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Abstract: Arrhythmogenic cardiomyopathy (ACM) is an inherited heart disease characterized by
sudden death in young people and featured by fibro-adipose myocardium replacement, malignant
arrhythmias, and heart failure. To date, no etiological therapies are available. Mutations in
desmosomal genes cause abnormal mechanical coupling, trigger pro-apoptotic signaling pathways,
and induce fibro-adipose replacement. Here, we discuss the hypothesis that the ACM causative
mechanism involves a defect in the expression and/or activity of the cardiac Ca** handling machinery,
focusing on the available data supporting this hypothesis. The Ca?* toolkit is heavily remodeled
in cardiomyocytes derived from a mouse model of ACM defective of the desmosomal protein
plakophilin-2. Furthermore, ACM-related mutations were found in genes encoding for proteins
involved in excitation-contraction coupling, e.g., type 2 ryanodine receptor and phospholamban. As
a consequence, the sarcoplasmic reticulum becomes more eager to release Ca*, thereby inducing
delayed afterdepolarizations and impairing cardiac contractility. These data are supported by
preliminary observations from patient induced pluripotent stem-cell-derived cardiomyocytes.
Assessing the involvement of Ca®* signaling in the pathogenesis of ACM could be beneficial
in the treatment of this life-threatening disease.

Keywords: arrhythmogenic cardiomyopathy; desmosomes; plakophilin-2; type 2 ryanodine receptors;
phospholamban; Ca?* sparks

1. Introduction

The heart is a highly specialized machine that requires fine regulation: intracellular changes
and cell-to-cell communication disturbances could destroy this balance. Depending on the type of
cardiac arrhythmia, a series of events may occur: intracellular dysfunction-tissue remodeling-impaired
cell-cell connection—electrical dysfunction. Loss of cardiac tissue integrity could be both a cause and
an effect of arrhythmic phenotype. A typical example is arrhythmogenic cardiomyopathy (ACM), a
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cardiac disorder in which mutations in proteins of the desmosome may be present, causing cell-to-cell
discontinuity, arrhythmic events, and myocardial fibro-adipose substitution [1-3].

Intracellular calcium (Ca®*) signals drive excitation-contraction (EC) coupling and are, therefore,
necessary for the heart to effectively pump blood into the pulmonary artery and aorta. It is, therefore,
not surprising that any defect in the Ca?* cycling machinery or in the complex network of Ca?*-related
proteins that maintain cardiac Ca?* homeostasis under tight control may severely compromise cardiac
function. Alterations or mutations in the Ca?* handling machinery have been associated with a
number of severe cardiac diseases, including cardiac hypertrophy, dilated cardiomyopathy, and heart
failure [4,5], and several inherited arrhythmia syndromes (i.e., Timothy syndrome, Brugada syndrome,
and early repolarization syndromes) [6-8].

Herein, we describe the emerging evidence in favor of Ca?* dysregulation as a primary (or
arrhythmia-causative) event in ACM. We discuss how the Ca?* cycling machinery could be rewired
into a pro-arrhythmogenic phenotype by some of the desmosomal mutations that are known to induce
ACM by causing cardiac tissue discontinuity. Furthermore, we illustrate the effect of mutations in
ACM causative genes that encode for crucial components of the Ca?* handling system.

