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Abstract: Rheumatoid arthritis is an autoimmune disease that causes serious functional loss in
patients. Early and accurate diagnosis of rheumatoid arthritis may attenuate its severity. Despite a
diagnosis guideline in the 2010 American College of Rheumatology (ACR)/European League
Against Rheumatism (EULAR) classification criteria for rheumatoid arthritis, the practical
difficulties in its diagnosis highlight the need of developing new methods for diagnosing
rheumatoid arthritis. The current study aimed to identify rheumatoid arthritis diagnostic
biomarkers by using a proteomics approach. Serum protein profiling was conducted using mass
spectrometry, and five distinguishable biomarkers were identified therefrom. In the validation
study, the five biomarkers were quantitatively verified by multiple reaction monitoring (MRM)
analysis. Two proteins, namely serum amyloid A4 and vitamin D binding protein, showed high
performance in distinguishing patients with rheumatoid arthritis from healthy controls. Logistic
analysis was conducted to evaluate how accurately the two biomarkers distinguish patients with
rheumatoid arthritis from healthy controls. The classification accuracy was 86.0% and 81.4% in
patients with rheumatoid arthritis and in healthy controls, respectively. Serum amyloid A4 and
vitamin D binding protein could be potential biomarkers related to the inflammatory response and
joint destruction that accompany rheumatoid arthritis.
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1. Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that causes inflammation of the joints and
surrounding synovial membrane [1]. Female patients are known to be vulnerable to RA, accounting
for 70 to 80 percent of patients with RA. According to the World Health Organization (WHO) report,
RA from musculoskeletal disorders affects approximately one percent of the world’s population and
is steadily increasing at various ages [2]. Because failure of early diagnosis results in poor prognosis
in patients, and the disease often persists for decades after the diagnosis, early diagnosis and
appropriate drug therapy are essential for the efficient treatment of RA. In severe cases, patients are
no longer able to move in daily life and eventually acquire permanent disability [3-6].
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RA is diagnosed based on symptoms, blood tests, inflammatory index, and imaging tests.
Patients suspected to have RA show symptoms of morning stiffness, pain, and swelling, which
continue over six weeks. It is comprehensively evaluated by serological tests for rheumatoid factor
(RF) and anti-citrullinated protein antibodies (ACPA) and for inflammatory markers such as CRP, an
ESR test, and an imaging test [7]. However, RF-positive rate and ACPA-specificity of RA are only 60—
70% and 60-75%, respectively, suggesting low diagnostic efficacy. Therefore, there has been
increasing interest in identifying specific and powerful biomarkers for RA [8]; studies toward novel
diagnostic biomarker discovery, using mass spectrometry, have been increasing [9-12]. Because the
expression pattern of serum proteins is altered in diseased conditions, such as RA, analysis of protein
expression pattern and protein function has been used for biomarker discovery. A proteomics
approach using mass spectrometry can be used to determine the pattern of serum proteins and
compare their absolute levels between diseased and control subjects [13]. For discovering diagnostic
biomarkers, blood, urine, and body fluids such as synovial fluid may be used as the samples. Because
blood is easily obtained from patients and reflects the overall status of patients, in contrast to other
body fluids or urine, in our study, we obtained serum from patients with RA and tried to discover
diagnostic biomarkers in informative blood samples using mass spectrometry.

Our aim was to screen patients with RA, using serum samples, for diagnostic biomarkers. In the
discovery and validation set, candidate biomarkers were selected and verified. The number of patient
serum samples for discovery set was 20, whereas it was 50 for the validation set (Table 1). Proteomics
analysis was conducted in individual samples to reflect the characteristics of all serum samples, using
a multiple reaction monitoring (MRM) method for quantitative measurement.

