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Abstract: Affinity maturation and rational design have a raised importance in the application
of nanobody (VHH), and its unique structure guaranteed these processes quickly done in vitro.
An anti-CD47 nanobody, Nb02, was screened via a synthetic phage display library with 278 nM of KD
value. In this study, a new strategy based on homology modeling and Rational Mutation Hotspots
Design Protocol (RMHDP) was presented for building a fast and efficient platform for nanobody
affinity maturation. A three-dimensional analytical structural model of Nb02 was constructed and then
docked with the antigen, the CD47 extracellular domain (CD47ext). Mutants with high binding affinity
are predicted by the scoring of nanobody-antigen complexes based on molecular dynamics trajectories
and simulation. Ultimately, an improved mutant with an 87.4-fold affinity (3.2 nM) and 7.36 ◦C
higher thermal stability was obtained. These findings might contribute to computational affinity
maturation of nanobodies via homology modeling using the recent advancements in computational
power. The add-in of aromatic residues which formed aromatic-aromatic interaction plays a pivotal
role in affinity and thermostability improvement. In a word, the methods used in this study might
provide a reference for rapid and efficient in vitro affinity maturation of nanobodies.
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1. Introduction

CD47 molecule, a ubiquitous cell-surface receptor that promotes immune evasion by interacting
with signal-regulatory protein alpha (SIRPα) [1], is a member of immunoglobulin (Ig) superfamily
and is considered as a promising cancer biomarker [2]. Targeted blocking CD47-SIRPα interaction for
engaging macrophages to attack cancer cells represents a potentially promising immunotherapeutic
strategy. Several antibody agents have been applied in clinical trials and display a positive effect [3,4].
However, there is only one approved nanobody medicine [5] and none for targeting CD47ext. We had
screened a panel of single anti-CD47 nanobodies from a semi-synthetic library via Phage display
technology (submitted work), and the optimal one (Nb02) was chosen as the parental VHH in this study.

Apart from monoclonal antibodies (mAbs), small antibody fragments of different formats have
become increasingly popular binders in research and diagnostic applications due to their exceptionally
high stability and selectivity [6–8]. Some strategies about affinity optimization were undertaken
previously to improve the binding affinity and stability of biotherapeutics [9–12]. Nevertheless, given
the time-consuming process of conventional approach and improved computational capabilities,
structure-based computational methods involved the in silico selection of promising candidates
with a high likelihood of improving binding affinity has aroused considerable interest [13–17].
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Computational methods have been applied to improve the binding affinity, selectivity and stability of
several biologics [10,18–20].

Nanobodies® (VHHs), due to their beneficial biochemical and economic properties (small
size, affinity, selectivity, stability, production cost), have been used as research tools and applied
in biotechnology and medicine in recent years [6,21]. For their small mass (~125 residues and
~15 kDa) [22], the VHHs could identify some hidden antigen epitopes and infiltrate tissues more
readily than mAbs [21,23,24]. On the other hand, the small size and unique structure allow it possible
to utilizing computational protocols for optimizing their biophysical features, such as the binding
affinity. Several applied works on computer-aided structure design [10,25–27] and display-based
selection [28,29] have been published. Additionally, prior researches show that it takes a shorter time
for in silico optimization relative to mAbs with the current computational resources [15].

For an in silico computational approach, it is significant to build a set of focused mutations
and screen affinity-improved mutants accurately [9]. The ADAPT platform (Assisted Design of
Antibody and Protein Therapeutics) utilizes three force-filed-based scoring functions to predict the
affinity of nanobody-antigen complex. Vivcharuk et al. reported that the ADAPT platform had
been proven to be practical and convenient to get affinity maturated. It was utilized for several Fab
fragments affinity maturation and led to 30~100-fold affinity improvements with 50 nM~50 pM affinity
constant values (KD) [30]. However, research data in ADAPT-based VHH affinity maturation are still
scarce [26], and much more efforts should be made. While ADAPT-based affinity maturation owns
strengths in improved affinity scoring and selection of high likelihood of improving binding, it still
shows few deficiencies. The main point is the requirement of three-dimensional structural data of
ADAPT-involved components. As a priori knowledge of these crystallographic structures is often not
fully available, homologous modeling can be used to get the initial structure data for computational
screening [31–33].

In the current study, we designed a fast and efficient approach to conduct Nb02′s affinity
maturation. This strategy includes three significant steps: (1) homology modeling of parental VHH
and initial mutant site analysis; (2) virtually screening of affinity-improved mutants using ADAPT
platform; (3) binding affinity validation and molecular mechanisms analysis. In this study, we aimed to
improve the affinity of the anti-CD47 VHH using homology modeling-based computational screening
with experimental validation. The high-quality homology modeling structure was firstly used in
ADAPT platform to replace the need for crystallographic three-dimensional (3D) structure. RMHDP
(Rational Mutation Hotspots Design Protocol) determined the binding sites and used in virtual affinity
maturation. ADAPT selected seven mutants, and the affinity and thermostability were tested. The best
mutant (M7) showed significantly improved binding affinity with thermostability enhancement.

2. Results

2.1. Modeling and Preparation of Structure

The structure of Nb02 was modeled by homology modeling using MODELLER v9.19 (http:
//www.salilab.org/modeller/). Five structures with the highest resolution and the lowest B-factor,
namely 5LMW, 5LZ0, 5HDO, 2X1O and 5LMJ, were identified via BLAST. The sequence alignment
(Figure 1) shows 26 points mutations for all the frameworks. While the side chains have different
orientations, there is no difference observed in their backbone overlap. These were used as templates
for modeling the Nb02. Three scoring functions (molpdf, DOPE and GA341) were used to select the
optimum model. These functions are usually used to evaluate modeled structures. The molpdf and
DOPE functions assess the structure’s energy and the GA341 function value determines the model’s
natural state. The molpdf function is part of MODELLER software and the last two were added
manually to the script. The GA341 scores are 1, which shows all models are in the natural state.
The evaluation results of molpdf and DOPE are shown in Figure S1. In the model selection, we first
chose five with the lowest molpdf values, and among them, the model with lowest DOPE value
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was chosen as the optimal one, which was model number 19. The SAVES evaluation is 100% pass,
and Ramachandran plots were further used to assess and evaluate Nb02 (Figure 1b and Figure S2).
Figure 1b shows the Ramachandran plot of the main residues except for G and P. Main residues located
in most favored regions and additional allowed regions by 92.8% and 7.2%, respectively. In Figure S2,
all 15 G residue and 3 P residues located in allowed regions. These indicate that the structure of Nb02
is rational and high-quality.
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Figure 1. Three-dimensional (3D) structure building and assessment of Nb02. (a) Structural alignment
of templates used in this study. (b) Main residues Ramachandran plot of Nb02. The squares represent
the main residues, and the triangles represent G and P.