2. Calcium Signaling and Cardiac Arrhythmias: A Tight Connection

Cardiac contraction is triggered by a transient increase in intracellular Ca?* concentration ([Ca?*];)
induced by membrane depolarization according to a process known as EC coupling [6,7,9]. Briefly,
as the action potential, triggered by an influx of sodium (Na*) via the voltage-gated Na* channels,
propagates along the T-tubules, membrane depolarization opens CaV1.2, which is the pore-forming
o-subunit of L-type voltage-gated Ca?* channels (VGCCs), thereby causing the influx of Ca®* into
the dyadic junction, which separates the sarcolemma from the closely apposed (~15 nm) junctional
sarcoplasmic reticulum (SR) [10] in ventricular myocytes [9]. Extracellular Ca?* influx causes a large
increase in local [Ca?*];, which activates a cluster (7—20) of type 2 Ryanodine receptors (RYR2) in a
process known as Ca?*-induced Ca?* release (CICR) and gives rise to significant Ca?* release events
from the junctional SR (called Ca®* sparks). The temporal summation of these local events by the
propagating action potential results in a regenerative Ca?* transient that is detected by troponin
C to initiate the sliding of the thick (myosin) and thin (actin) filaments, cell shortening, and hence
pressure development within each ventricle and ejection of blood into the circulation during cardiac
systole [6,7,9]. Subsequently, [Ca2t);
during cardiac diastole, which is essential to enable cardiac chambers to refill with blood. The increase
in [Ca®"]; is indeed short-lived as cytosolic Ca®* is extruded across the plasma membrane by the
Nat/Ca%* exchanger (NCX1) and the plasmalemmal Ca%*-ATPase (PMCA) and sequestered back into
the SR by the sarco-endoplasmic reticulum Ca?* ATPase 2a (SERCAZ2a) [6,7,9]. The Ca?* affinity of
SERCA2a is regulated by the phosphoprotein phospholamban (PLN), which increases or reduces
the pumping rate of SERCA2a depending on its phosphorylation state. In the dephosphorylated
state, PLN binds to SERCA2a and inhibits the Ca?* transport ability of the pump by reducing its
apparent affinity for Ca>*. However, when PLN is phosphorylated, it dissociates from SERCA2a,
thereby increasing the pump’s affinity for Ca?* and favoring relaxation [11]. PLN presents two sites
of phosphorylation: Ser16 for protein kinase A (PKA) and Thr17 for Ca?*/Calmodulin-dependent
protein kinase II (CaMKII) and protein kinase B (AKT) [12]. Importantly, 3-adrenergic stimulation
exerts a profound impact on cardiac Ca** handling by modulating CaV1.2, RYR2 and SERCA2a
activity. Accordingly, stimulation of 3-adrenergic receptors, e.g., with isoproterenol, engages PKA and
CaMKII. PKA, in turn, phosphorylates CaV1.2 and PLN, thereby increasing the amplitude of L-type
voltage-gated Ca?* currents and boosting SR Ca®* uptake. Furthermore, Bovo and colleagues recently
demonstrated that PKA-dependent phosphorylation also regulates RYR2-mediated SR Ca?* release
independently of PKA effects on SR Ca?* load [13].

Evidence that has emerged over the last 20 years about inherited mutations in genes encoding
for proteins involved in the regulation of Ca?" homeostasis has clearly showed how defects
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in intracellular Ca?* handling are associated with various forms of arrhythmogenic disorders,
including catecholaminergic polymorphic ventricular tachycardia (CPVT), Brugada syndrome, Timothy
syndrome, long and short QT syndrome [6-8]. These life-threatening diseases feature distinctive
electrocardiogram patterns, ventricular arrhythmias, and a high risk of sudden cardiac death [6-8].
The major genes responsible for such inherited arrhythmias are RYR2 (encoding for RYR2), CASQ2
(encoding for calsequestrin-2), and CACNAIC (encoding for CaV1.2) [6-8].

RYR2 receptors cluster into functional Ca?*-release units presenting a finite open probability
and are, therefore, able to mediate unsynchronized Ca?" sparks even at diastole, when Ca?* leaks
out of the SR [9,14]. While the Ca?* leak finely tunes the SR Ca?* concentration, a pathological
increase in the rate of Ca®* efflux from the SR is detrimental to the heart as it can deplete the SR
Ca’* content, thereby reducing the amplitude of voltage-dependent Ca?* transients and diminishing
force production [9,14]. In addition, the increased SR Ca?* leak during diastole can increase the
frequency of spontaneous Ca”* sparks, which can coalesce into a sub-sarcolemmal Ca?* wave cleared
by NCX1. This results in an untimely depolarizing (3 Na* in: 1 Ca?* out) inward current that
triggers delayed afterdepolarizations (DADs) and induces ventricular arrhythmia [9,14]. An increase in
RYR2-mediated Ca®* leak has been observed in failing and aging hearts due to an increase in the extent
of CaMKII-dependent phosphorylation [8,14]. Furthermore, a number of gain-of-function mutations
in RYR? increases the SR CaZ* leak in CPVT1, the autosomal dominant form of CPVT [15]. CPVT
is an inherited arrhythmia disorder featuring polymorphic or bidirectional ventricular tachycardia;
It arises in response to 3-adrenergic stimulation during exercise or acute emotional stress and may
lead to syncope and sudden cardiac death [7,8]. Arrhythmias in CPVT are induced by spontaneous
RYR2-mediated Ca?* release, which stimulates DADs to induce extrasystolic beats [8,15].