2. Results

2.1. Distribution of Each Group by Principal Component Analysis (PCA) and Loading Plot Analysis

Serum proteins were analyzed in healthy controls (1 = 20) and in patients with RA (n = 20) by
SWATH label-free quantification, and 435 proteins were identified. PCA and partial least squares-
discriminant analysis (PLS-DA) were conducted to evaluate whether 435 proteins could distinguish
patients with RA from healthy controls. Both PCA and PLS-DA showed 20 healthy controls and 20
patients with RA to be classified by PC1 score (Figure 1a, b). Through PC variable grouping, loading
plot analysis was conducted, which showed that proteins were distributed according to the degree
of expression of the identified proteins in both groups (Figure 1c). The farther the protein plot was
from the center (sky blue), the better could the protein be distinguished between the two groups.
Proteins with little difference in expression pattern between the two groups were concentrated in the
center and are shown in dark blue (distance < 0.07) (Figure 1c).
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Table 1. Demographics of the healthy controls and the patients with theumatoid arthritis (RA).

Discovery Set Validation Set
(LC-MS/MS) (MRM)
Variables Healthy RA Patients Healthy RA Patients
Controls Controls
(n = 20) (n =20 (n=43) (n=50)
Sex (Female/Male) 14/6 14/6 25/18 39/11
Age (Years) 55.3+3.9 59.2+5.8 56.9 +4.7 599+6.7
RF (IU/mL) - 97.95+81.1 - 79.5 +67.4
RF-Positive, n - 16 - 40
RF-Negative, n - 4 - 10
ACPA (U/mL) - 161.2 +120.5 - 124.8 +112.6
ACPA-Positive, n - 15 - 35
ACPA-Negative, n - 5 - 15
DAS28 - 33+12 - 27+12
Low activity, n
(DAS28 <3.2) i 12 i 37
Moderate activity, n i 6 i 9
(3.2<DAS28 >5.1)
High activity, n ) ” ) 3

(DAS28 >5.1)

LC-MS/MS, Liquid chromatography-tandem mass spectrometry; MRM, multiple reaction monitoring;

RF, rheumatoid factor; ACPA, anti-citrullinated protein antibodies; DAS28, Disease activity score in

28 joints.
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Figure 1. Protein quantification by SWATH acquisition and PCA for group clustering. (a) PCA showed 54.9% of the proteins (PC1) to be divided between healthy
controls and patients with RA (vertical line). The plot represents the individual samples. Red and blue dots represent healthy controls and patients with RA,
respectively. (b) Partial least squares-discriminant analysis (PLS-DA) showed the patient group with RA to be separated from healthy controls. (c¢) PC variable

grouping based on expression pattern in healthy controls and patients with RA.
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2.2. Identification of Differentially Expressed Proteins (Fold-Change > 1.5, p < 0.05) and Selection of
Diagnostic Biomarkers

A t-test analysis of the 435 identified proteins was performed using SCIEX MarkerView™
Software; 294 of them were found to be differentially expressed by more than 1.5-fold with statistical
significance (p < 0.05). To visualize the overall alteration of protein expression pattern in groups, a
heat map analysis was performed (Figure 2a). Heat map analysis showed that majority of DEPs had
distinctly different expression patterns in patients with RA compared to that in healthy controls.
Especially, serum protein expression patterns in patients with RA showed distinct alterations
compared to that in the 10 healthy controls (HC 010-020) (Figure 2a). Volcano plot analysis showed
distribution of the 294 differentially expressed proteins (DEPs) (Figure 2b). X-axis refers to log (fold-
change), based on which proteins that were increased or decreased by > 1.5-fold in the X-axis were
filtered. Y-axis refers to the —logio (corrected p-value), by which proteins with p-value < 0.05 were
filtered. Red plots on volcano satisfied both the conditions (Figure 2b). Proteins that were filtered by
volcano plot analysis were analyzed to select diagnostic biomarkers for RA using individual samples
in each group. For example, among the DEPs, proteins with little variation in expression patterns
between samples from one group, namely between samples of healthy controls or between samples
of diseased patients as well as those between samples of both groups, namely, between healthy
controls and diseased patients) were selected. As per our analysis, five proteins were selected as final
candidate biomarkers (Figure 2c). The selected five biomarkers had also been reported to be
associated with RA, which would further help determine whether the five proteins could be potent
for diagnosing RA. The five proteins were up-regulated in patients with RA.
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Figure 2. Visualization of differentially expressed proteins (DEPs, by more than 1.5-fold) and selected

biomarker candidates by SWATH acquisition. (a) Cluster analysis of DEPs (more than 1.5-fold with

statistical significance). (b) Volcano plot analysis of DEPs (more than 1.5-fold with statistical

significance). (c) Relative expression of selected biomarker candidates in patients with RA compared

to that in healthy controls. Abundance of the five proteins in patients with RA was normalized to that

in healthy controls.