On the Nb02 structure, we ran 50 ns MD (Molecular Dynamics) simulation to eliminate
unreasonable clashes and minimize energy, and analyze the whole production run and choose
the lowest internal potential energy for subsequent analysis [34]. Compared to the modeled structure,
significant conformational rearrangements were observed in their CDRs (Complementarity determining
regions), especially with the CDR3 (as in Figure 2a). Figure S3 shows that the modeled VHH is stable
over time. Along the simulated time, the backbone root means square deviation (RMSD, Figure S3a)
remains smaller than 0.2 nm. Moreover, for the root mean square fluctuation (RMSF, Figure S3b),
as expected, it was greater than 0.2 nm only in the predicted CDR loops, which was free to explore
different conformations. As shown in Figure 2, there are also some rearrangements in backbone regions;
however, the RMSD and RMSF value shows it has a much smaller impact. Moreover, nanobodies
usually bind to its antigen via CDRs, especially CDR3; thus, it may be neglected in the analysis.

As experiments show that there is a competition between the VHH and the anti-CD47 mAb
B6H12.2, we take the corresponding CD47ext interaction sites as the CD47ext active residues in this
research, that is to say, the residues 29, 31, 34, 35, 37, 39, 46, 97 and 99–104 [35]. The active residues
of VHH were determined as the CDRs. We then dock the Nb02 final configuration obtained after
MD simulation to the selected CD47ext binding sites. First, we performed a short-time pre-docking
to check parameters and determine conformation rationality. After analysis of pre-docking results,
we changed the docking time parameter and started production docking process. The cluster analysis
and estimate results using docking score and Van der Waals energy are shown in Figure S4. We first
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selected three clusters with the lowest docking score and Van der Waals energy: number 1, 2 and
6. Then, the cluster with the lowest RMSD value, number 1, was chosen for subsequent analysis,
as shown in Figure 2b. Comparison between different complex cluster structures indicates different
binding modes of Nb02-CD47ext (as shown in Figure S4d).
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2.2. Identifying Key Residue Positions for Affinity Maturation

For affinity maturation, the identification of critical residues of the interaction between Nb02
and CD47ext was crucial [10,36,37]. In the ADAPT computational approach, the first vital step is
an exhaustive single-point virtual mutagenesis along the entire CDR sequence [30]. This process
involved in whole CDR residues and increased the later calculation difficulty, so it is necessary to
narrow down the initial interaction hotspots by a credible method, which is described in the Materials
and Methods section.

As described in the Materials and Methods section, approximately 50~60% hotspots of CDRs
have constant DNA sequence, which usually also encodes the antibody’s antigen-binding sites [38,39].
Moreover, the VHH has a more extended CDR3 than other antibody fragments; thus, mutagenesis aims
at AGY/RGYW (R = A/G, Y = C/T and W = A/T) mutational hotspot in the CDR3 are more likely to
increase the affinity. As shown in Table 1, eventually, there are six binding sites identified. Additionally,
to avoid missing some residues and improving accuracy and reliability, the interface residues of Nb02
within 5 Å of CD47ext were counted using PyMol, the results are also shown in Table 1.

Table 1. Binding sites analyses of anti-CD47 VHH using two criteria 1.

Interface Residues Analysis AGY/RGYW

32 GLU (E) 34 SER (S)
35 GLN (Q) 55 SER (S)
36 ASN (N) 56 SER (S)
54 ILE (I) 58 VAL (V)
55 SER (S) 59 VAL (V)
57 ARG (R) 100 ALA (A)
58 VAL (V) 101 ALA (A)
60 GLU (E) 107 GLY (G)
61 CYS (C) 108 THR (T)
62 TRP (W) 109 SER (S)

105–113 - 110 PHE (F)
1 The overlapped residues are selected as a credible and rational result of rational mutation hotspots design. For both
two panel, the left column represents the residue number and right column for corresponding residue name.



Int. J. Mol. Sci. 2019, 20, 4187 5 of 19

In a word, the active residues of the Nb02 are identified: residues S55, V58, G107, T108, S109, F110,
and are used as initial mutation residues for the subsequent ADAPT analysis.

2.3. ADAPT Cycle–multiple Mutants

In the present study, mutants were narrowed down using in silico screening and computational
modeling, thus reducing in vitro analytical effort. There is a disulfide bond between C24 and C99 of
Nb02, which is a hallmark of nanobody and helps to stabilize the extended CDR3 loop configuration.
Therefore, each residue is mutated in turn to 17 other possible natural residues (C and P were excluded)
and totaling 102 single-point mutants. In Figure S5, we show the proximity of the selected sites to
the CD47ext.

After ADAPT round, 102 single-point mutations covered six positions that might alter
antigen-binding affinity were computationally evaluated (as shown in Table S1). As described
above, the top 50 single-point mutants with improved antigen-binding affinity were predicted, while
utilizing a three force-filed-based scoring platform. The results are shown in Table 2.

Table 2. Top 50 consensus Z-scores (<0) for single mutants 1.

Res A R N D Q E G H I L K M F S T W Y V

S55 −2.7 −1.7 −2.2 −2.3 −2.1 −1.8 −1.7
V58 −1.7 −2.1 −1.9 −1.7 −1.7 −1.7 −1.7
G107 −2.1 −1.9 −1.8 −1.7 −2.2 −1.8 −1.8 −1.8 −1.7 −1.9 −2.1 −2.0 −1.9 −1.7
T108 −2.3 −2.1 −1.7 −1.9 −1.8 −1.7
S109 −1.6 −2.0 −2.3 −2.0 −1.6 −1.9 −1.7 −2.0
F110 −2.0 −2.2 −2.0 −1.7 −1.6 −1.7 −1.9 −1.6

1 13 single-point mutations selected for Round 2 are highlighted in red. Nb02 Z-score = −0.20.

The sub-selection process is based on residue types, site diversity, and visual examination.
This process narrowed down the selection to 13 mutants from the 50 top-scoring mutants for further
evaluation. The CD47ext-binding affinities of these 13 single-point mutants were then calculated and
compared with the parental VHH. The KD

cal and improvements in binding affinities relative to the
parental VHH are presented in Figure 3. Almost all the mutants demonstrate improved binding
affinities and mutations have a positive effect, excepted V58D showing no improvement. The mutant
S109V is showing the highest 21.54-fold increase, with another two mutants (T108H and S109E) an over
10-fold increase. The location of these three mutations relative to the CD47ext epitope is shown in
Figure S5b. Additionally, mutant S109G with the substitution of residues G led to small improvement
than with V and E, and T108K shows a minor increase than T108H. Mutation G107T and replacement
of S55 shows only marginal gains compared to parental VHH. From the above, in this first round of
ADAPT screening, there was no clear trend as to which kind of residues was more useful to the binding
affinity improvement. For instance, considering the best two single-point mutants, the substitution
of S109E and S109V belongs to the acidic residue and aliphatic residue, respectively, whereas the
replacement of S109G had only small improvement.

