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Abstract: Drug-induced liver injury (DILI) is a major factor in the development of drugs and the
safety of drugs. If the DILI cannot be effectively predicted during the development of the drug,
it will cause the drug to be withdrawn from markets. Therefore, DILI is crucial at the early stages of
drug research. This work presents a 2-class ensemble classifier model for predicting DILI, with 2D
molecular descriptors and fingerprints on a dataset of 450 compounds. The purpose of our study is
to investigate which are the key molecular fingerprints that may cause DILI risk, and then to obtain a
reliable ensemble model to predict DILI risk with these key factors. Experimental results suggested
that 8 molecular fingerprints are very critical for predicting DILI, and also obtained the best ratio
of molecular fingerprints to molecular descriptors. The result of the 5-fold cross-validation of the
ensemble vote classifier method obtain an accuracy of 77.25%, and the accuracy of the test set was
81.67%. This model could be used for drug-induced liver injury prediction.

Keywords: drug-induced liver injury; quantitative structure–activity relationship (QSAR); molecular
fingerprints; ensemble classifier

1. Introduction

New drug development was affected by many factors [1], which made 90% potential drugs failing
in the clinical trial phase [2]. Previous studies showed that drug efficacy and toxicity are the two
main causes of drug development failure [3], in which liver damage is the most important cause [4].
Therefore, in the practice of clinical medication, prevention of drug-induced liver injury is one of
the most important issues [5]. In the development of drugs, it is important to screen for effective
compounds in the early stages of drug development, and to exclude compounds with drug-induced
liver damage characteristics. In the past decades, many works have presented a number of methods to
assess the risk of drug-induced liver injury, however they are time-consuming and labor-intensive, and
always yielded unsatisfactory results [6]. Figure 1 shows the concept map of DILI modeling process.

In recent years, many machine learning methods have made great contributions to the prediction
of hepatotoxicity [7], especially the QSAR model, which has been widely used in liver toxicity
research [8]. Machine learning modeling for the prediction of DILI [9] was based on the structural and
physical properties of pharmaceutical compounds. The structural and physicochemical properties
of compounds can be calculated by molecular fingerprints or molecular descriptors, which have
been used for drug development and toxicity prediction [10]. Moreover, various QSAR models for
predicting hepatotoxicity have been reported, most of which use machine learning methods, but their
prediction performances are still unsatisfactory [11]. Ekins et al. adopted Bayesian classifier with 295
compounds as training set and 237 compounds as test set, and obtained an accuracy of 57%–59% on
the training set and an accuracy of 60% on the test set [12]. Liew et al. proposed an ensemble classifier

Int. J. Mol. Sci. 2019, 20, 4106; doi:10.3390/ijms20174106 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-5810-8159
http://dx.doi.org/10.3390/ijms20174106
http://www.mdpi.com/journal/ijms
https://www.mdpi.com/1422-0067/20/17/4106?type=check_update&version=2


Int. J. Mol. Sci. 2019, 20, 4106 2 of 12

based on support vector machine (SVM) and k-nearest neighbor (kNN), which achieved an overall
accuracy of 63.8% with five-fold cross-validation on 1087 compounds, and an accuracy of 75.0% on an
additional verification dataset of 120 compounds [6].
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This work implemented an improved strategy to develop a QSAR model for predicting
DILI in humans, with Food and Drug Administration (FDA)-approved drug labeling data [13].
The FDA-approved drug labeling is the authoritative document which comprehensively summarizes
drug safety information from clinical trials, post-marketing surveillance, and literature publications.
The set of drugs was recommended as the standard list for developing DILI predictive models [14].
Then, 12 types of molecular fingerprints and 7 molecular descriptors were used. Moreover, five machine
learning methods were adopted to predict the hepatotoxicity of compounds. Finally, an ensemble
system was built combining various molecular fingerprints, molecular descriptor subsets, and various
models generated by machine learning methods. Our model is primarily used for filtering out
compounds with potential hepatotoxic risks in the early stages of drug development before the
clinical phase.

2. Results

In this study, 12 molecular fingerprints and 9 machine learning methods were used to
predict drug-induced liver injury, generating 108 base classifiers, which were evaluated by 5-fold
cross-validation [15]. From the 450 compounds of this work, 50 compounds were randomly extracted
from the data set as an independent test data set, and other compounds as a training data set.
The cross-validation process was then repeated 5 times, where each of the 5 subsamples was used
exactly once as the training data. In addition, the whole process was repeated 1000 times in order to
reduce the randomness of predictions and accurately evaluate the performance of the model.