In turn, the recessive form of this pathology (CPVT2) has been associated with CASQ2 mutations [16,17].
Calsequestrin-2 (CASQ2) is a moderate-affinity, high-capacity SR Ca** binding protein that maintains
a reservoir of releasable Ca®* in close proximity of the luminal mouth of RYR2 pore, while preserving
low levels of free Ca2* [8]. In addition, CASQ?2 inhibits both Ca?*-induced and spontaneous RYR2
activation, thus acting as a negative regulator of SR Ca®* release [18]. Consistently, a number of
CPVT2-related mutations that increase CASQ2 proteolytic degradation, preventing its Ca?*-buffering
activity or impairing its ability to modulate RYR2 opening, were found to induce spontaneous Ca**
release, DADs, and, ultimately, ventricular arrhythmia during 3-adrenergic stimulation [6-8].

Pro-arrhythmogenic mutations may also target CaV1.2, which is the primary determinant of
L-type Ca* current (Ic, 1) in the ventricular myocardium and drives EC coupling by recruiting RYR2
through the CICR process. A missense mutation was reported at the cytosolic COOH-terminal of
CaV1.2, resulting in impaired voltage-dependent inactivation in Ic, 1, and thereby causing an aberrant
increase in [CaZ*]; and DADs in Timothy syndrome [7]. This is a rare (< 30 patients around the world),
multisystem disorder characterized by cardiac, hand/foot, facial, and neurodevelopmental features
that can cause the patient’s death by inducing 2:1 atrioventricular block, QT prolongation in the ECG,
and ventricular tachyarrhythmia [7]. Novel genetic alterations in CACNA1C were also described by
Wemhoner and colleagues, causing typical long QT syndrome (LQTS) without any clinical features
of Timothy syndrome and leading to a gain-of-function activity of the channel combining different
mechanisms [19].

Conversely, a loss-of-function mutation in CACNAIC observed in 10-15% of patients caused a
dramatic reduction in CaV1.2-mediated Ca?* entry that was associated with ST-segment elevation and
increased risk of sudden cardiac death secondary to polymorphic ventricular fibrillation or tachycardia
in Brugada syndrome [20]. Likewise, CaV1.2-mediated Ca?* entry is dramatically reduced in short QT
syndrome (SQTS), another rare inherited disease characterized by a short QT interval combined with
life-threatening ventricular arrhythmias. The SQTS may arise as a consequence of three mutations that
target both the pore-forming o subunit (i.e., CACNAIC) and the ancillary {3 (i.e., CACNB2B) and 5 (i.e.,
CACN2D1) subunits [20,21].
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In addition, other genes related to abnormal Ca?"-machinery functioning can lead to cardiac
disorders. In particular, in the case of CPTV, three other genes have been linked to the pathology: CPVT3
to CPVTS5. In the case of CPVT3, the mutation is in the TECRL gene encoding for the trans-2,3-enoyl-CoA
reductase-like protein. Even though alteration in this gene seems to have overlapping clinical features
of both LQTS and CPVT, studies in patient induced pluripotent stem-cell-derived cardiomyocytes
(iPSC-CM) revealed smaller [CaZ*]; transient amplitudes, lower SR CaZ* stores, and elevated diastolic
[CaZ*];, consistent with the presence of a CPVT-related SR Ca?* leak [22]. CPVT4, on the other hand, is
caused by a heterozygous mutation in the calmodulin (CAM) gene (CALM1). In vitro assays have
demonstrated that the pathogenic mechanism relies on altered Ca?*-binding and leads to a defective
interaction between RYR2 and CAM [23]. Lastly, CPVTS5 is caused by a homozygous or compound
heterozygous mutation in the triadin gene (TRDN). Triadin is a transmembrane protein that forms
a quaternary complex with RYR2, CASQ?2, and junction proteins. In vivo expression of the mutant
protein by viral transduction in triadin knockout mice led to fragmentation, a reduction in contacts
between SR and T-Tubules, and an alteration in Ca?* release units’ (CRUs) structure, rendering hearts
more prone to ventricular arrhythmias [24].