Six leading single-point mutations from round 1, G107I, G107W, T108H, S109E, S109V and F110A,
which possessing greater than five-fold affinity improvement in KD

cal, were selected to round 2 affinity
maturation. Despite a slight affinity improvement, the S55Q was also included in round 2 since its
structural proximity to CD47ext (Figure S5) and the charge-neutral mutation property. A combination of
these mutant sites could lead to a total of 20 double mutants. These 20 mutants considered in this round
were calculated computationally about the change in binding affinity within the ADAPT protocols,
and then compared predicted affinity improvements with the component single-point mutations and
parental VHH (marked as M0). There were three affinity-decreased mutants among the 20 double
mutants and combined with analysis of other mutants, G107W and S109E were discarded. Consider
the mutation site diversity, and after manual visual inspection of the virtual mutants, the mutations
improved more than five-fold were selected to the next step. The next analysis leads to five triple
mutants and two quadruple mutants (some mutants with lower improvement did not show in the
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figure). The seven selected multiple mutants were marked M1-M7, as shown in Figure 3. Figure S6
shows the experimentally determined and calculated KM0

D /KMX
D ratios. The experimentally determined

ratios different from the calculated ones in numerical value, and this might result from the uncertainty
of calculation criteria. However, the order of this value is the same, and it did not affect the selection of
the best mutant.
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2.4. Binding Affinity Validation

2.4.1. Purification of VHHs

A HisTrap™ column was used for purifying the VHHs. The results of SDS-PAGE indicated that
all of the purified VHHs showed a single band of ~15 kDa (Figure 4). Moreover, we measured the
protein yield based on the purified VHHs. The yield of M0 was 1.10 mg/L, while the yield of M1–M7
were 3.20 mg/L, 2.78 mg/L, 1.92 mg/L, 3.84 mg/L, 1.46 mg/L, 1.05 mg/L and 0.60 mg/L, respectively.Int. J. Mol. Sci. 2019, 20, x  7 of 19 
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2.4.2. SPR

The KD values were determined by SPR measurements, and the results are presented in
Figure 5. By BIAcore (Biomolecular Interaction Analysis), the binding affinity of M0 was
low (KD

M0 = 278 ± 9.3 nM). To get affinity matured, we selected seven mutants by homologous
modeling-based ADAPT platform. Compared with M0, the best mutation shows a 162.58-fold calculated
improvement of binding affinity (KD

M0/KD
cal). Logically, the SPR was used to verify the KD values and

improvement folds. As shown in Figure 5, the seven mutants bound CD47ext with KD of 74.5 ± 5.5 nM,
11.4 ± 2.1 nM, 69.5 ± 6.1 nM, 57.0 ± 7.3 nM, 25.3 ± 3.7 nM, 58.2 ± 4.5 nM and 3.2 ± 1.0 nM, respectively,
compared to M0. All mutants displayed a significant increase in binding affinity relative to M0, which
suggests that our virtual selection protocol enables robust identification of affinity-improved mutants.
With a KD of 3.18 nM (Chi2 = 3.64), mutant M7 exhibited the greatest improvement in binding affinity of
around 87.4-fold.
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Figure 5. SPR sensorgram binding profiles. Interaction of the parental VHH M0 and mutants M1-M7
with immobilized CD47ext. The color lines represent the global fits of the raw data (black lines) to
a 1:1 bimolecular model. Mean values are shown along with the VHH concentration range used in
each experiment.

2.4.3. qPCR

Determination of the thermal stability and melting temperatures (TM) for the seven selected
mutants and parental VHH was carried out with qPCR. The results are shown in Figure 6. It shows
that the melting curves of M0 and the TM value is 43.38 ◦C, which is averaged from five independent
experiments. The other seven mutants with TM of 57.47 ◦C, 60.59 ◦C, 60.01 ◦C, 43.08 ◦C, 51.16 ◦C,
48.91 ◦C and 50.74 ◦C, respectively. With a TM of 60.59 ◦C, mutant M2 shows the highest enhancement
in thermal stability of 17.21 ◦C, while the M7 enhanced 7.36 ◦C. Figure S7 shows a direct comparison of
affinity versus stability (TM–KD) for M0 and seven mutants.
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2.4.4. Indirect-ELISA by Lead Variant

The best mutant M7 obtained at the end of the virtual screening and validated after SPR and
qPCR was used to test binding activity and thermal stability with M0 through ELISA, as shown in
Figure 7. Targeting CD47ext in vitro binding affinity data as a function of VHH concentration are
shown in Figure 7a. The best affinity-matured mutant M7 exhibited a stronger binding signal than
M0 at all levels. In this assay, both VHHs show high bind ability to CD47ext with the decreasing of
the sample concentration. It is interesting to note that M7 can reach CD47ext inhibition levels around
120.2% (at 360 µg/mL) compared to M0, whereas the value is 157.5% at 5.625 µg/mL. The BSA (Bovine
Serum Albumin) was also tested as a negative control. As shown in Figure 7b, the thermostability
of VHHs with different temperature treated 10 min was measured by indirect-ELISA. The data show
that it still has a great binding activity to CD47ext after sample treatment, and all the OD450 values are
more than 1.0 (except OD450 of M0 is 0.936 at 70 ◦C). In particular, the OD450 value of M7 at 70 ◦C is
around 45.0% compared with at 4 ◦C, while the value is just 32.7% for M0. These results indicate that
the thermal stability of M7 is stronger than M0, and it also echoes the results of the qPCR assessment.Int. J. Mol. Sci. 2019, 20, x  9 of 19 
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3. Discussion

A month ago, Caplacizumb was the first in class biopharmaceutical launched in both Europe and
the U.S. for the treatment of aTTP (acquired Thrombotic Thrombocytopenic Purpura) [40]. Impressive
progress in the application and economic outlook of nanobody has revived the researcher’s interest
in developing nanobody-based biological drugs [41]. The nanobodies screened by ribosome display
or phage display always possess a weaker binding affinity than mAbs, which limits its potential
application in drug discovery [42–44]. In vivo, experimental methods such as display-based screening
and enrichment based on kinds of libraries dominated the affinity maturation field [45]. With these
methods, the affinity improvement could reach around 10~1000-fold [46–48]. However, its weakness
such as being time-consuming and its randomness are also apparent and limit full application. Recent
advancements in computational power, molecular dynamics (MD) trajectories and simulation have
become a helpful tool to characterize the properties of protein [49]. With the increase of structural data
for antibody-antigen complexes and the development and establishment of algorithms for binding
affinity prediction, the computer-aided structure-based rational approach has been an attractive choice
for antibody affinity maturation. Currently, the dominating limitation of ADAPT is the need for
a pre-existing crystal structure of the target antibody-antigen complex, even though the ADAPT
platform could bring an improvement around 10–100-fold range based on several limited applications.
Ideally, it could be replaced by a high-quality model based on homologous structure relative to the
parental sequence.