2.1. Parameter Selection for the Proposed Method

First, good classifiers with certain descriptors should be obtained by performing the 108 base
classifiers on the whole training dataset. The aim is to select top classifiers, which are then used to
build our proposed method. The results are shown in Table 1. It can be seen that 9 classifiers and 12
molecular fingerprints together produce 108 accuracies. From the Table 1, a set of top 5 classifiers
were obtained for each of the 12 molecular fingerprints. Then, for each base classifier, the number of
obtained top 5 classifiers with different fingerprint descriptor were counted. The number for XGBT is
10, 11 for CatBT, 10 for RF, 9 for GDBT, 9 for LGBT, 6 for ExtraTrees, 2 for AdaBT, 2 for LR, and 0 for
SVM. Therefore, top 5 base classifiers are XGBT, CatBT, RF, GDBT, and LGBT, which are then used to
build ensemble vote classifier. More details of performance information for 108 basic classifiers can be
referred to supplementary 2.
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Table 1. Performance Comparison of Base Classifiers on the Whole Training Dataset.

No Descriptor Base Classifier

LR SVM GDBT AdaBT XGBT RF ExtraTrees LGBT CatBT

1 AP2DFP 0.7222 # 0.6978 0.7322 0.7233 0.7222 0.7067 0.6944 0.6911 0.7278
2 Estate FP 0.7078 0.7044 0.7278 0.6811 0.7322 0.7433 0.7211 0.7233 0.7289
3 ExtendedFP 0.7789 0.7322 0.7511 0.7355 0.7556 0.7778 0.7333 0.7689 0.7933
4 FP 0.7133 0.6878 0.7500 0.7111 0.7478 0.7444 0.7056 0.7422 0.7811
5 GraphOnlyFP 0.7067 0.6689 0.7267 0.7056 0.7211 0.7345 0.7089 0.7178 0.7151
6 KRFP 0.7500 0.7344 0.7522 0.7211 0.7578 0.7811 0.7622 0.7611 0.7789
7 MaccsFP 0.7300 0.7045 0.7389 0.7256 0.7578 0.7722 0.7456 0.7589 0.7722
8 nAP2DFP 0.6933 0.6822 0.7144 0.6889 0.7078 0.7044 0.7055 0.7033 0.7033
9 nKRFP 0.7522 0.7056 0.7589 0.7356 0.7544 0.7733 0.7567 0.7545 0.7578
10 nSubstructreFP 0.7111 0.7033 0.7644 0.7111 0.7378 0.77 0.7355 0.7289 0.7633
11 PubchemFP 0.7278 0.6956 0.7522 0.7100 0.7389 0.75 0.7167 0.7322 0.7589
12 SubstructreFP 0.7300 0.7267 0.7500 0.7378 0.7244 0.7911 0.7700 0.7189 0.7622

Number (Top 5) 2 0 9 2 10 11 6 9 11
# The bolt numbers in each row denote the top 5 classifiers with the specific fingerprint descriptor.

After the top 5 classifiers were selected, the average accuracy of the five basic classifiers were
then calculated for each fingerprint. The details of the selected top 5 classifiers can be referred to
supplementary 3. Table 2 lists the average accuracy for each fingerprint, whose detailed information
can be seen in supplementary 4.

Table 2. Sorted Average Accuracies of the Top 5 Classifiers with Respect of Different Fingerprints.

NO Fingerprint Average Accuracy

3 ExtendedFP 0.7693
6 KRFP 0.7662
7 MaccsFP 0.7600
9 nKRFP 0.7598
4 FP 0.7531

10 nSubstructreFP 0.7529
12 SubstructreFP 0.7493
11 PubchemFP 0.7464
2 EStateFP 0.7311
5 GraphOnlyFP 0.7230
1 AP2DFP 0.7160
8 nAP2DFP 0.7067

The 12 molecular fingerprints were sorted in terms of the average accuracy of top 5 classifiers
in Table 2. First, the accuracy of the top 5 classifiers with the top 1 molecular fingerprints feature
(ExtendedFP) was selected. Then, another molecular fingerprint feature from top to low in Table 2 was
added each time, and then prediction results were achieved for the combined fingerprints. The process
was ran20 times and the average performance was obtained, as shown in Figure 2. From the Figure 2,
we can see that when the number of molecular fingerprints increased to eight, the maximum accuracy
was obtained, indicating that these eight molecular fingerprints are very important for the prediction
of drug-induced liver injury. Therefore, the first eight molecular fingerprints were considered for the
next step. The detailed information of finding the top fingerprints can be seen in Supplementary 5.