2.3. Functional Analysis of Identified DEPs (Fold-Change > 1.5, p < 0.05)

Although all the 294 DEPs were not selected as candidate biomarkers, all of them are thought to
affect the onset of rheumatoid arthritis by being increased or decreased in the disease environment.
Otherwise, they are a result of the onset of rheumatoid arthritis. Therefore, functional analysis of the
DEPs helped in understanding the pathophysiology of RA. GeneGo software was used to analyze
the pathway maps, process networks, and GO processes. In a three-function analysis graph, the X-
axis was -log (p-value). Higher the value of -log (p-value) in the X-axis, more statistically significant
its association with DEPs was. The ranking of statistically significant functions has been presented
on the Y-axis. Pathway maps analysis showed blood coagulation, lectin-induced complement
pathway (immune response), classical complement pathway (immune response), alternative
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complement pathway (immune response), and lipoprotein metabolism to be associated with DEPs.
Among them, blood coagulation had a strong and distinct relationship with proteins that increased
or decreased in RA (Figure 3a). In addition, process networks analysis showed blood coagulation,
inflammation-related complement system, inflammation-related kallikrein-kinin system,
proteolysis-related ECM remodeling, and cell adhesion-related platelet-endothelium-leucocyte
interactions to be related to DEPs (Figure 3b). Finally, GO processes showed the processing of antigen
and presentation of exogenous peptide antigen via MHC class I, TAP-independent regulation of
immune response, defense response, innate immune response, and type I interferon signaling
pathway to be related to DEPs (Figure 3c).

Figure 3. Pathway maps, process networks, and GO processes associated with proteins differentially
expressed between healthy controls and patients with RA. (a) Pathway maps significantly associated

a Pathway maps
1 Blood coagulation
2 I resp Lectin induced pathway
3 I resp Classical 1 pathway
4 I resp: -Alternative pathway
5 Lipoprotein metabolism
6 HDL dyslipidemia in type 2 dial and bolic syndrome X
7 Transport-HDL-mediated reverse cholesterol transport
8 I resp IL-6-induced acute-phase resp in hepatocytes
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with proteins differentially expressed between healthy controls and patients with RA. The pathway
map with the lowest p-value was of blood coagulation. (b) Process networks significantly associated
with proteins differentially expressed between healthy controls and patients with RA. Process
network with the lowest p-value was of blood coagulation. (¢) GO processes significantly associated
with proteins differentially expressed between healthy controls and patients with RA. GO process
with the lowest p-value was of antigen processing and presentation of exogenous peptide antigen via
MHC class I, TAP-independent.

2.4. Selection of Target Peptide for MRM Analysis
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MRM analysis for biomarker candidates, including complement C3, kallistatin, vitamin D
binding protein, serum amyloid A4 protein, and angiotensinogen was conducted. Based on the
SWATH-quantitative analysis of peptides, corresponding to the final biomarker proteins in discovery
set, target peptides for MRM analysis were selected: 1) ISLPESLK (complement C3); 2) LGFTDLFS
(kallistatin); 3) ALQDQLVLVAAK (vitamin D binding protein); 4) THLPEVFLSK (serum amyloid A4
protein); and 5) ALQDQLVLVAAK (angiotensinogen). Information about the transition of selected
peptides was obtained using Skyline software (Table 2). The highly sensitive peptide in SWATH
acquisition was selected first. The final selected peptide satisfied the following conditions: 1) peptide
had no mis-cleavage site; 2) unmodified peptide; 3) not including M in the sequence; 4) having 7-15
peptide sequence; and 6) having low FDR (usually 0).
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Table 2. List of the 13 target peptides and their parameters for multiple reaction monitoring (MRM).