The primary consideration of this study is to develop an efficient, engineered, and universal
protocol for the in vitro affinity maturation of nanobodies to lay the foundation for drug development.

The parental VHH of this study was selected via three rounds of panning of a synthetic nanobody
library, which display a weak binding affinity targeting CD47ext (KD = 278 nM). Initial concerns
emerged due to the uncertainty of created strictly homologous structure compared to the actual fabric.
Here, we build its 3D structure by MODELLER based on five homologous crystal nanobody structures.
Ramachandran plots (Figure 1b and Figure S2) and MD simulation results (Figure 2 and Figure S3) show
that the structures of Nb02 were rational and high-quality. The Nb02 was then utilized in ADAPT-based
virtual affinity maturation, with the replacement of crystal structure, and the experimental validation
of mutants shows a significant improvement in binding affinity and thermostability.

One limitation of the ADAPT protocol is the inadequate conformational sampling of the binding
between the mutants and the target protein, essential for an accurate estimation of the binding affinity.
This affinity maturation protocol approximates that the changes in the binding conformation after
a single mutation are negligible. To observe these conformational changes, an MD simulation of each
new complex was performed. The structure aligns results of M1~M7 show that their binding does not
suffer great rearrangements.

Rational structure-based affinity maturation contributes to an understanding of the structural
basis for the improvement of binding affinity, which is one of its advantages. Figure 8 displays the
structural basis and interactions predicted for quadruple mutant M7 (G107W, T108H, S109V, F110A)
with CD47ext [50]. The substitution of residue T108 by H introduce a salt bridge with D51 on CD47ext

(Figure 8a). Furthermore, two sets of ionic interaction formed between T108H and D51, E35 and R103
of VHH. On the G107 site, mutation to W generate a hydrophobic interaction with Y37 of antigen with
a distance 2.74 Å (Cα–Cα); relatively, the distance of previous Y37 hydrophobic interaction with I105
of VHH is 5.51 Å (Figure 8b). Additionally, the mutation of G107W constitutes hydrogen bonds: the
main chain-side chain H-bound between K39 and G107W, the side chain-side chain H-bound between
G107W and T99 (Figure 8c). The new intramolecular H-bound interactions introduced by W at position
107 are also likely contributed to the observed improvement of binding affinity. In Figure 8e, it shows
there still formed a cation-Pi interaction between G107W and K39 (4.63 Å) and K41 (5.13 Å).
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Figure 8. Structure models of optimized CD47ext-VHH interactions. The VHH and CD47ext chains
are colored green and grey, respectively. The corresponding C atoms are colored blue and H atoms
colored red. (a) Structure model of the T108H. A salt bridge is formed between T108H and 51D of
CD47ext. (b) Structure model of the G107W. Hydrophobic interactions are created between G107W and
37Y of CD47ext. (c) Hydrogen bonds formed by G107W. H-bonds are shown in black and dashed lines.
(d) Ionic interactions built by T108H. (e) Cation-Pi interaction (G107W-39K/41K) and Aromatic-Aromatic
interaction (G107W-37Y). (f) Aromatic-Aromatic interaction of F110 and G107W.

Another critical factor is the add-in of aromatic residue, which is beneficial to protein structure
stabilization [51]. The aromatic residue W interacted with cation provided by electro-positive
residue K and formed a stronger bond than a salt bridge, which could also be likely responsible for
affinity improvement. Additionally, the mutation of G107 to W introduces a new aromatic-aromatic
interaction with Y37 (4.65 Å) of CD47ext (Figure 8e). The structure model shows that the F110 formed
an aromatic-aromatic interaction with W62 neared CDR2 (Figure 8f). From above, we can see that
even on the same site, there could be different mechanisms of improving binding affinity. Hence,
the result figures out the importance of aromatic residue in the enhancement of affinity and stability.
Inoue et al. carried out an in silico virtual analysis of a CDR3-grafted VHH and obtained a mutant that
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had a ~20-fold improvement over the original protein as measured by SPR [10]. Their work and some
others are all substitutions by charged residues, such as R and D. In contrast, the designed mutants in
this study have informative ways in affinity improvement as they mutated to several kinds of residues,
such as aromatic G107W and aliphatic F110A, and did not solely rely on electrostatics (alkaline T108H).

Taken together, our finding demonstrates that high-quality homology structure can afford
ADAPT-guided binding affinity improvements. These data also show that ADAPT-guided affinity
maturation of VHH for improved antigen-binding ability can also translate into an enhancement
of thermostability. The combination of improved affinity and thermostability is commonly tricky
during the process of nanobody affinity maturation. Prior research has shown that increased
affinity results from mutations of CDRs sites always accompanied by structure destabilizing [26,30].
This destabilization may attribute to the change of strain of framework results from the residue
replacement and corresponding structure modification. Another likely reason might be the change of
chemical property of antigen-binding sites selected for affinity maturation [37]. Encouragingly, our six
selected multiple mutants displayed addition stability (except M4) and the highest affinity increased
variant M7 with 7.36 ◦C enhancement of TM value was identified by qPCR (TM of 50.74 ◦C relatives to
43.38 ◦C of M0). In detail, the M4 and M7, which include F110A mutation, have a weaker stability
enhancement than others, the TM of M4 even smaller than M0. The most probable cause is that the six
antigen-binding sites for affinity maturation are all located in the CDRs region, and its substitutions
scarcely affect the whole stability. Another reason, as above, is the aromatic residue. The side chains of
aromatic residue, which possess directional Pi-systems, always stabilize protein interiors and interface.
Thus, substitution by aromatic residue could enhance the structural stability of protein [52,53], and in
this study is F and W. Nevertheless, antibodies aggregate at high temperatures and thus may influence
the accurate determination of their TM value [54]. Admittedly, the stability improvement observed by
thermal denaturation might occur due to delayed onset of aggregation.