In order to improve the accuracy of the model, seven key physicochemical properties were used,
which were widely adopted in chemical toxicity prediction [6,11,12]. Then the weight of the molecular
descriptors and fingerprints was further investigated. Figure 3 illustrates the accuracy of model in
terms of the threshold of the weight. From Figure 3, it can be seen that the best weight is 7:3 to
tradeoff molecular fingerprints and molecular descriptors, The detailed information can be seen in
Supplementary 6.
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2.2. Performance of the Proposed Method

To integrate the advantages of various algorithms and fingerprints, several combination models
were built based on 108 base classifiers. First, 108 classifiers were sorted by accuracy. Then the top n
base classifiers with the highest accuracies were selected, whose average prediction probability was
used to re-predict liver toxicity. In this process, an optimal integration model of five base classifiers
was obtained. As expected, the ensemble model obtained higher accuracy than any base classifier.
In addition, almost the ensemble model performed better than single base classifiers in both sensitive
and specific. Due to the combination of diversity and independence of different models, the ensemble
model achieved better prediction performance. The best ensemble model consists of five base classifiers:
GDBT, XGBT, RF, LGBT, and CatBT, which results by 5-fold cross-validation achieved an accuracy of
77.25%, an SE of 64.38%, a SP of 85.83%, an AUC of 75.10%. The experimental results showed that the
ensemble method can improve the performance of hepatotoxicity prediction.



Int. J. Mol. Sci. 2019, 20, 4106 5 of 12

Experimental can objectively reflect the ability of the model to predict hepatotoxicity of compound.
On the independent test set the model achieved an accuracy of 81.67%, an SE of 64.55%, an SP of 96.15%,
an AUC of 80.35%, this result showed that our integrated model can effectively and stably predict
the liver damage of drugs. Table 3 lists performance comparison of 9 algorithms with 12 molecular
fingerprints on test set, and the detailed information can be seen in Supplementary 7.

Table 3. Performance Comparison of Base Classifiers on the Test Dataset.

Algorithms/
Fingerprints LR SVC GBDT ADB XGB Random Forest Extra Trees LGB CatB

AP2DFP 0.7000 0.6600 0.6200 0.5800 0.6800 0.6640 0.6480 0.6800 0.6360
Estate FP 0.6600 0.6800 0.7000 0.6800 0.7000 0.6880 0.7200 0.7000 0.7160

ExtendedFP 0.7800 0.7400 0.7000 0.7600 0.7400 0.7480 0.7360 0.6600 0.7800
FP 0.6600 0.7000 0.7440 0.6600 0.7000 0.7240 0.6760 0.7400 0.7320

GraphOnlyFP 0.6000 0.6000 0.6720 0.6400 0.7200 0.6840 0.6720 0.7200 0.6960
KRFP 0.7200 0.6400 0.7240 0.6600 0.7000 0.7840 0.7600 0.7400 0.7520

MaccsFP 0.7600 0.7200 0.7200 0.7000 0.7200 0.7520 0.7040 0.7200 0.7360
nAP2DFP 0.6600 0.6200 0.6360 0.6000 0.6600 0.7040 0.6600 0.6400 0.6880

nKRFP 0.6600 0.6200 0.7160 0.7400 0.7200 0.7520 0.7480 0.7000 0.7320
nSubstructreFP 0.7200 0.6400 0.6400 0.5400 0.6400 0.5920 0.6280 0.6200 0.6200

PubchemFP 0.7200 0.7600 0.7040 0.6200 0.7400 0.7760 0.7360 0.6600 0.7480
SubstructreFP 0.7400 0.7600 0.7200 0.7200 0.7000 0.7360 0.7280 0.6800 0.7440

3. Discussion

3.1. Comparison with Previous Methods on Different Datasets

Many methods have been developed for predicting drug-induced liver damage [9,12,16]. Table 2
lists the performance comparison of several methods on different datasets. From Table 4, although the
choices of data sets, data preprocessing and feature selection are different, the higher accuracy of our
model indicated that our model is more advantageous for drug-induced liver injury than other models.
Moreover, our model obtained a relatively high SP. Specificity reflects the correct identification of drugs
without drug-induced liver damage, which is an important indicator for evaluating drug-induced liver
injury classifiers.

