DNA methyltransferase 1 (DNMT1) upregulation [137]. However, Iwitzki et al.
found that Ni treatment does not affect the MGMT protein levels and only inhibits the MGMT activity
in Chinese hamster ovary cells (CHO) cells [138]. These differences are possibly due to the different
cell types under study or the differences in duration of Ni exposure.

The other type of direct-reversal repair is performed by ALKBH proteins that are members of
a superfamily of FeKGDs [152]. Only four ALKBH family proteins (ALKBH1-3 and FTO) have the
ability of DNA alkyl damage removal [153]. Ni can also directly inhibit the DNA alkylation repair
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enzymes, e.g., ALKBH2 and ALKBH3, by replacing iron at the catalytic site and then reducing the
direct reversal of DNA damage [139,140].

5.2. Effect of Ni on BER

BER mainly repairs oxidative DNA damage, and it can excise and replace a single damaged
nucleotide base [154]. The process of BER has two steps. First, DNA glycosylase finds and cuts
the damaged DNA base. Second, the DNA repair proteins repair the damaged site [154]. At least
11 distinct mammalian DNA glycosylases are known, such as 8-oxoguanine DNA glycosylase (OGG1),
AP endonuclease (APE1), DNA ligase 1 (LIG1), LIG3, and X-ray repair cross-complementing protein
1 (XRCC1) [122,155].

In a nickel smelting worker’s serum, the oxidative DNA damage marker (8-OHdG) levels are
significantly increased, and BER DNA glycosylase human OGG1 (hOGG1) is significantly lower
than that of nonexposed workers [47]. hOGG1 is a single BER enzyme, specifically recognizing and
repairing DNA oxidative damage by removing 7,8-dihydro-8-oxoguanine (8-oxoG). Downregulation
of hOGG1 expression is associated with aging, neurodegenerative disorders, and cancer [155,156].
Additionally, Ni at 1 µM can inhibit the activity of formamidopyrimidine-DNA glycosylase (Fpg) and
3-methyladenine-DNA glycosylase II (Alk A), which are involved in DNA excision repair [141]. Fpg is
a glycosylase-initiating BER enzyme in E. coli and participates in the first step of the BER to remove
specific modified bases from the DNA.

5.3. Effect of Ni on NER

The aim of NER is to repair DNA damage that has two or more base-impair sites [157,158]. The
process of NER entails damaged-site recognition, damaged-strand removal, and DNA ligation [159–162].
The NER process needs the participation of many proteins, such as Xeroderma pigmentosum (XP)
complementation Groups A through G, excision repair cross-complementation group 1 (ERCC1), and
proliferating cell nuclear antigen (PCNA) [163,164].

The NER pathway plays an important role in the prevention of cancer formation, such as bladder
cancer and lung cancer [165]. It has been shown that Ni inhibits the removal of UV-induced DNA damage
by disturbing DNA repair proteins and affecting the NER process [127,142–144]. Hartwig et al. showed
that Ni inhibits NER through the disruption of the incision step in HepG2 and CHO cells [127,145].
The preferential binding of Ni(II) to the protein (DNA repair enzyme) fraction, as compared to DNA
and RNA fractions, is the reason for NER incision-step inhibition [146]. Ni also inhibits the NER
incision step, possibly through direct interaction with zinc finger repair enzymes such as XPA and poly
ADP-ribose polymerase (PARP), and the displacement of the zinc ions [125–128,131,144,166].

Kim et al. [147] found that treatment with nickel acetate 20 µM for 24 h can induce p53-mediated
NER DNA repair-pathway suppression, which is a promoter of tumor development. Nickel acetate
inhibits p53 transcriptional activity and then suppresses DNA-damage-inducible protein 45 alpha
(GADD45A) expression. Typically, the GADD45A, PCNA, and XPG complex works in the NER incision
process, and the function of this complex is site 3′ of damage cleavage [167]. Downregulation of
GADD45A expression levels results in GADD45A, PCNA, and XPG complex inhibition, which then
impairs the GADD45A-mediated NER mechanism [147].