This study reveals several key factors which may affect the efficiency and robustness during
nanobody in silico affinity maturation. First, these results illuminated that multiple mutations are
necessary to achieve a considerable improvement in binding affinity for the anti-CD47 VHH. Previous
works demonstrate that multi-single point affinity-matured mutants result in a moderate increase
in binding affinity of multiple mutations [10,25,26,30], while our finding is generally consistent with
it. It is possible and relatively straightforward to identify and combine several affinity-enhanced
single mutations; nevertheless, the additive effects of multiple mutations on nanobody affinity are
complex and incompletely understood thus far. Additionally, it sometimes hurts binding affinity [55,56].
When ADAPT platform was used in Fab affinity maturation, the first step is an exhaustive single-point
virtual mutagenesis along the entire CDR sequence. It is time-consuming and abnormal to generate all
possible combinations of single-point mutations, which led to a large amount of affinity evaluation and
multiple-rounds of screening. Moreover, nanobody has a more extended CDR1 and CDR3 than the
traditional antibody. These two factors determined that it is challenging to utilize ADAPT screening
platform with whole CDR. As described in Materials and Methods section, the binding sites were
identified by a Rational Mutation Hotspots Design Protocol (RMHDP). Each has different predicted
binding sites, and we selected the overlapped parts as a credible and rational result. This method
immensely narrowed down the initial mutagenesis amounts (17 mutations per CDR site across six sites
in this study). These sites were utilized in virtual affinity maturation and eventually led to positive
and encouraging results, as shown above.

Technically, virtual screening filtered the best mutant among all virtual candidates in the
development to affinity-improved mutant and hence moved ahead of the affinity validation study. In this
study, we undertook the preparation of a nanobody structure by homologous modeling. Compared to
crystallography-determined structure data, the use of homologous modeling considerably lowering
the hurdle to conduct affinity maturation in vitro to some degree. However, comparable data is still
scarce, and further studies are still necessary. Furthermore, additional experiments will be based
on synthetic biology concepts to rationally design bispecific nanobodies to enhance the affinity and
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targeting the ability of nanobody-based biotherapeutics. Moreover, the effect of the drug increases
the phagocytic capacity of macrophages to cancer cells will be tested, while the antitumor effect on
an animal model of carcinoma in situ.

4. Materials and Methods

4.1. Homology Modeling

The sequence of Nb02 (GenBank accession number MK780744) and CD47ext are shown in Figure S8.
The sequence of the Nb02 used for experimental validation in this study has a C-terminal His6 tag
that was not included for in silico studies. We used the MODELLER v9.19 to build the structural
models of Nb02. The experimentally determined sequences were searched in the protein databank
with BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi), E-value cutoff 10.0 and sequence identity cutoff

90%. The resulting nanobody sequences were aligned with CLC Sequence Viewer 7.8.1 (CLC bio,
Finlandsgade, Aarhus N, Denmark). The highest resolution and the lowest B-factor of the results,
namely 5LMW [57], 5LZ0 [57], 5HDO [58], 2X1O [59] and 5LMJ [57], were chosen as templates. First,
50 models were built and the optimum one was selected based on the use of three different criteria
(molpdf, DOPE and GA341). After that, it was evaluated and optimized using the webserver SAVES
(http://services.mbi.ucla.edu/SAVES/), and then assessed using the Ramachandran plot. Eventually,
an MD simulation was performed to eliminate unreasonable structure clash and minimize the energy.

4.2. MD Simulation

All MD simulations and their analysis were run as implemented in the GROMACS package
(http://www.gromacs.org) [60] with the AMBER99SB-ILDN42 force field [61] and SPC water.
The Nb02–CD47ext complexes were first minimized without solvent, and then placed the molecules
in a cubic box with a water layer of 1.2 nm and the system was neutralized by adding two Cl− as
counterions. Subsequently, a second minimization of the system was performed before starting the
MD simulation. After minimization, the equilibrium was performed for 100 ps in the NVT ensemble,
followed by 20 ns NPT production run. The temperature was controlled at 300 K by a modified
Berendsen thermostat [62], with a time constant of 0.5 ps. The pressure was controlled at 1 bar by
isotropic Parrinello–Rahman method [63] with coupling constants of 1.0 ps.

Moreover, a Periodic boundary condition was used for all MD simulations. The iteration time
step was set to 2 fs with the Verlet integrator and LINCS (Linear Constraint Solver) constraints [64].
The MD simulations were then performed for 50 ns.

4.3. Molecular Docking

Through computational analysis combined with analysis of solvent-exposed hydrophobic regions,
the active residues of the Nb02 are identified: residues 55, 58, 107–110. Additionally, passive residues
were automatically defined. Molecular docking using AutoDock Vina (http://vina.scripps.edu/) [65]
and its standard protocols were conducted to predict the Nb02-CD47ext complex structure. The atomic
coordinates of the CD47ext were taken from the structure of the SIRPα-CD47 complex crystallized
at pH 8.5 (PDB ID: 4CMM) [66]. Active residues were defined for each VHH as mentioned above,
while CD47ext active residues were those known to be in contact with the commercially available
anti-CD47 mAb B6H12.2: residues 29, 31, 34, 35, 37, 39, 46, 97 and 99–104 [35]. While other parameters
were set to the default values, the size of the grid box was 40 Å × 40 Å × 40 Å, and the Lamarckian
genetic algorithm was used to search the complex pose. Among the docking results obtained, we chose
the docking cluster with the lowest docking score and binding free energy for the top conformations.

4.4. Rational Mutation Hotspots Design Protocol

Two different criteria are used to identify and pre-select the interface residues which might affect
the affinity. First, the CDR residues within a contact distance with the antigen might affect the binding

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://services.mbi.ucla.edu/SAVES/
http://www.gromacs.org
http://vina.scripps.edu/


Int. J. Mol. Sci. 2019, 20, 4187 13 of 19

affinity. Thus, we counted the surface residue residues of parental VHH within a 5 Å distance of
CD47ext using PyMol (http://www.pymol.org/). Second, mutations of variable regions in the affinity
maturation frequently belong to some constant CDR sequences, namely “Hot Spots”, which residues
generally were AGY or RGYW (R = A or G, Y = C or T,W = A or T) [38,39,67,68]. These residues are
also often located at antigen-binding sites for antibodies, and mutations aim at these sites is more
likely than others to improve the binding affinity. The overlapped parts are selected as a credible and
rational result of rational mutation hotspots design. The mutations were done with Swiss-PDB Viewer
4.1 (http://spdbv.vital-it.ch/) [69], and all obtained models underwent an MD simulation.

