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Abstract: Cells are exposed to reactive oxygen species (ROS) as a by-product of mitochondrial
metabolism, especially under hypoxia. ROS are also enzymatically generated at the plasma
membrane during inflammation. Radicals cause cellular damage leading to cell death, as they
react indiscriminately with surrounding lipids, proteins, and nucleotides. However, ROS are also
important for many physiological processes, including signaling, pathogen killing and chemotaxis.
The sensitivity of cells to ROS therefore likely depends on the subcellular location of ROS production,
but how this affects cell viability is poorly understood. As ROS generation consumes oxygen, and
hypoxia-mediated signaling upregulates expression of antioxidant transcription factor Nrf2, it is
difficult to discern hypoxic from radical stress. In this study, we developed an optogenetic toolbox for
organelle-specific generation of ROS using the photosensitizer protein SuperNova which produces
superoxide anion upon excitation with 590 nm light. We fused SuperNova to organelle specific
localization signals to induce ROS with high precision. Selective ROS production did not affect cell
viability in most organelles except for the nucleus. SuperNova is a promising tool to induce locally
targeted ROS production, opening up new possibilities to investigate processes and organelles that
are affected by localized ROS production.
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1. Introduction

Reactive oxygen species (ROS) are a common byproduct of aerobic respiration and lipid
metabolism [1,2]. Moreover, ROS can be present at high levels in disease environments due to enzymatic
production by NADPH oxidation complexes (NOX) [3] and as a consequence of hypoxia [4,5]. The
interplay of ROS with hypoxia is especially relevant. ROS generation leads to local hypoxia by rapid
consumption of oxygen [6] and there is strong cross-talk in intracellular signaling in response to ROS
and hypoxia. Nrf2 is a major transcription factor upregulated in response to oxidative stress that
activates expression of genes carrying a specific antioxidant response element in their promoter [7,8].
However, Nrf2 expression is also controlled by hypoxia-induced factor (HIF), a transcription factor
responsive to hypoxia [9]. This makes it difficult to discern between ROS- and hypoxia-induced effects.
Since HIF potentiates the Nrf2 signaling pathway and there always is some background generation
of ROS, for example from metabolic activity by mitochondria [10], hypoxia may trigger a strong
antioxidant reaction. Particularly under inflammatory conditions, ROS synergize with hypoxia to
stabilize HIF [11] and upregulate its transcriptional activity [12,13]. In addition, cells are exposed
to ROS from the outside environment, e.g., from UV light, radioactive radiation and ozone. ROS
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and other radicals are generally short-lived species as they rapidly and indiscriminately react with
lipids, proteins, and nucleic acids [14–16]. Too high ROS levels are well known to trigger cell death via
caspase-mediated apoptosis or necrosis [17]. Prolonged elevated ROS levels have widespread effects on
general health and, for example, correlate with onset of frailty [18]. Cells evolved molecular mechanisms
in order to cope with ROS, including ROS-scavenging antioxidants and ROS neutralizing enzymes [15].
However, ROS are also needed for many physiological processes. In fact, many cellular processes and
signaling pathways strongly depend on ROS, like growth factor signaling [19], Src kinase activation [20],
chemotaxis [21,22], metabolic feedback regulation [23], induction of autophagy [24], inflammasome
formation [25], and tumor necrosis factor (TNF)-α induced apoptosis [26]. In the immune system, ROS
have many important functions, including killing of pathogens, antigen degradation and inflammatory
signaling to other cells of the immune system [7,27–30]. ROS are also a key regulator of antigen
(cross-)presentation [31–33]. In order to allow these physiological functions, cells should not completely
degrade and/or sequester ROS and have to cope with a certain level of radical stress.