Table 4. Performance Comparison of Several Hepatotoxicity Prediction Models.

Model Name No. of Compounds Test Method Q (%) SE (%) SP (%) AUC(%)

Bayesian [12] 295 10-fold CV×100 58.5 52.8 65.5 62.0
Decision Forest [9] 197 10-fold CV×2000 69.7 57.8 77.9 –

Naive Bayesian [16] 420 Test set 72.6 72.5 72.7 –

Our Method
450 5-fold CV×1000 77.25 64.38 85.83 75.10

Test set 81.67 64.55 96.15 80.35

Abbreviations: Q: accuracy; SE: sensitivity; SP: specificity; AUC: area under the curve.

3.2. Comparison with Previous Models on the Same Dataset

To make fair comparison with other methods, experiments of our method were implemented
on the same dataset of literature [14], which used a dataset [13] of 451 compounds, containing 183
most-DILI drugs and 268 no-DILI drugs. Our method used the same dataset [13], where the difference
is in that one most-DILI drug was ignored because in the DILIrank dataset, the most-DILI drug does
not have PubChem_CID. Therefore, our method used the dataset of 450 compounds, containing 182
most-DILI drugs and 268 no-DILI drugs.

In literature [14], authors adopted PaDEL-Descriptor software to obtain molecular descriptors.
and then a pattern recognition algorithm DF (http://www.fda.gov/ScienceResearch/BioinformaticsTools/
DecisionForest/default.htm) to build a DILI risk prediction model. Moreover, authors performed 5-fold

http://www.fda.gov/ScienceResearch/BioinformaticsTools/DecisionForest/default.htm
http://www.fda.gov/ScienceResearch/BioinformaticsTools/DecisionForest/default.htm
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cross-validations to estimate the model on the dataset, by running the model 1000 iterations. Finally,
the model achieved average prediction accuracy, sensitivity, specificity and Matthews correlation
coefficient (MCC) of 72.9%, 62.8%, 79.8%, and 0.432, respectively. Our method was implemented on the
same conditions of literature [14] and yielded average prediction accuracy, sensitivity, specificity and
Matthews correlation coefficient (MCC) of 76.9%, 62.2%, 87.0%, and 0.514, respectively. The prediction
comparison is listed in Table 5. From Table 5, we can get that our method performs better than Decision
Forest [14] in accuracy, specificity and Matthews correlation coefficient (MCC).

Table 5. Performance Comparison of Previous Models.

Model Name No. of Compounds Test Method Q (%) SE (%) SP (%) AUC (%) MCC (%)

Decision Forest
[14] 451 5-fold CV 72.9 62.8 79.8 – 51.4

Our Method 450 5-fold CV 76.9 62.2 87.0 74.6 43.2

Abbreviations: Q, accuracy; SE, sensitivity; SP, specificity; AUC, area under the curve; MCC, Matthews
correlation coefficient.

3.3. Molecular Descriptors and Fingerprints related to Hepatotoxicity

Molecular fingerprints are important features for drug-induced liver injury, which were calculated
using PaDEL-Descriptor software for compounds. PaDEL-Descriptor software can create a total of 12
molecular fingerprints, which outputs different fingerprint values for different compounds. The data
provided by the US Food and Drug Administration (FDA) was used to determine which molecular
fingerprints are more relevant for drug-induced liver injury. We calculate the exact value of a single
fingerprint and can determine this value for the field of drug-induced liver injury. Correlation size,
we can get the correlation between 12 molecular fingerprints and DILI from Table 2. We can see that
the fingerprint with the largest correlation for DILI is ExtendedFP, followed by KRFP, and the least
relevant is nAP2DFP. The information is important to drug developers.

From previous literature, it can be found that molecular descriptors are related to toxicity, which
have also been used for the prediction of drug-induced liver injury. The optimal weight of fingerprints
and molecular descriptors is 0.7, which indicates that fingerprints are more advantageous for predicting
drug-induced liver damage. Compared with the molecular fingerprint, the molecular descriptor has a
small contribution to the whole model, and the weight is only 0.3.

3.4. Applicability Domain of Model

The similarity measurement of our ensemble model is based on the transformation of chemical
information, represented by molecular symbols of compound, into useful mathematical numbers.
Description file of compound involving two-dimensional chemical structure was extracted from the
PubChem database by CID number. Then the structure information of the compound was encoded
by molecular descriptor [17]. The main difference between this and other methods is in that the
mathematical parameters can be used to characterize the molecular descriptors, and to calculate
the correlation between the descriptor values and biological activity [18]. Therefore, our model is
suitable for early drug design, particularly for screening and predicting compounds of drug-induced
liver injury.