4.5. In Silico Affinity Maturation

It has been reported that a few residues’ changes could significantly improve the binding affinity
of proteins in a previous publication [10]. In the present study, ADAPT was used to optimize the
binding affinity of Nb02. A 3D structure model of the antibody-antigen complex is necessary for the
ADAPT calculation. In this study, the initial sequence of the Nb02 was screened from a semi-synthetic
library via Phage display technology (submitted work). The protein structure of Nb02 is predicted by
homology modeling using the protocol described above and were used as a starting point for virtual
affinity maturation.

Some structural preprocessing had to be done before the computational screening. Initially, water
molecule and counterions of the VHH modeling structure were removed. Secondly, hydrogen atoms
were added and adopted to protonation states at neutral pH. Thirdly, structural refinement was carried
out by energy-minimization using the AMBER force-field, with a distance-dependent dielectric (4rij)
and an infinite distance cutoff for non-bonded interactions. The non-hydrogen atoms were restrained
at their initial positions with a harmonic force constant of 10 kcal/(mol·A2).

In the first round of affinity optimizations, six positions (S55, V58, G107, T108, S109, F110)
within the CDRs of the parental sequence were mutated to 17 other possible natural residues (Cys
and Pro were excluded). 102 single-point scanning mutagenesis was carried out in this step. Three
protocols, SIE-SCWRL, FoldX and Rosetta, were used to building and repacking the structures and
evaluating the energies of these single-point mutations. Each component energy function would
give a Z-score about the binding affinity of these mutants, and a consensus Z-score was further
applied for scoring these mutants to alleviate the influence of the median and median absolute
deviation. For the ratio of improved binding affinity, KM0

D /Kcal
D , we employed HADDOCK webserver

and Schrodinger to calculate the KD values. Further technical and implementation details of this
consensus approach and its component methods can be found in Sulea et al. [26]. Consider the
mutation site diversity, and after manual visual inspection of the virtual mutants, approximately
15 mutants from the 50 top-scoring mutants are selected for further optimizations. In the second
round of optimization, combine the favorable single-point mutations with Z-score using the same
computational protocol above, a series of double- and triple-point VHH mutants were generated, and
so do the quadruple-point mutants’ generation.

4.6. Protein Expression and Purification

The DNA sequences of VHH mutants were synthesized commercially by GENEWIZ (Beijing,
China), subcloned into the pET-32a (+) expression plasmid, with N-terminal RBS/TATA box and
C-terminal His6 tag, and were subsequently expressed in TransB (DE3) E. coli. For expression, 2 mL of
the overnight culture was inoculated into LB media (200 mL) supplemented with 100 µg/mL ampicillin
in 500 mL flasks with air top seals and grown until an OD600 ~0.6–0.8. Cultures were then induced with
200 µL IPTG (500 mM) and grown for 16 h at 18 ◦C with shaking at 180 rpm. After that, the interest
proteins were extracted by sonication and centrifugation, and the supernatants get filtered through
0.45µM filters. The purification of VHHs was carried out by employing Ni2+-affinity chromatography
(IMAC) using HisTrap™HP (GE Healthcare, Tianjin, China). The binding buffer containing PBS pH
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7.4, 500 mM NaCl, 80 mM imidazole, and the elution buffer containing PBS pH 7.4, 500 mM NaCl,
500 mM imidazole. The recombinant monomeric protein was visualized by SDS-PAGE.

4.7. SPR

The IMAC-purified VHHs were subjected to desalting and soluble in PBS (pH 7.4) before the
SPR binding experiments. Binding interactions were conducted with an SPR-based Biacore 3000
instrument (GE Healthcare) at 25 ◦C. Protein concentrations were quantified by 280 nm absorbance
with a Nanodrop2000 spectrometer (Thermo Scientific, Shanghai, China). Typically, approximately 350
resonance units (RUs) of enzymatically biotinylated CD47ext (ab174029, Abcam, Shanghai, China) were
directionally immobilized on a CM5 sensor chip (GE Healthcare). An unrelated biotinylated protein
was immobilized with an RU value matching that of the reference surface to control for nonspecific
binding. Measurements were made with serial VHH concentrations in Biacore running buffer (10 mM
HEPES, 150 mM NaCl, 3 mM EDTA, 0.05%(v/v) P20, pH 7.4; GE Healthcare) at a flow rate of 40 µL/min.
Running buffer without VHH was then passed over the chip to allow spontaneous dissociation at the
same flow rate. The CD47 surface was regenerated by three 60 s injections of 10 mM Glycine-HCl
buffer (pH 2.1) after each sample injection. All data were analyzed with the Biacore 3000 evaluation
software (GE Healthcare) with a 1:1 Langmuir binding model. All VHHs were run in duplicates.

4.8. Thermal Stability Measurements

To investigate the thermal stability changes of VHHs, real-time fluorescence quantitative PCR
(qPCR) was used to measuring the melting curves of the parental and mutant VHHs, and the melting
temperatures (Tm) were acquired by taking a negative first derivative transformation [70]. qPCR was
carried out in a Roche LightCycler® 480 II real-time PCR instrument (country Roche, Beijing, China).
A total volume of 20 µL in each tube of 96-well plates was used. 1.0 µL HEPES (1 M) and 0.04 µL
TCEP (0.25 M) was added first. Samples were diluted in PBS at a final concentration, after mixing,
of 2.0 µM. 17.46 µL 1× PBS was then added. SYPRO® Orange (Roche, Beijing, China) was diluted
25-fold from the 5000× concentrated stock to the working dye solution in PBS, and 0.5 µL was added
to the mixture just before the experiment. Thermal denaturation temperature was ranged from 25 ◦C
to 95 ◦C at a rate of 0.01 ◦C/s. Fluorescence intensity, with excitation at 465 nm and emission at 580 nm,
was collected at 1 ◦C intervals and analyzed with the correlative software Exor4 (Roche Applied
Science) and LightCycler Thermal Shift Analysis. Each sample was measured in quintuplicate and the
average arithmetic value was calculated.

4.9. Indirect ELISA

The specificity of M0 and selected indirect ELISA assessed the best mutant with indirectly coated
CD47ext/VHH complex in 96-well plates, where the bound VHH was detected using an HRP-conjugated
anti-His tag mAb. The CD47ext and BSA were diluted to 30 µg/mL and coated overnight at 4 ◦C.
After PBST wash, add 200 µL blocking liquid and incubated with 2.5 h at 37 ◦C. For binding affinity test,
add 100 µL VHH and incubated with 2.5 h at 37 ◦C. As for thermal sensitivity experiment, add 100 µL
VHH with diluted concentration 30 µg/mL and incubated with 2 h at 37 ◦C. After anti-His tag mAb
added, the plates were then stained with TMB (Solarbio®, Beijing, China), and the OD450 values
were immediately measured in Infinite M Nano+ (Tecan, Tianjin, China). For the thermal stability
assessment, the VHHs were treated with a different temperature for 10 min rather than diluted to serial
concentrations. BSA was used as negative control. Origin 2018 was used for the representation of all
ELISA data.