Both the generation and functioning of ROS occur at distinct subcellular sites. Due to their
roles in aerobic respiration and lipid oxidation, mitochondria are exposed to relatively high levels of
ROS [34,35]. In immune cells and endothelial cells, NOX complexes can generate large amounts of ROS
at the plasma membrane and in the lumen of endosomes and phagosomes [3]. Comparatively little is
known about ROS in the endoplasmic reticulum (ER) or Golgi compartments, but it is suggested that
NOX activity and the concomitant change in pH play a role in disulfide bond formation during protein
folding in the ER, as well as glycan alterations and Ca2+ homeostasis in the Golgi apparatus [36,37].
The nucleus can be expected to be exposed to comparatively low amounts of ROS, as external ROS
have to diffuse first through the cytoplasm where they can react or be scavenged by antioxidant
mechanisms. Additionally, the nucleus is protected by superoxide dismutase 1 [15]. Thus, different
organelles are exposed to different levels of ROS and the sensitivity of cells to ROS-induced cell death
likely depends on the organelle that is exposed to ROS. However, in most experiments addressing
ROS, ROS are induced systemically (i.e., through the entire cell) by addition of compounds such as
tert-butyl hydroperoxide (TBHP), arsenic or iron to the culture medium. However, since the effects of
ROS likely depend on the subcellular location of ROS generation, a method that allows for targeted
production of ROS would be a valuable addition to the field.

In this study, we developed an optogenetic toolkit to induce ROS with organellar precision. We
used SuperNova, a monomeric genetically-encoded photosensitizing fluorescent protein derived from
KillerRed, which shows improved localization and does not perturb mitotic cell division [38–40].
The open structure of the β-barrel of SuperNova creates a water channel which connects to the
chromophore [39]. ROS (singlet oxygen and superoxide anion) are generated upon excitation of this
chromophore and can subsequently exit through the water channel. We generated constructs coding
for SuperNova fusion proteins targeted to mitochondria, endosomes, trans-Golgi network, nucleus
and ER. We verified the localization of these SuperNova fusion proteins to their target organelles by
microscopy. The effects of localized ROS production on cell viability were assessed to compare the
effects or radical stress in specific organelles. We found that cell viability was only affected upon ROS
induction in the nucleus, but not in other organelles, indicating that cells are particularly sensitive to
ROS in the nucleus. Our results show that our SuperNova fusion protein toolbox is a viable method
of inducing ROS with organellar precision and may aid in investigating the influence of hypoxia on
localized antioxidant responses.

2. Results

2.1. Targeting SuperNova to Specific Organelles

In order to enable the induction of radical stress at specific organelles, we targeted SuperNova
to designated subcellular sites by fusing it to proteins and targeting sequences that locate to specific
organelles (Figure 1). We fused SuperNova to the mitochondrial protein cytochrome c oxidase subunit
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8A (COX8), the luminal site of the endosomal protein vesicle associated membrane protein 8 (VAMP8),
the trans-Golgi network integral membrane protein 3 (TGON3), the signal sequence of the ER protein
calreticulin and to a nuclear localization signal (NLS) of human c-myc (PAAKRVKLD) [41].
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marker EEA1 was relatively low, because VAMP8 is also present on late endosomes [42]. Likewise, 
the colocalization of SuperNova-TGON3 with giantin was relatively low due to giantin being a 
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and therefore not only localize to the ER but also partially to the Golgi apparatus [46], which can 
explain the comparatively lower Pearson’s R value of ER-SuperNova. 

Figure 1. Schematic overview of SuperNova fusion proteins. Myc: myc-tag; COX8: mitochondrial
protein cytochrome c oxidase subunit 8A; VAMP8: endosomal vesicle associated membrane protein 8;
TGON3: trans-Golgi network integral membrane protein 2; Calreticulin: endoplasmic reticulum (ER)
protein; KDEL: ER-retention signal; NLS: nuclear localization signal. Molecular weights of the fusion
constructs are indicated.