5.4. Effect of Ni on MMR

DNA MMR is also a critical pathway for DNA damage. The MMR system maintains genomic
stability by repairing base–base mismatches and insertion/deletion loops that arise from DNA
replication, thereby preventing mutations from becoming permanent in dividing cells [168,169].
Defects in MMR increase the spontaneous mutation rate and sporadic human cancers [170,171].
MMR is a complex reaction involving multiple proteins that recognize a mismatched base, excise the
DNA damage, and resynthesize the DNA sequence containing the correct base and using the parental
strand as a template [172]. In general, MMR is initiated when highly conserved proteins (MutS homolog



Int. J. Mol. Sci. 2019, 20, 4690 7 of 18

2 MSH2 and MSH6) recognize single base mismatches [173]. In cases of insertion/deletions loops
with two or more extra bases, MSH2 and MSH3 are responsible for detection. Following recognition,
one of the mutL homolog (MLH) heterodimers binds to the mismatch, and PCNA is loaded onto the
DNA by replicating factor C, activating MLH to incise the nascent strand and removing the error in
an ATP-dependent manner [174,175]. Then, DNA polymerase synthetizes the new strand followed by
nick-sealing [176,177].

Scanlon et al. found that treatment with NiCl2 250 and 500 µM for 48 h could decrease MMR
MLH1 protein and mRNA expression levels in tumorigenic (A549) and nontumorigenic (BEAS-2B)
human lung cells [129], and that NiCl2 could directly bind to the MLH1 gene promoter and then reduce
its activity of it. However, it has been demonstrated that there are no alterations of DNA repair genes
including hMLH1 and hMSH6 in NiS-transformed 16HBE cells [137].

5.5. Effect of Ni on Double-Strand Breaks Repair Pathways

Double-strand breaks (DSB), a DNA damage type, causes changes to the DNA sequence [178].
After DSB occur, repair systems NHEJ or HR are activated [179]. HR, a conservative process, fixes
the damaged DNA to be the same as the original DNA sequence. In this process, the damaged
DNA sequence is removed, and the new DNA synthesis is according to the homologous sister
chromatid [180]. The proteins involved in the HR are shown in Figure 2, including breast cancer
1 (BRCA1), BRCA2, RAD51 (human homolog of Saccharomyces cerevisiae RAD50), fanconi anemia group
D2 protein (FANCD2), and partner and localizer of BRCA2 (PALB2) genes [180,181].

In mammalian cells, NHEJ is a preferential way to repair DSB because a homologous template is
not necessarily needed in NHEJ rejoins [182]. In NHEJ, the Ku70/Ku80 heterodimer recognizes and
binds the two ends of the broken DNA strands [183]. Multiple enzymes are involved in the rejoining
process, including LIG4, X-ray repair cross complementing 4 (XRCC4), and DNA-dependent protein
kinase (DNA-PK) [183]. LIG4, XRCC4, and DNA-PK heterodimers are recruited by the Ku70/Ku80
heterodimer to the damage site promoting the ligation of the two ends [182].

Takahashi et al. [184] reported that treatment with 40 mM or more of NiCl2 for 30 min could inhibit
the repair of DNA double-strand breaks in Chinese hamster ovary cells. NiCl2 also inhibited DNA repair
only at cytotoxic concentrations at which the cells lost their proliferative ability. Scanlon et al. found
that NiCl2 (250 and 500 µM for 48 h) exposure led to the downregulation of HR without downregulation
of NHEJ repair, and that NiCl2 decreased the HR proteins (BRCA1, RAD51, and FANCD2) and the
mRNA expression levels in tumorigenic (A549) and nontumorigenic (BEAS-2B) human lung cells [129].
There were no changes in the NHEJ repair proteins (DNA-PK, KU80, XRCC4, LIG4 protein, and mRNA
expression levels) in tumorigenic (A549) and non-tumorigenic (BEAS-2B) human lung cells [129].
The mechanism of the NiCl2-inhibited HR pathway is through the transcriptional repression of DNA
repair proteins. After evaluating the DSB DNA repair pathway by the ex vivo GFP reporter assay
system, Morales et al. found that NiCl2 at low doses (100 µM) activated the HR pathway but did
not affect the NHEJ repair pathway [148]. In contrast, the highest tested dose of NiCl2 (500 µM)
significantly inhibited the HR and the NHEJ repair pathways in U2OS cells [148]. The different results
of Morales et al. and Scanlon et al. on the NiCl2-affected NHEJ repair pathway may be because of
NiCl2 treatment concentration or the cell model.