4. Materials and Methods

4.1. Data Preparation

To develop reliable models for predicting human DILI risk, a set of 450 drugs was used which
was extracted from the DILIrank dataset [13], which containing 192 most-DILI and 312 no-DILI risk
drugs. In order to obtain better prediction, structure description file (SDF) was used, which was
obtained using PubChem CID number provided by DILIrank, for building our proposed model.
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The two-dimensional (2D) chemical structure description file of the 450 drugs were generated from
https://www.ncbi.nlm.nih.gov/pccompound through the PubChem CID number. Finally, 450 drugs
were obtained containing 182 positive samples and 268 negative samples with SDF files. Details of the
dataset are provided in Supplementary 1. We randomly divided 450 samples into nine equal parts,
eight of which were training sets and the rest one was an independent test set.

4.2. Calculation of Molecular Fingerprints

Twelve types of molecular fingerprints were used to indicate the chemical structural characteristics
of compounds. Table 6 summarizes the details of these molecular fingerprints. Molecular descriptors
are quantitative representations of structural and physicochemical features of molecules. Herein,
7 key physicochemical properties were adopted, including Ghose–Crippen log Kow (AlogP), molecular
weight (MW), the number of aromatic rings (nAR), the number of hydrogen bond acceptors (nHBA),
the number of hydrogen bond donors (nHBD), the number of rotatable bonds (nRTB), and the number
of rings (nR), which were widely adopted in chemical toxicity prediction [19–21]. These properties
formed as a set of molecular descriptors and were used as a part of the weight for model building.
All molecular fingerprints were calculated by PaDEL-Descriptor software (version 2.21) using the SDF
files of all compounds [22].

Table 6. Summary of the 12 Types of Molecular Fingerprints.

Fingerprint Type Abbreviation Pattern Type Size (bits)

CDK FP Hash fingerprints 1024
CDK Extended ExtendedFP Hash fingerprints 1024

CDK GraphOnly GraphOnlyFP Hash fingerprints 1024
Estate EstateFP Structural features 79

MACCS MaccsFP Structural features 166
Pubchem PubchemFP Structural features 881

Substructure Substructure Structural features 307
Substructure Count nSubstructure Structural features count 307

Klekota-Roth KRFP Structural features 4860
Klekota-Roth Count nKRFP Structural features count 4860

2D Atom Pairs AP2D Structural features 780
2D Atom Pairs Count nAP2DC Structural features count 780

4.3. Feature Selection

Features selection is an important step for the construction of model. In order to improve
the prediction accuracy of the model, some unimportant features were usually removed. In this
study, the accuracies of 12 molecular fingerprints through 9 basic classifiers were investigated, which
were sorted and those unimportant molecular fingerprints were removed. As a result, 8 molecular
fingerprints were obtained.

4.4. Model Building

4.4.1. Base Classifiers

The logistic regression (LR), support vector machine (SVM), random forest (RF), gradient boosting
(GDBT), Adaboost (AdaBT), Xgboost (XGBT), ExtraTrees, Lightgbm (LGBT), and Catboost (CatBT)
were adopted as base classifiers for our ensemble system. LR fits the data into a logit function, whose
purpose of performing logistic regression is to minimize the error between the tag value of training
data and the predicted value. SVM [23] maps the features of the input data to higher dimensional
spaces through several kernel functions to separate positive and negative instances. In this study,
a radial basis kernel function was used to construct the SVM model. GDBT [24] makes use of decision
trees as the base classifiers, which can apply steepest descent to minimize the loss function on the

https://www.ncbi.nlm.nih.gov/pccompound
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training data. Adaboost is to train different classifiers (weak classifiers) for the same training set,
and then combine these weak classifiers to form a stronger final classifier (strong classifier) [25].
During training, each weak classifier is trained in turn and their weight values are obtained, which are
constructed according to their accuracy, i.e., the weak classifier with higher accuracy will be assigned
greater weight. Xgboost uses clever penalization of the individual trees, and the trees are consequently
allowed to have varying number of terminal nodes [26,27]. RF [28] is an ensemble learning method
that operates through constructing a multitude of decision trees at training time and outputting the
class, which is the mode of the classes or mean prediction of the individual trees. ExtraTrees [29] is
essentially consists of randomizing strongly both attribute and cut-point choice while splitting a tree
node. Lightgbm [30] is mainly based on a single machine to use as much data as possible without
sacrificing speed, based on Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling
(EFB). CatBoost (categorical boosting) [31] is a library of gradient lifting algorithms that first randomly
sorts all samples and then takes a value for each of the categorical features, and the feature of each
sample is converted to a numeric type.