To validate the correct localization of these SuperNova fusion proteins to the targeted organelles,
we performed confocal microscopy experiments in HeLa cells. In addition to the plasmids coding
for the SuperNova fusion proteins, mCherry-N1 and SuperNova-N1 plasmids (i.e., empty backbone
vectors) were used as controls, which code for untagged mCherry and SuperNova, respectively, that
locate uniformly in the nucleus and cytoplasm. The excitation and emission spectra of mCherry
overlap with those of SuperNova, but mCherry less efficiently induces ROS production upon excitation
than SuperNova [38]. Counterstains with organelle-specific antibodies were applied to confirm
the localization of the SuperNova fusion proteins. For all SuperNova constructs, they correctly
localized to the target organelles (Figure 2A), which was quantified by determination of the Pearson’s
colocalization coefficient between the SuperNova fluorescence and the antibody staining (Figure 2B). For
VAMP8-SuperNova, the colocalization with early endosomal marker EEA1 was relatively low, because
VAMP8 is also present on late endosomes [42]. Likewise, the colocalization of SuperNova-TGON3 with
giantin was relatively low due to giantin being a marker of cis- and medial-Golgi apparatus [43,44],
whereas TGON3 localizes to medial- and trans-Golgi apparatus [45]. KDEL-tagged constructs are
retrieved from cis-Golgi apparatus to the ER and therefore not only localize to the ER but also
partially to the Golgi apparatus [46], which can explain the comparatively lower Pearson’s R value
of ER-SuperNova.
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Figure 2. Localization of SuperNova fusion constructs. (A) Representative confocal images of HeLa
cells transfected with constructs encoding for SuperNova fusion proteins with appropriate counter
stains for the target organelles. DAPI is in blue. Cytosolic: SuperNova-N1. Scale bar: 15 µm. (B)
Pearson’s colocalization coefficients of the SuperNova fusion proteins with the organellar markers from
panel A. Three technical repeats, each dot represents a microscopy image.

2.2. Nuclear ROS Production Induces Cell Death

SuperNova and its precursor KillerRed are known to be able to induce cell death in a variety
of mammalian cell lines and Caenorhabditis elegans [40,47,48]. However, in these studies, they used
untagged probes that uniformly distributed through the cell or were targeted to mitochondria. In this
study, we compared the effects on cell viability upon radical stress induced by SuperNova targeted to
other organelles. First, we determined the transfection efficiencies using flow cytometry for constructs
coding for SuperNova targeted to mitochondria, endosomes, the trans-Golgi network, the nucleus
and the ER by means of fusion proteins. A gate for viable COS-7 cells was set using untransfected
COS-7 cells (Figure 3A), after which the percentage SuperNova-positive cells within this gate was
determined for each sample (Figure 3B). Depending on the experiment and the construct, we achieved a
transfection efficiency of 55%–80% in COS-7 cells (Figure 3C). We then evaluated the effects of targeted
ROS production on cell viability by using flow cytometry with Zombie Violet, a fixable live-dead
staining. Zombie Violet is an amine-reactive fluorescent dye that is only permeable in cells with
compromised membranes (Figure 3D). The transfected COS-7 cells were exposed to 590 nm light
for 24 h to activate SuperNova. The cells were stained directly after light exposure. Compared to
untransfected cells, exposure to 590 nm light was able to induce cell death for all constructs and this
was significant for SuperNova targeted to endosomes and the nucleus (Figure 3E). Cell viability was
already reduced at 1 h light exposure (the shortest time-point addressed) and did not significantly
differ from 24 h illumination, in line with the finding that SuperNova and KillerRed can rapidly induce