5. Conclusions

In summary, the combination of in silico screening of VHH mutants and experimental
measurements may be used for the estimation of the relative binding affinity maturation in similar
protocols for the design and optimization of VHHs as binders of protein targets. The fast and efficient
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approach designed in this study, which uses homologous modeling structure in ADAPT platform to
screen multiple mutations, is useful for increasing the binding affinity of a phage display VHH while
enhancing stability. These results will need to be assessed for other VHHs to evaluate their commonality.
With the development of computational power and algorithms’ optimization, there is still room for
further improvement in the accuracy and usability of virtual mutation screening. The structure features
of nanobody guaranteed in silico affinity maturation done in a fast and convenient way. Moreover,
the RMHDP utilized in optimizing binding sites identification was efficient and rational, which turns
out to be valid to affinity improvement. It reduced unnatural residues and additional calculation,
to overcome in silico affinity maturation period to 3~4 weeks from more than two months. These
two points form the foundation of our computational approach. The platform described in this study
for in silico nanobody affinity maturation based on homology modeling, the RMHDP and ADAPT
will be further optimized. The beneficial properties of nanobody provide rapid development of
nanobody-based high-affinity binders and offer new ideas for the treatment of “orphan” diseases and
explosive infectious diseases.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/20/17/
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Abbreviations

KD Dissociation constant
TM Melting Temperature
RMHDP Rational Mutation Hotspots Design Protocol
VHHs Single domain antibodies
CD47ext CD47 extracellular domain
mAbs Monoclonal antibodies
ScFvs Single-chain variable-fragments
ADAPT Assisted Design of Antibody and Protein Therapeutics
MD Molecule Dynamics
CDRs Complementarity determining regions
OD450 Optical Densities at 450 nm
aTTP acquired Thrombotic Thrombocytopenic Purpura
DOPE Discrete Optimized Protein Energy
MD Molecular Dynamics
BSA Bovine Serum Albumin
HRP Horseradish Peroxidase
NVT Number of particles, Volume, Temperature
NPT Number of particles, Pressure, Temperature
SPR Surface Plasmon Resonance
qPCR quantitative Polymerase Chain Reaction

References

1. Barclay, A.N. Signal regulatory protein alpha (SIRPalpha)/CD47 interaction and function. Curr. Opin.
Immunol. 2009, 21, 47–52. [CrossRef] [PubMed]

2. Zhang, L.; Huang, H. Targeting the Cancer Biomarker CD47: A Review on the Diverse Mechanisms of the
CD47 Pathway in Cancer Treatment. Anticancer Agents Med. Chem. 2016, 16, 658–667. [CrossRef] [PubMed]

http://www.mdpi.com/1422-0067/20/17/4187/s1
http://www.mdpi.com/1422-0067/20/17/4187/s1
http://dx.doi.org/10.1016/j.coi.2009.01.008
http://www.ncbi.nlm.nih.gov/pubmed/19223164
http://dx.doi.org/10.2174/1871520615666151008123223
http://www.ncbi.nlm.nih.gov/pubmed/26446381


Int. J. Mol. Sci. 2019, 20, 4187 16 of 19

3. Ngo, M.; Han, A.; Lakatos, A.; Sahoo, D.; Hachey, S.J.; Weiskopf, K.; Beck, A.H.; Weissman, I.L.; Boiko, A.D.
Antibody Therapy Targeting CD47 and CD271 Effectively Suppresses Melanoma Metastasis in Patient-Derived
Xenografts. Cell Rep. 2016, 16, 1701–1716. [CrossRef] [PubMed]

4. Liu, J.; Wang, L.; Zhao, F.; Tseng, S.; Narayanan, C.; Shura, L.; Willingham, S.; Howard, M.; Prohaska, S.;
Volkmer, J.; et al. Pre-Clinical Development of a Humanized Anti-CD47 Antibody with Anti-Cancer
Therapeutic Potential. PLoS ONE 2015, 10, e0137345. [CrossRef] [PubMed]

5. Scully, M.; Cataland, S.R.; Peyvandi, F.; Coppo, P.; Knobl, P.; Kremer Hovinga, J.A.; Metjian, A.; de la Rubia, J.;
Pavenski, K.; Callewaert, F.; et al. Caplacizumab Treatment for Acquired Thrombotic Thrombocytopenic
Purpura. N. Engl. J. Med. 2019, 380, 335–346. [CrossRef] [PubMed]

6. Allegra, A.; Innao, V.; Gerace, D.; Vaddinelli, D.; Allegra, A.G.; Musolino, C. Nanobodies and Cancer: Current
Status and New Perspectives. Cancer Investig. 2018, 36, 221–237. [CrossRef] [PubMed]

7. Kandalaft, H.; Hussack, G.; Aubry, A.; van Faassen, H.; Guan, Y.; Arbabi-Ghahroudi, M.; MacKenzie, R.;
Logan, S.M.; Tanha, J. Targeting surface-layer proteins with single-domain antibodies: A potential therapeutic
approach against Clostridium difficile-associated disease. Appl. Microbiol. Biotechnol. 2015, 99, 8549–8562.
[CrossRef]

8. McCafferty, J.; Schofield, D. Identification of optimal protein binders through the use of large genetically
encoded display libraries. Curr. Opin. Chem. Biol. 2015, 26, 16–24. [CrossRef]

9. Tiller, K.E.; Tessier, P.M. Advances in Antibody Design. Annu. Rev. Biomed. Eng. 2015, 17, 191–216. [CrossRef]
10. Inoue, H.; Suganami, A.; Ishida, I.; Tamura, Y.; Maeda, Y. Affinity maturation of a CDR3-grafted VHH using

in silico analysis and surface plasmon resonance. J. Biochem. 2013, 154, 325–332. [CrossRef]
11. Park, S.G.; Lee, J.S.; Je, E.Y.; Kim, I.J.; Chung, J.H.; Choi, I.H. Affinity maturation of natural antibody using

a chain shuffling technique and the expression of recombinant antibodies in Escherichia coli. Biochem. Biophys.
Res. Commun. 2000, 275, 553–557. [CrossRef]

12. Cumbers, S.J.; Williams, G.T.; Davies, S.L.; Grenfell, R.L.; Takeda, S.; Batista, F.D.; Sale, J.E.; Neuberger, M.S.
Generation and iterative affinity maturation of antibodies in vitro using hypermutating B-cell lines.
Nat. Biotechnol. 2002, 20, 1129–1134. [CrossRef]

13. Sudha, G.; Nussinov, R.; Srinivasan, N. An overview of recent advances in structural bioinformatics of
protein-protein interactions and a guide to their principles. Prog. Biophys. Mol. Biol. 2014, 116, 141–150.
[CrossRef]

14. Yugandhar, K.; Gromiha, M.M. Computational Approaches for Predicting Binding Partners, Interface
Residues, and Binding Affinity of Protein–Protein Complexes. In Prediction of Protein Secondary Structure;
Zhou, Y., Kloczkowski, A., Eds.; Springer New York: New York, NY, USA, 2017; pp. 237–253.