Gene . 1 3 3 Ion 3 Ion DP CE CXP
Compound Name Name Peptide Sequence (n(;:/z) (n?/z) gl"ype 2harge (volts) (volts) (volts)

Angiotensinogen ANGT  ALQDQLVLVAAK 634882 956.578 Y9 2 77.4 317 11

600.408 v6 2 77.4 317 11

289.187 Y3 2 77.4 317 11

Complement C3 Co3 ISLPESLK 43776 5733 v5 2 61 19 28

686.3 v6 2 61 17 30

773.3 y7 2 61 19 40

Kallistatin KAIN LGFTDLFSK 5143 609.3 v5 2 66 23 2

710.3 v6 2 66 23 36

857.4 y7 2 66 21 0

Serum amyloid A SAA4 FRPDGLPK 4653 5162 b4 2 65 25 32
protein

573.2 b5 2 65 27 14

244.1 y2 2 65 27 14

Vitamin D-binding VIDB THLPEVFLSK 58583  819.461 y7 2 73.8 29.9 11
protein

239.114 b2 2 73.8 29.9 11

352.198 b3 2 73.8 29.9 11

DP: Declustering potential; CE: Collision energy; CXP: Collision exit potential.
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2.5. MRM Analysis and Multivariate Analysis of the Multi-Marker Panel Using Individual Serum Samples

The five biomarkers for RA were confirmed by MRM analysis using samples from healthy
controls and patients with RA. The five proteins were analyzed with 5 uL of each patient sample
using UPLC-MRM/MS. For MRM validation, one peptide and three Q3 ions were selected per target
protein. Among the three Q3 ions, the peak with the highest sensitivity was used for quantification.
MRM analysis showed that the five proteins distinguished between healthy controls and patients
with RA with high sensitivity and specificity. Whereas complement C3 and kallistatin were down-
regulated in RA, vitamin D-binding protein, serum amyloid A4 protein, and angiotensinogen were
up-regulated (data not shown). Among the five biomarker proteins, serum amyloid A4 protein and
vitamin D-binding protein had AUC > 0.8. AUC of serum amyloid A4 protein and vitamin D-binding
protein were 0.8307 and 0.8502, respectively (Figure 4). To evaluate the diagnostic efficacy of the two
proteins, logistic analysis was conducted. Classification accuracy was 86.0% and 81.4% in patients
with RA and in healthy controls, respectively (Figure 5).
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Figure 4. Dot plots and ROC curve of selected biomarker candidates in healthy controls and patients
with RA. Proteins, significantly altered in patients with RA than in healthy controls, were selected.
(a,b) Serum amyloid A4 protein and vitamin D-binding protein were compared between healthy
controls and patients with RA. The number of healthy controls and patients with RA was 43 and 50,
respectively. Plots indicate individual protein abundance of each group. Data are presented as mean
+ SEM. Independent t-tests were used to determine statistical significance. **p < 0.001.
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Figure 5. Logistic analysis of selected biomarker candidates in healthy controls and patients with RA.
(a,b) The number of healthy controls and patients with RA for logistic analysis was 43 and 50,
respectively. Classification accuracy was 86.0% and 81.4% in healthy controls and in patients with
RA, respectively.

3. Discussion

To identify serum biomarkers in patients with RA, serum protein profiling was conducted
individually with 43 serum samples from the normal group and 50 from the patient group with RA.
Analysis of serum proteins revealed five proteins in the discovery set that could be considered as
potential candidate biomarkers; two of the five candidate biomarkers, namely serum amyloid A4 and
vitamin D-binding protein, had higher efficiency than the AUC value of 0.8. Although analysis of the
pooled samples requires less time and had lower cost for the sample preparatory step and MS
analysis, it provides insufficient information for concrete and specific conclusions. Because the
amount of serum protein varies across individuals, the protein expression pattern in a certain patient
might represent the overall state of all persons in the group. In addition, individually analyzed
samples can be further analyzed based on the corresponding clinical data. Therefore, in our study,
serum samples were analyzed individually, based on which we could select and verify the two
potential biomarkers, namely serum amyloid A4 and vitamin D-binding protein.