cell death within minutes to hours after light exposure [38,40]. Illumination of SuperNova targeted
to the nucleus also significantly increased cell death compared to mCherry-N1, which was used to
evaluate the effect of ROS production by conventional fluorescent proteins. When compared to the
dark condition, light exposure significantly induced cell death for all SuperNova constructs, except
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for SuperNova targeted to the ER (Figure 3E,F). SuperNova-induced ROS production caused the
largest increase in cell death when it was targeted to the nucleus (Figure 3E), despite having a lower
transfection efficiency than mCherry or cytosolic SuperNova (Figure 3C).
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Figure 3. SuperNova fusion construct expression levels and viability upon light exposure.
(A) Representative scatter plot of COS-7 cells. Polygon indicates gating to exclude debris from
cells. (B) Fluorescent intensity histograms of SuperNova in COS-7 cells expression SuperNova fusion
proteins after gating as shown in A. Dotted line indicates gating for SuperNova-positive cell population
based on background fluorescence of untransfected cells. At least 20,000 cells were included in each
measurement. (C) Percentage of COS-7 cells positive for SuperNova as shown in B, each dot represents
a technical repeat. Analyzed with paired one-way ANOVA with Tukey post-hoc test (** p < 0.01;
*** p < 0.001). (D) Representative fluorescent intensity histograms of COS-7 cells expressing SuperNova
fusion protein (cytosolic) after stimulation with 590 nm excitation light for 1, 4, or 24 h and stained
with the Zombie Violet cell viability dye. Dotted line indicates gating for Zombie Violet-positive
cell population based on background fluorescence of unstained cells (not shown). (E) Percentage
of cell death in COS-7 after stimulation with 590 nm excitation light for 24 h, each dot represents a
technical repeat. Control cells were kept in the dark for 24 h. At least 20,000 cells were included in each
measurement. Analyzed with unpaired one-way ANOVA with Dunnett post-hoc test comparing all
conditions to the untransfected cells and to mCherry-N1 (* p < 0.05; *** p < 0.001). (F) Table showing
analysis of data from panel E. Confidence intervals shown are 95% of average difference in cell death
(%) between dark and 590 nm light exposure. Analyzed with unpaired one-way ANOVA with Dunnett
post-hoc test (ns: not significant; * p < 0.05; ** p < 0.01; *** p < 0.001).
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Surprisingly, NLS-SuperNova already significantly reduced cell viability in absence of 590 nm
light exposure (dark condition; Figure 3E). A possible explanation for this is that the exposure of
NLS-SuperNova by the ambient (background) light in the cell culture room already sufficed for
induction of cell death. Although we took ample precautions to avoid unintended light exposure of
the cells in our experiments (culturing in dim conditions and covering of the cells whenever possible),
tube lights have dominant emission at the excitation peak of SuperNova (540–550 nm) and therefore
might have triggered cell death. In this case, at least a population of the cells would be highly sensitive
to light-induced cell death. As an alternative explanation for the loss of cell viability in the dark
condition, perhaps SuperNova can interact with a nuclear factor already in absence of light and this
might induce cell death. However, arguing against this explanation is the fact that expression of
untargeted SuperNova, which is small enough to passively enter the nucleus, did not affect cell viability
(Figure 3E). In any case, the excitation of NLS-SuperNova resulted in a significant loss of cell viability
compared to the dark condition (Figure 3E,F), supporting our conclusion that nuclear light-induced
radical stress induces cell death.