15. Soler, M.A.; Fortuna, S.; de Marco, A.; Laio, A. Binding affinity prediction of nanobody-protein complexes by
scoring of molecular dynamics trajectories. Phys. Chem. Chem. Phys. 2018, 20, 3438–3444. [CrossRef]

16. Sirin, S.; Apgar, J.R.; Bennett, E.M.; Keating, A.E. AB-Bind: Antibody binding mutational database for
computational affinity predictions. Protein Sci. 2016, 25, 393–409. [CrossRef]

17. Pires, D.E.; Ascher, D.B. mCSM-AB: A web server for predicting antibody-antigen affinity changes upon
mutation with graph-based signatures. Nucleic Acids Res. 2016, 44, W469–W473. [CrossRef]

18. Kiyoshi, M.; Caaveiro, J.M.; Miura, E.; Nagatoishi, S.; Nakakido, M.; Soga, S.; Shirai, H.; Kawabata, S.;
Tsumoto, K. Affinity improvement of a therapeutic antibody by structure-based computational design:
Generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex.
PLoS ONE 2014, 9, e87099. [CrossRef]

19. Lin, S.G.; Ba, Z.; Du, Z.; Zhang, Y.; Hu, J.; Alt, F.W. Highly sensitive and unbiased approach for elucidating
antibody repertoires. Proc. Natl. Acad. Sci. USA 2016, 113, 7846–7851. [CrossRef]

20. Fennell, B.J.; McDonnell, B.; Tam, A.S.; Chang, L.; Steven, J.; Broadbent, I.D.; Gao, H.; Kieras, E.; Alley, J.;
Luxenberg, D.; et al. CDR-restricted engineering of native human scFvs creates highly stable and soluble
bifunctional antibodies for subcutaneous delivery. MABS 2013, 5, 882–895. [CrossRef]

21. Muyldermans, S. Nanobodies: Natural single-domain antibodies. Annu. Rev. Biochem. 2013, 82, 775–797.
[CrossRef]

22. Hamers-Casterman, C.; Atarhouch, T.; Muyldermans, S.; Robinson, G.; Hamers, C.; Songa, E.B.;
Bendahman, N.; Hamers, R. Naturally occurring antibodies devoid of light chains. Nature 1993, 363,
446–448. [CrossRef]

http://dx.doi.org/10.1016/j.celrep.2016.07.004
http://www.ncbi.nlm.nih.gov/pubmed/27477289
http://dx.doi.org/10.1371/journal.pone.0137345
http://www.ncbi.nlm.nih.gov/pubmed/26390038
http://dx.doi.org/10.1056/NEJMoa1806311
http://www.ncbi.nlm.nih.gov/pubmed/30625070
http://dx.doi.org/10.1080/07357907.2018.1458858
http://www.ncbi.nlm.nih.gov/pubmed/29658806
http://dx.doi.org/10.1007/s00253-015-6594-1
http://dx.doi.org/10.1016/j.cbpa.2015.01.003
http://dx.doi.org/10.1146/annurev-bioeng-071114-040733
http://dx.doi.org/10.1093/jb/mvt058
http://dx.doi.org/10.1006/bbrc.2000.3336
http://dx.doi.org/10.1038/nbt752
http://dx.doi.org/10.1016/j.pbiomolbio.2014.07.004
http://dx.doi.org/10.1039/C7CP08116B
http://dx.doi.org/10.1002/pro.2829
http://dx.doi.org/10.1093/nar/gkw458
http://dx.doi.org/10.1371/journal.pone.0087099
http://dx.doi.org/10.1073/pnas.1608649113
http://dx.doi.org/10.4161/mabs.26201
http://dx.doi.org/10.1146/annurev-biochem-063011-092449
http://dx.doi.org/10.1038/363446a0


Int. J. Mol. Sci. 2019, 20, 4187 17 of 19

23. Zavrtanik, U.; Lukan, J.; Loris, R.; Lah, J.; Hadži, S. Structural Basis of Epitope Recognition by Heavy-Chain
Camelid Antibodies. J. Mol. Biol. 2018, 430, 4369–4386. [CrossRef]

24. Mitchell, L.S.; Colwell, L.J. Analysis of nanobody paratopes reveals greater diversity than classical antibodies.
Protein Eng. Des. Sel. 2018, 31, 267–275. [CrossRef]

25. Yau, K.Y.; Dubuc, G.; Li, S.; Hirama, T.; Mackenzie, C.R.; Jermutus, L.; Hall, J.C.; Tanha, J. Affinity maturation
of a V(H)H by mutational hotspot randomization. J. Immunol. Methods 2005, 297, 213–224. [CrossRef]

26. Sulea, T.; Hussack, G.; Ryan, S.; Tanha, J.; Purisima, E.O. Application of Assisted Design of Antibody and
Protein Therapeutics (ADAPT) improves efficacy of a Clostridium difficile toxin A single-domain antibody.
Sci. Rep. 2018, 8, 2260. [CrossRef]

27. Hussack, G.; Riazi, A.; Ryan, S.; van Faassen, H.; MacKenzie, R.; Tanha, J.; Arbabi-Ghahroudi, M.
Protease-resistant single-domain antibodies inhibit Campylobacter jejuni motility. Protein Eng. Des. Sel. 2014,
27, 191–198. [CrossRef]

28. McMahon, C.; Baier, A.S.; Pascolutti, R.; Wegrecki, M.; Zheng, S.; Ong, J.X.; Erlandson, S.C.; Hilger, D.;
Rasmussen, S.G.F.; Ring, A.M.; et al. Yeast surface display platform for rapid discovery of conformationally
selective nanobodies. Nat. Struct. Mol. Biol. 2018, 25, 289–296. [CrossRef]
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