3. Arrhythmogenic Cardiomyopathy

Arrhythmogenic cardiomyopathy (ACM) is a progressive heart disease characterized by fibrofatty
substitution of the right (ARVC), left (ALVC), or both cardiac ventricles. Clinical manifestations
include ventricular arrhythmias, impaired ventricular systolic function, heart failure, and sudden
cardiac death. ACM is a genetic disorder caused by mutations in genes encoding for desmosomal
proteins and non-desmosomal mutations, including genes coding for Ca* cycling regulators, growth
factors, and structural proteins [25-27] (Table 1). A causative genetic alteration can be identified in the
majority of cases [27], but different triggers, such as inflammation and excessive exercise, can worsen
the ACM phenotype. However, treadmill exercise has been shown to partially rescue the remarkable
dysregulation in gene expression observed in a mouse model of ACM carrying myocyte-specific
desmoplakin haplo-insufficiency [28]. Because of its multiple phenotypes and the variability in the
presentation, no single diagnostic test is available for ACM diagnosis. The diagnostic strategy consists
of the collection of several parameters, such as genetic, electrocardiographic, arrhythmic, morphological,
functional, and histopathologic abnormalities [29,30]. The population prevalence ranges from 1:1000
to 1:5000 and phenotypic expression is more common in males (2:1 to 3:1) [31]. Fibrofatty infiltration
and progressive loss of ventricular myocardium represent the typical tissue remodeling in ACM. The
infiltration has an epicardial to endocardial progression [32] and mainly involves the so-called ‘triangle
of dysplasia’ (right ventricle inflow tract, outflow tract, and apex). The left ACM form is characterized
by the involvement of the left ventricular wall with no alterations of right ventricle function [33,34],
while the biventricular form involves both ventricles and is characterized by systolic impairment and
biventricular dilation, with arrhythmic events that originate from either ventricle [34].

The molecular mechanisms associated with ACM pathogenesis have been linked to dysregulation
of the Wnt/p3-catenin pathway, which leads to enhanced adipogenesis (Figure 1). The Wnt pathway is
involved in cell proliferation, cell polarity, and cell fate determination during embryonic development
and tissue homeostasis. The canonical Wnt signaling controls the developmental gene expression
programs, acting through the transcriptional co-activator (3-catenin. In the absence of Wnt ligands,
the cytoplasmic -catenin protein is constantly degraded; instead, Wnt ligands inhibit 3-catenin
degradation, leading to its accumulation in the cytoplasm and translocation into the nucleus, where it
activates T cell/lymphoid-enhancing binding (Tcf/Lef) transcription factors. The 3-catenin stabilization
and translocation result in cell specification and differentiation [52]. The desmosomal protein
plakoglobin (PG) also plays a key role in ACM pathogenesis because of its high functional and
structural homology with (3-catenin, including its increased localization in the nuclear compartment in
ACM patients’ heart cells [53,54]. In the nucleus, PG may compete with 3-catenin activity, leading to the
suppression of Wnt signaling and the activation of the adipo-fibro-genetic transcription program [53].
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Table 1. Lists of genes involved in ACM pathogenesis.

50f19

Gene Coding Protein Locus Reference

Jur Junction Plakoglobin 17q21.2 [35]

desmosomal DSP Desmoplakin 6p24.3 [36]

mutations PKP2 Plakophilin 2 12p11.21 [37]
DSG2 Desmoglein 2 18q12.1 [38,39]

DSC2 Desmocollin 2 18q12.1 [40]

TMEM43 Transmembrane protein 43 3p25.1 [41]

LMNA Lamin A/C 1q22 [42]

DES Desmin 2935 [43]

non-desmosomal CTNNA3 Alpha-T-catenin 109213 [44]

mutations

PLN Phospholamban 6q22.31 [45]
TGFB3 Transforming growth factor-3 14q24.3 [27,46]

TTN Titin 2q31.2 [47]

o dmlmegidend oy,

CDH2 Cadherin C 18q12.1 [49]
RYR2 Type 2 ryanodine receptor 1g42-q43 [50,51]
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Figure 1. Molecular mechanisms associated with ACM pathogenesis. GPCR: G protein-coupled
receptors, YAP: yes-associated protein, PG: Plakoglobin, TCF/LEF: T-cell factor/lymphoid
enhancer-binding factor, Wnt: homologous wingless, APC: adenomatous polyposis coli, RYR2:
type 2 ryanodine receptor, CASQ2: calsequestrin 2, CACNAI1C: calcium voltage-gated channel
subunit alphal C, SR: sarcoplasmic reticulum, SERCA: sarco-endoplasmic reticulum Ca?* ATPase,
PLN: phospholamban, LTCC: L-type calcium channel. (—> Activation/Phosphorylation, S