3. Discussion

In this study, we compared the effects on cell viability of radical stress at different organelles.
We developed an optogenetic toolkit to induce ROS with organellar precision based on the
superoxide-producing photosensitizing protein SuperNova fused to various organellar localization
motifs [38]. We found that excitation of SuperNova caused significant cell death in cells when it
was targeted to the nucleus, whereas targeting SuperNova to other organelles did not strongly affect
cell viability. This study contrasts other studies where activation of mitochondrial and untargeted
SuperNova and KillerRed were found to induce cell death [38,40,47] and this discrepancy may be
caused by a difference in excitation light intensity and/or cell type. The nucleus might be more
sensitive to radical stress than other organelles, as ROS can cause DNA damage and many antioxidant
mechanisms are preferentially located in the cytosol and mitochondria [15]. Additionally, nuclear ROS
may directly induce Bax-mediated apoptosis via activation of nucleophosmin [49,50].

As mentioned in the introduction section, there is a large overlap in antioxidant (Nrf2) and hypoxic
(HIF) signaling. Our optogenetic toolkit allows to better distinguish between these effects by producing
ROS within a target organelle without affecting the entire cell. An additional advantage of SuperNova
is that it yields great temporal control of ROS production at specific organelles [47,48,51]. To date, the
roles of ROS in endosomes [27,52] and mitochondria [7,27,53] are quite well studied, but knowledge
of their impact on other organelles is still limited. In addition, radical-inducing proteins such as
SuperNova provide new possibilities for the development of animal models for studying ROS in
diseases. Because SuperNova allows to kill specific cell types (using specific promotors), induce radical
stress at specific locations (using localized excitation light) and trigger sterile inflammation, it offers
new opportunities to study disease mechanisms, for example anti-cancer immunity and early onset
mechanisms of autoimmune diseases. Shirmanova et al. used KillerRed fused to the nuclear protein
histone 2B as well as to a mitochondrial targeting motif to study the effects of localized ROS production
in cancer radiation therapy in a mouse xenograft tumor model [54]. Teh et al. developed zebrafish
models expressing membrane-tagged KillerRed in the hindbrain and in the heart [55]. Shibuya et
al. demonstrated slower development of C. elegans larvae that expressed mitochondria-targeted
KillerRed in muscle tissue [48]. Williams et al. also developed a C. elegans model, but now expressed
KillerRed specifically in neurons [49]. In this study, activation of untargeted KillerRed resulted in
neuronal degeneration and cell death, whereas ROS production in mitochondria only caused organelle
fragmentation but did not affect viability [49]. Our data now also indicates that the targeting of
optogenetic sensitizers to the nucleus might be the most effective approach for light induction of
cell death.
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4. Materials and Methods

4.1. Cloning

The SuperNova plasmid was a gift from Takeharu Nagai (Addgene plasmid #53234). The construct
for cytosolic expression of SuperNova was constructed by replacing EGFP in pEGFP-N1 with synthetic
SuperNova fused to a C-terminal Myc-tag using restriction sites BamHI and NotI. Mitochondrial
targeting was achieved by inserting COX8A into the cytosolic SuperNova vector using restriction sites
XhoI and HindIII thereby tagging the C-terminus of COX8A with SuperNova. Endosomal targeting
was achieved by inserting VAMP8 into the cytosolic SuperNova vector using restriction sites HindIII
and BamHI, tagging the C-terminus of VAMP8 with SuperNova which results in luminal localization
of SuperNova. Trans-Golgi network targeting was achieved by inserting synthetic DNA coding for
TGON3 with N-terminal SuperNova into pcDNA3.1 (+) using restriction sites NheI and XbaI. Targeting
of the ER was achieved by inserting synthetic DNA coding for the signal sequence of calreticulin
(first 18 amino acids) with C-terminal SuperNova into pcDNA3.1 (+) using restriction sites HindIII
and XbaI. Additionally, an ER retention signal (KDEL) was added to the C-terminus of SuperNova.
Nuclear targeting was achieved by replacing EGFP in pEGFP-C1 with synthetic DNA coding for
SuperNova with an N-terminal c-myc nuclear localization signal (NLS) using restriction sites NheI and
HindIII. Additionally, the vectors encoding COX8A-, VAMP8-, NLS- and empty vector SuperNova
feature a myc-tag at the SuperNova C-terminus. All sequences and plasmid maps are shown in the
Supplementary Material. Plasmids have been deposited at Addgene.

4.2. Cells, Transfection, and ROS Induction

All experiments were performed in COS-7 cells (ATCC, Manassas, VA, USA; ref# CRL-1651),
except for the localization experiments which were performed in HeLa (ATCC; ref# CCL-2). COS-7
cells were cultured in complete DMEM containing glutamine, 10% fetal bovine serum and 1%
Antibiotic-Antimycotic. HeLa cells were cultured in complete RPMI containing 10% fetal bovine
serum and 1% Antibiotic-Antimycotic. Constructs mCherry-N1, SuperNova-N1, COX8-SuperNova,
VAMP8-SuperNova, SuperNova-TGON3, NLS-SuperNova and calreticulin-SuperNova-KDEL were
transfected of HeLa or COS-7 cells using Lipofectamine 3000 (Invitrogen by Thermo Fisher Scientific,
Waltham, MA, USA; ref# 3000-015) in Opti-MEM Reduced Serum Medium (Life technologies by
Thermo Fisher Scientific, Carlsbad, CA, USA; ref# 11058-021). To activate SuperNova, we cultured cells
in phenol-red free culture media and placed them under a 1.4 mW/cm2 590 nm LED array (LIU590A,
Thorlabs, Newton, NJ, USA) with diffuser (DG20-600, Thorlabs) at 37◦C, 5% CO2.