Functional analysis revealed blood coagulation as the most significant parameter in the pathway
map as well as process network function analysis. Of the proteins involved in the blood coagulation
pathways, 21 were found to be enhanced in the patient group compared to the control group. All 21
proteins levels increased by more than 1.8-fold, and the increase was statistically significant (p-value
less than 0.05). The results therefore demonstrated the activation of blood coagulation in patients
with RA. Likewise, in a previous study, coagulation had been reported to be abnormally activated
by the altered expression of coagulation-related factors in patients with RA and aggravated RA [14—
17]. For example, the overexpression of fibrinogen in serum, increase in platelets, and activity of
plasmin had been reported in relation to RA. In this study, functional analysis showed that serum
proteins from patients with RA were maximally associated with blood coagulation. In both pathway
maps and process networks function analyses, the complement system was confirmed to be activated
in patients with RA compared to that in the control group. The complement reaction is activated by
three main pathways, mediated by differentially expressed serum proteins and membrane-related
proteins [18-20]. The three main pathways include the lectin-induced complement pathway, classical
complement pathway, and alternative complement pathway. In this study, we confirmed that the
DEPs identified in patients with RA were involved in all the three major pathways. Previous studies
had also confirmed the complement pathway to be activated in patients with RA. Besides, as the
consumption of complement protein increased, its level was found to decrease in the synovial fluid
[18].

VDBP is known as an actin-scavenging protein. When tissues are damaged in RA, cells with
increased permeability secrete F-actin, which corresponds to polymerized actin [21-23]. As a result,
blood vessels are blocked, leading to pathological conditions such as microthrombosis. When the
tissue is damaged, vitamin D-binding protein, circulating in the blood, gets transferred to the



Int. ]. Mol. Sci. 2019, 20, 4368 12 of 16

damaged tissue, from the blood vessel, and combines with F-actin to allow the removal of actin [23].
Briefly, plasma VDBP and F-actin complexes are formed, subsequently changing the polymer F-actin
into monomer. Thereafter, F-actin is combined with GC-globulin and removed from the liver [24].
Thus, when destruction of synovial membrane and cartilage tissue is processed in RA, VDBP is
suggested to move to the synovial membrane and synovial fluid and remove actin [25]. Thus, our
results implied that increased VDBP migration to the tissue may result in loss of protein from the
blood. However, in joints, increased migration of VDBP to tissues suggests overexpression of the
protein according to relevant needs in the certain tissue. Vitamin D2 and D3 in our body are made
by sunlight or food uptake. Both vitamin D2 and D3 circulate in the blood and get transferred to the
liver by VDBP. They are converted into 25-hydroxy vitamin D2 before moving to the kidney, after
which they are converted into 1,25-dihydroxy vitamin D3 and mediate immune cells to act as anti-
inflammatory agent in the bone tissue, intestines, and immune cells [26,27]. When RA is active,
vitamin D may be assumed to be carried by VDBP to various tissues to suppress the inflammatory
response. Vitamin D-binding protein may also be suggested to act as a defense mechanism against in
vivo changes caused by the progression of RA, which is consistent with the role of vitamin D-binding
proteins as actin-scavenging proteins.

SAA4 is an acute-phase protein, known to increase rapidly during inflammatory reactions. In
RA, SAA4 is excessively secreted in association with the action of cytokine phosphorus, which is
secreted by the immune cells. Owing to this, SAA4 is widely known as an acute reactant. SAA4 is as
sensitive as CRP for the diagnosis of RA. Previous studies conducted in our laboratory had
consistently reported SAA4 to be a potential candidate biomarker of RA, which is being verified by
increasing number of validation samples. In our previous study, SAA4 had been proven to be potent
not only for diagnosing RA, but also for monitoring the disease activity of RA. Therefore, if the
candidate biomarkers are verified using large samples, they will be able to play an important and
powerful role as a diagnostic as well as a monitoring marker for RA.