4.4.2. Ensemble Model

Ensemble vote classifier [32,33] combined similar or conceptually different machine learning
classifiers and tried to obtain better predictive performance than individual classifier alone [34–36],
via majority or plurality voting. In our study, soft voting was implemented, which predicted test
instances by averaging the class-probabilities of different classifiers. In particular, ensemble learning
methods tended to produce better results because of the significant differences between different
classifier models, which have been widely used in many fields, including toxicity prediction [6].

To build the ensemble system, first, dataset with instances encoded by each fingerprint was input
into each base type of classifiers. Therefore, 108 classifiers were built with 12 molecular fingerprints
based on 9 machine learning algorithms. To vote among the nine base classifiers, the top 5 base
classifiers with better prediction performance were obtained, similarly, the top 8 of 12 fingerprints
were obtained. Figure 4 shows the flowchart of the ensemble classifier system.
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Figure 5 shows the flowchart of ensemble model. First, the top 8 molecular fingerprints were
used as a subset, and 7 molecular descriptors as the second subset, using an ensemble vote classifier
method to calculate the weight ratio of molecular fingerprints and molecular descriptors. The default
threshold for our model was set to 0.5, which means that compounds with a hepatotoxic probability
greater than 0.5 will be classified as hepatotoxic, otherwise, nonhepatotoxicants.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 10 of 13 
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4.5. Performance Evaluation

For the purpose of making our model more reliable, randomized testing was used, which ensures
the robustness of the predictive model [17,37]. Because the distribution of our data is random, the matrix
of original independent variable was generated randomly. The prediction model was running several
times and average performance was obtained, which is to ensure that the model involving randomly
generated independent variable matrix is reliable.

Four indicators were used to assess the predictive performance of model [38]: accuracy (ACC),
the overall prediction accuracy of hepatotoxicants and nonhepatotoxicants; sensitivity (SE), the prediction
accuracy for hepatotoxicants; specificity (SP), the prediction accuracy for nonhepatotoxicants; the area
under the receiver-operating characteristic curve (AUC). These indicators were calculated as follows:

ACC =
TP + TN

TP + TN + FN + FP
× 100% (1)

SE =
TP

TP + FN
× 100% (2)

SP =
TN

TN + FP
× 100% (3)

where true positive (TP) is the number of the hepatotoxicants that are correctly predicted, true negatives
(TN) is the number of the nonhepatotoxicants that are correctly predicted, false positive (FP) is the
number of the nonhepatotoxicants that are wrongly predicted as hepatotoxicants, and false negative
(FN) is the number of the hepatotoxicants that are wrongly predicted as nonhepatotoxicants.

The AUC (area under curve) was calculated for the prediction ability of the model. ROC (receiver
operating characteristic curve) graphs are two-dimensional graphs that plotted curves of TP rate with
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respect of FP rate. ROC graph depicts relative tradeoffs between benefits (true positives) and costs
(false positives) [39]. The value of AUC is between 0.1 and 1, which can be used to visually evaluate
the quality of the classifier, i.e., the larger value of AUC illustrates that the model is better.

5. Conclusion

This paper adopted nine machine learning classifiers and 12 molecular fingerprints to predict
compounds, selected five top-level base classifiers to build an ensemble model, and finally got eight
molecular fingerprints with relatively large correlations with DILI. Our integrated model is superior to
a single classifier model. In addition, we also found that molecular descriptors related to drug-induced
liver injury from the literature can improve the performance of the model, and get the best weight of
molecular descriptors and fingerprints for DILI. The 5-fold cross-validation accuracy of the model is
77.25%, 64.38%, for SE, 85.83% for SP, and 75.10% for AUC. Our model also achieved good results on
independent test sets with an accuracy of 81.67%, SE of 64.55%, SP of 96.15%, and AUC of 80.35%.
Experimental results indicated that our ensemble model performs good in predicting drug-induced
liver injury, and outperforms other previous methods.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/17/
4106/s1.
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