4.3. Microscopy

Localization experiments were performed in HeLa cells (5 × 104 cells/glass) 24 h post-transfection
seeded on ethanol-sterilized 12 mm microscopy glasses. 500 nM MitoTracker Deep Red FM (Thermo
Fisher Scientific, Waltham, MA, USA; cat# M22426) was added to COX8-SuperNova transfected cells
prior to fixation. Samples were stained as described previously [56] with mouse monoclonal anti-Myc
(sc-40; Santa Cruz, Santa Cruz, CA, USA), rabbit polyclonal anti-EEA1 (610456, BD Biosciences, Franklin
Lakes, NJ, USA), mouse monoclonal anti-Giantin (ALX-804-600, Enzo, Farmingdale, NY, USA), mouse
monoclonal anti-PDI (NB300-517; Novus Bio, Centennial, CO, USA) (all at 1:100 dilution v/v, except for
anti-Giantin 1:500 v/v) in combination with donkey anti-mouse Alexa488 (A21202; Thermo Fisher),
donkey anti-rabbit Alexa647 (A31573; Thermo Fisher), donkey anti-mouse Alexa647 (A31571; Thermo
Fisher) or donkey anti-rabbit Alexa647 (A21447; Thermo Fisher) (all at 1:400 dilution v/v). The cells
were fixed with mounting medium containing 4′,6-diamidino-2-phenylindole (DAPI; 0.1 µg/mL), 0.01%
Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and 68% glycerol in 200 mM sodium
phosphate buffer at pH 7.5 and imaged on a Leica SP8 confocal microscope (Leica Microsystems,
Wetzlar, Germany) using a Leica HC PL APO CS2 63x/1.2 water immersion objective.
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4.4. Flow Cytometry

Transfection efficiencies and cell viabilities were determined in COS-7 cells. Cells were transfected
with mCherry and SuperNova constructs in a 6-well plate (2.5 × 105 cells/well), trypsinized 24 h
post-transfection, washed and resuspended in 100 µL PBS for flow cytometry analysis with a BD
FACSVerse flow cytometer (BD Biosciences). Untransfected cells were used to apply gating and
to discriminate between SuperNova-positive and negative cells. For cell viability evaluation, the
culture medium of the cells was changed to phenol-red free prior to illumination of the SuperNova.
SuperNova was activated with 590 nm light for 24 h. Cells were collected in 96-wells v-bottom plates
by trypsinization after treatment and stained with Zombie Violet fixable viability dye (BioLegend,
San Diego, CA, USA; cat# 423113; 1:2000 dilution v/v). Cells were fixed in 4% PFA for 5 min, washed
with PBS containing 1% BSA and 0.05% sodium azide (PBA) and resuspended in 100 µL PBA for flow
cytometry analysis with a BD FACSVerse flow cytometer (BD Biosciences). Flow cytometry data was
analyzed using FlowJo X (FlowJo LLC, Ashland, OR, USA).

4.5. Statistical Analysis

The data of the transfection efficiency assay was analyzed using a paired one-way ANOVA with
post-hoc Tukey’s multiple comparisons test. The data of the viability assay was analyzed using a
one-way ANOVA with a post-hoc Dunnett’s multiple comparisons test. Two-sided p values < 0.05
were considered to be statistically significant (* p < 0.05, ** p < 0.01, *** p < 0.001).

5. Conclusions

The monomeric genetically-encoded photosensitizing fluorescent protein SuperNova was targeted
to mitochondria, endosomes, the trans-Golgi network, the nucleus and the ER by means of fusion
proteins. Illumination of these SuperNova fusion proteins expressed in COS-7 cells resulted in most
cell death when SuperNova was targeted to the nucleus compared to the other organelles. This finding
indicates that cells are particularly sensitive to ROS in the nucleus. The SuperNova fusion protein
toolbox enables to induce ROS with organellar precision and may aid in investigating the influence of
hypoxia on localized antioxidant responses.
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