Proteomics approach has been used to discover biomarkers in previous studies, wherein usually
a single marker was used to represent a particular disease [11,28]; however, in this study, we present
a multi-marker panel to increase the effectiveness of diagnosis of RA. As opposed to our study, in
previous studies experiments were conducted by pooling patient samples at the discovery stage.
Recently, scientists have tried to discover biomarkers through individual samples; individual sample
analysis is not only expensive, but it creates difficulty in discovering biomarkers. More than a few
dozen sample groups were used for analysis with less than 20 people in each group [11,28,29]. In this
study, the patients, n = 20 in the discovery set and n = 50 in the validation set, were analyzed
individually to enable the selection of a candidate marker. Individual analysis of a large number of
samples is more useful in confirming the expression value of the proteins that are aggregated in the
same group and proteins that are distinct among different groups. For discovery of markers for
diagnosis of RA, a group of patients with other autoimmune diseases or non-rheumatic arthritis
diseases as a control group along with a healthy control is essential [25]; however, we did not analyze
patients with other autoimmune diseases or non-rheumatic arthritis, such as osteoarthritis, psoriatic
arthritis as a control group, as the major purpose of this study was to differentiate healthy individuals
from patients with rheumatoid arthritis. Therefore, for a clear diagnosis, the study was conducted by
comparing healthy individuals and patients with rheumatoid arthritis. Our results should be further
interpreted by analyzing patients with other autoimmune diseases or non-rheumatoid arthritis for
practical application of these biomarkers in the future.

This study was conducted on individuals aged between 50 and 70 years. Although RA incidence
is high in the older population, RA also occurs in young individuals. Therefore, future studies should
focus on both older as well as younger population. In order to verify the target biomarker proteins,
one of the most sensitive peptide was selected and its absolute quantification was conducted by MRM
analysis. Further verification with one or more peptides of the target proteins needs to be conducted
for the use of the identified biomarkers in the clinical field. The range of expression levels of SAA4
and VDBP was wide in rheumatoid arthritis patients, although the expression of these biomarkers
was higher in the rheumatoid arthritis patients than in the control group (Figure 4). We observed that
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the biomarkers discovered in this study have higher accuracy than RF, which is an RA diagnostic
marker currently used in the clinical field (data not shown), but the accuracy of these markers (81.4%)
still needs to be improved for use as clinical markers in the future. In our previous study, we observed
that the AUC value for RF was only 0.6477 (the AUC value of the multi-biomarker set presented in
the current study was 0.9) [12]. Thus, markers more efficient than the conventional markers (RF) are
needed for efficient diagnosis of RA. In future studies, it is necessary to evaluate the efficiency and
usefulness of the markers that are presented in this study through detailed classification and analyses
of confounding factors.

When RA occurs, VDBP acts readily to maintain homeostasis of joint tissues; SAA4 also
immediately responds to the inflammatory reactions by inducing production of cytokines. Therefore,
VDBP and SAA4 proteins are suggested as the potential diagnostic markers that represent
inflammation and joint destruction caused by the inflammatory reactions in RA.

4. Materials and Methods

4.1. Healthy controls and Patients

Serum samples for biomarker discovery were obtained from the Eulji University Hospital
Institutional Review Board (EMC 2016-03-019, 31th March 2016). The number of serum samples taken
from patients with RA and from healthy controls was 20 each in the discovery set and 50 and 43,
respectively, in the validation set. The clinical information of the subjects is presented in Table 1. All
the patients were treated with methotrexate, hydroxychloroquine, salazopyrine, leflunomide,
cyclosporine and misoribine. Blood from both, patients with RA and healthy controls, was collected
in vacutainers without anticoagulant. Serum was separated from blood at 4000x g for 5 min and
stored at -80 °C until MS analysis.

4.2. Depletion of Highly Abundant Serum Proteins

To eliminate albumin, IgG, antitrypsin, IgA, transferrin, and haptoglobin that were expressed
the most in human serum, a multiple-affinity removal system liquid chromatography (LC) column
(human 6-HC, 4.6 x 50 mm; Agilent Technologies, Santa Clara, CA, USA) was used. Briefly, serum
samples loaded onto a multiple-affinity removal system LC column were eluted into fractions
containing low-abundance proteins while removing the highly abundant ones. The eluted product
was used for MS analysis.