Translocation, l Inhibition).
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It is important to note that the Wnt signaling does not work as an isolated pathway but is highly
interconnected to other signaling pathways, including YAP/TAZ signaling, that have also been linked
to ACM [55]. YAP and TAZ are two effectors of Hippo signaling, involved in cardiac development
and regeneration [56]. YAP has been shown to act as an inhibitor of transforming growth factor beta
(TGEF-p) signaling by interacting with Smad? and repressing the nuclear signaling [57]. Furthermore,
during the Wnt inactive state, YAP and TAZ are associated with (3-catenin into a destruction complex,
thereby facilitating its ubiquitin-mediated-degradation. Wnt stimulation induces the YAP and TAZ
dissociation from the destruction complex, resulting in (3-catenin release [58] (Figure 1).

Based on their coexistence in the same macromolecular complex, the physical interaction between
plakophilin-2 (PKP2) and the gap junction protein connexin 43 (Cx43) has been reported to highlight an
electrical pathogenic mechanism for ACM [59]. Thereafter, it has been described that the voltage-gated
Na* channel Nav1.5 is also present in this interaction network, called a ‘connexome’ [29]. Notably,
there is a reciprocal regulation between the components forming this structure. The Cx43 is responsible
for expression [60,61] and cell membrane localization of Nav1.5 [62]. Furthermore, a loss of PKP2
causes Cx43 remodeling, leading to an alteration of intercalated disc structures [59] and reduced Nav1.5
functionality, which results in a decreased Na™* current and slower conduction velocity [63].

Besides contributing to desmosome formation and cell signaling [64], PKP2 is also a regulator of
RhoA activity in desmosomal plaque assembles [65]. RhoA is a member of the GTPases family and
regulates gene transcription during cardiomyocyte differentiation through its downstream effector
kinases, ROCKs [66]. RhoA activity is often enhanced in the myocardial tissue of ACM patients
and correlates with PKP2/connexin43 regulation [67]. Moreover, in PKP2-mutated iPSC-CM, RhoA
signaling is suppressed, leading to the overexpression of target genes such as serum response factor
(SRF) and myocardin-related transcription factor (MRTF) and subsequent enhanced differentiation
into adipocytes [66].

Increasing evidence indicates a correlation between the expression level of specific miRNAs
and the regulation of cellular signaling involved in ACM pathogenesis. The miRNA profile of ACM
and normal control heart samples showed that miR-21-5p and miR-135b are differently expressed in
the two groups. MiR-21-5p has been linked to hypertrophic cardiomyopathy and fibrosis, dilated
cardiomyopathy [68], and heart failure [69]. It was also demonstrated that miR-21-5p inhibition
leads to reduced cardiomyocyte fibrosis and dysfunction in regulating the ERK/MAP kinase signaling
pathway [70]. Both miR-21-5p and miR-135b are involved in Wnt and Hippo signaling pathways [71,72],
and regulate the same target genes: BMPR2, associated with adipogenesis [73], and TGFBR2, which
contributes to the extracellular matrix production. Transcriptome analysis of knockdown PKP2 HL-1
cells revealed that miR-184, whose expression is progressively reduced in cardiac myocytes during
cardiac development, has a low expression in ACM. The downregulation of miR-184 is associated with
the upregulation of its target gene, peroxisome proliferator-activated receptor gamma [74], leading to
enhanced adipogenesis. Furthermore, the transcriptome characterization of ACM cardiac stromal cells
showed that miR-29b and miR-1183 [75], already associated with ACM and other cardiac diseases,
are upregulated compared to control cells. Notably, miR-29b plays a role in controlling the cardiac
expression of collagen, fibrillin, and elastin genes [76], and also act as a regulator of Desmocollin 2
(DSC2) [77].