5.6. Others

When bacterial DNA encounters heavy doses of DNA-damaging agents, it activates the special
DNA repair-system SOS response [185]. In general, SOS response repairs the damaged DNA and
ensures the process of DNA replication [186]. If the SOS response is suppressed, the evolution of
bacterial resistance and pathogens is prevented more easily [187]. Kumar et al. [121] reported that
exposure to 1 M Ni ions for 15 h induced double-strand breaks of E. coli. In DNA, meanwhile, the SOS
response is impaired by RecBCD function blockage.



Int. J. Mol. Sci. 2019, 20, 4690 8 of 18

6. Conclusions and Future Perspectives

There have been many studies on the molecular mechanism of Ni and Ni compounds-induced
DNA damage associated with carcinogenesis. However, the exact mechanisms of DNA damage caused
by Ni and Ni compounds are still unclear. Previous studies have demonstrated that Ni can induce
DNA damage, and that Ni-induced DNA damage is mainly through ROS generation. Ni can also
directly bind DNA and induce DNA damage. Meanwhile, Ni can also repress the DNA damage-repair
systems, including DNA direct-reversal, NER, BER, HDR, MMR, and NHEJ repair pathways, which
increases the accumulation of the damaged DNA bases. The repression of DNA repair is through
impacting cellular DNA repair on multiple levels, from direct enzyme inhibition to the modulation
of DNA repair-molecule expression (Figure 3). Ni exposure can therefore directly induce cancer
through DNA damage and DNA damage-repair inhibition. On the other hand, DNA damage-repair
inhibition induced by Ni can also increase the risk of other agents (ultraviolet light, ionizing radiation,
chemicals, etc.) promoting caner. Ni-induced DNA repair pathway suppression results in damaged
DNA accumulation in the cells. If the damaged DNA cell can survive, the damaged DNA is passed
down through the damage site to daughter cells, which thus contributes to potential carcinogenesis.
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Figure 3. Simplified scheme of Ni-induced DNA damage in cancer occurrence. Excessive exposure to
Ni can induce DNA damage, mainly through direct DNA binding and ROS generation. Ni can also
repress the DNA damage-repair pathways, including direct reversal, BER, NER, MMR, HR, and NHEJ
repair. DNA damage causes genome instability that may ultimately contribute to cancer occurrence.

An increasing number of studies confirm that ROS generation is a basis mechanism of Ni toxicity [6].
However, there are no studies about the ROS generation in Ni-induced DNA damage repair inhibition.
In the next study, we need more research to explore whether ROS are also essential or just participates
in Ni-induced DNA damage-repair pathway inhibition in the carcinogenesis.
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Abbreviations

ROS reactive oxygen species
NER nucleotide repair
BER base excision repair
MMR mismatch repair
HR homologous recombination repair
NHEJ non-homologous end joining
ER endoplasmic reticulum
SOD superoxide dismutase
CAT catalase
GSH-Px glutathione peroxidase
GSH glutathione
8-OHdG 8-hydroxy-2′-deoxyguanosine
MNNG N-methyl-N′-nitro-N-nitrosoguanidine
MNU N-methyl-N-nitrosourea
MMS methyl methanesulfonate
MGMT O6-Methylguanine DNA methyltransferase
FeKGDs ALKBH α-ketoglutarate Fe(II) dioxygenases
NiS nickel sulfide
DNMT1 DNA methyltransferase 1
OGG1 8-oxoguanine DNA glycosylase
APE1 AP endonuclease
LIG1 DNA ligase 1
XRCC1 X-ray repair cross-complementing protein 1
Fpg formamidopyrimidine-DNA glycosylase
AlkA 3-methyladenine-DNA glycosylase II
XP xeroderma pigmentosum
ERCC1 excision repair cross-complementation group 1
PCNA proliferating cell nuclear antigen
PARP poly ADP-ribose polymerase
GADD45A DNA-damage-inducible protein 45 alpha
MLH mutL homolog
DSB double-strand breaks
BRCA1 breast cancer 1
RAD51 human homolog of S. cerevisiae RAD50
f FANCD2 anconi anemia group D2 protein
PALB2 partner and localizer of BRCA2
XRCC4 X-ray repair cross complementing 4
DNA-PK DNA-dependent protein kinase
CHO Chinese hamster ovary cells
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