4.3. Information-Dependent Acquisition (IDA) by SCIEX TripleTOF 5600

Concentration of serum proteins was measured and 100 ug protein samples were prepared for
mass analysis. Proteins were reduced by treatment with 5 mM Tris (2-carboxyethyl) phosphine
(Pierce, Rockford, IL, USA) at 37 °C, 300 rpm, for 30 min. For alkylation, 15 mM Iodoacetamide
(Sigma-Aldrich, St. Louis, MO, USA) was added to the samples at 25 °C, with agitation at 300 rpm
for 1 h in the dark. Proteins were cleaved into peptides, using trypsin, overnight at 37 °C. Mass
spectrometry-grade trypsin gold (Promega, Madison, WI, USA) was used for the purpose. After a
sample containing chemical reagents was cleaned by a C18 cartridge (Waters, Milford, MA, USA), it
was separated based on isoelectric point using the OFFGEL Fractionator with a 12-well setup (3100
OFFGEL Low Res Kit, pH 3-10; Agilent Technologies, Santa Clara, CA, USA). To identify the
proteins, the peptide fraction that was separated into 12 samples was analyzed using a TripleTOF
5600 mass spectrometer (AB SCIEX, Concord, ON, Canada) combined with an Eksigent nanoL.C 400
system and cHiPLC® (AB SCIEX, Concord, ON, Canada).

4.4. Relative Quantification and Data Processing by SCIEX TripleTOF 5600

For relative quantification of each sample, a 2 uL sample containing 100 ug/mL was injected
onto an Eksigent ChromXP nanoLC trap column (350 um i.d. x 0.5 mm, ChromXP C18 3 um) at a
flow rate of 5000 nL/min for 5 min and was eluted from the Eksigent ChromXP nanoLC column (75
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um i.d. x 15 cm). Flow rate was 300 nL/min and the gradient of mobile phase B was 5-90%. Total run
time was 120 min. The following gradient method was used: (time/% B) 0 min/5% mobile phase B,
10.5 min/40%, 105.5 min/90%, 111.5 min/90%, 112 min/5%, and 120 min/5%. Mobile phase B was
composed of 100% ACN/0.1% formic acid in HPLC-grade water, and mobile phase A was composed
of 0.1% formic acid in HPLC-grade water. The mass-to-charge ratio (m/z) in MS scan range and
MS/MS scan ranges were m/z 250-2500 and m/z 100-2500, respectively.

4.5. Absolute Quantification and Data Processing by SCIEX QTAP 5500

For the determination of MRM Q1/Q3 ion pairs, Skyline was used
(http://proteome.gs.washington.edu/software/skyline). The peptide sequence was imported into
Skyline, which then selected a precursor (Q1) that was a double-charged peptide with three fragment
ions per precursor. Collision energy was determined in a direct infusion experiment using a mixture
of candidate peptides. Optimization of MRM analysis was performed with both Q1 and Q3 sets using
MRM scanning. CE, DP, CE, and CXP, for each transition, were determined by compound
optimization (Table 1). A SCIEX Exion LC and QTRAP 5500 were used to analyze the serum samples
from healthy controls and from patients with RA. Five-microliter samples were loaded onto an
ACQUITY UPLC BEH C18 column (130 A 17 pum, 2.1 mm x 150 mm), followed by an ACQUITY
UPLC BEH C18 VanGuard pre-column (130 A, 1.7 pum, 2.1 mm x 5 mm), using a 250 pL/min flow rate
and a gradient from 5-90% mobile phase B over a 30-min total run time. The following gradient
method was used: (time/% B) 1 min/5% mobile phase B, 50 min/40%, 21-25 min/90%, and 25.5-30
min/5%. Mobile phase B was composed of 0.1% formic acid in HPLC-grade ACN, whereas mobile
phase A was composed of 0.1% formic acid in HPLC-grade water. Source parameters for the
acquisition method were as follows: curtain gas 30 psi, low collision gas, ion spray voltage 5500 V,
temperature 400 °C, ion source gas 1 (GS1) 40 psi, ion source gas 2 (GS2) 60 psi. Three ion pairs per
peptide were used for the quantification of target peptides. The final quantification was conducted
using a quantifier ion pair per peptide. For standard curve, tryptic peptides were synthesized with
>70% purity. Two-fold serial dilutions from 1 mM standard stock were performed in 0.1% formic acid
or DMSO, following the manufacturer’s instructions.

4.6. Statistical Analysis

We conducted independent t-tests for relative and absolute quantification between healthy
controls and patients with RA; a p-value less than 0.05 was defined as statistically significant.
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