Despite all the abovementioned pathways having been linked to ACM, a full understanding of
the molecular mechanisms leading to ACM pathogenesis is still missing, and other molecular players
are likely involved. These include the dysregulation of the Ca?* handling machinery that may occur as
a consequence of mutations that affect desmosomal genes (i.e., PKP2) or some of the genes encoding
for crucial components of the Ca?* cycling machinery (i.e., PLN and RYR?2).
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4. Arrhythmogenic Cardiomyopathy as Adhesion Disorder: Ca?>*-Dependent
Desmosomes’ Stability

Cell to cell junctions are essential to confer stability to tissues, especially those undergoing
continuous mechanical stretch, such as the heart and skin. The myocardium tissue integrity is based on
desmosomes, anchoring cell junctions that are assembled in strong and highly specialized complexes.
Loss or mutations of cell junctions are associated with human genetic diseases and ACM [39,53,78,79].
Desmosomes consist of specific cadherins, i.e., DSC2 and desmoglein-2 (DSG2), which act like a bridge
to join the lateral edges of neighboring cells. The desmosomal cadherins bind proteins of the armadillo
family, PG and PKP2, that are anchored to desmoplakin (DSP), the main intracellular component
responsible for the adhesion to the intermediate filament network [80].

Desmosomes undergo a transition from hyper- to low-adhesion states depending on extracellular
Ca?* levels. The Ca?*-independent adhesive state of desmosomes is referred to as hyper-adhesion-state
since it represents a higher-affinity and more stable binding ability both for desmosomes and adherens
junctions. During tissue remodeling, wounding, and cell migration, a lower-affinity adhesive state is
required and desmosomes adopt the Ca®*-dependent state, losing their organized structure [81-83]
(Figure 2). This transition does not involve protein composition rearrangement, but it can influence
the cadherin packing. Based on the nature of molecules underlying the desmosomal adhesion, both
the formation and disruption are Ca?*-dependent mechanisms [84-86]. The desmosomal cadherins,
DSC2 and DSG2, and the classical cadherin, E-cadherin, represent the Ca*-dependent components of
desmosomes and adherens junctions, respectively [87]. In vitro, the Ca**-dependent mechanism is
linked to the culture confluence state: in a confluent cell monolayer, desmosomes are Ca?*-independent
until the confluence is destroyed by wounding the cell sheet, thereby resulting in the propagation of
Ca?* dependence through the whole monolayer [81].

Ca**-independent state Ca**-dependent state

Extracellular space

Extracellular space

Intracellular space

Intracellular space|

Intermediate

DSG2
ca? =co Y re @ rxr2 > DSP flaments

Figure 2. Ca’-dependent desmosomes stability. Ca’": calcium, DSG2: desmoglein 2, DSC2:
desmocollin 2, PG: plakoglobin, PKP2: plakophilin 2, DSP: desmoplakin.

5. Desmosomal Mutations and Arrhythmogenic Cardiomyopathy: Derangement of the Ca?*
Toolkit as a Consequence Rather than a Pathogenic Defect

The mechanism that induces the reduction of adhesion during tissue remodeling is not completely
clear, but desmosomes can be totally internalized by cells. After the internalization, they are degraded
or disassembled in order to recycle their component proteins [88,89]. During the Ca?*-dependence
state, the desmosomes undergo a conformational rearrangement of the cadherin extracellular domains
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that induces a less organized structure and a more easily adhesive binding disruption [90]. The
molecular basis of the adhesion between desmosomes involves the activation of protein kinase C (PKC)
or inhibition of protein phosphatases [82,83]. The treatment with a low-Ca?* medium induces loss of
intercellular adhesion and the formation of half-desmosomes: the broken desmosomes are internalized
by a PKC-dependent mechanism and transported to the centrosome, where they undergo proteasomal
and lysosomal degradation [89]. The central role of PKC« is supported by experiments performed
on a mouse model lacking or overexpressing this kinase. Both in absence and following inhibition
of PKCa, the switch to Ca?*-dependence is blocked and hyperadhesive desmosomes lock the cells
together, preventing cell motility and epithelial migration. On the contrary, in mice overexpressing a
constitutively active PKCa, a rapid transition to a Ca?* dependence state make desmosomes weakly
adhesive, thus facilitating cell mobilization and promoting re-epithelialization [91].

Desmosomal mutations have been identified as a crucial determinant of ACM since the late
1980s [92]. A homozygous truncating mutation in the JUP gene, encoding for PG, was first identified
through genetic linkage analysis as a typical syndromic form of right-sided ACM, known as Naxos
disease [93]. Subsequently, genetic analysis revealed that another desmosomal gene, DSP, encoding for
desmoplakin, harbored a homozygous truncating mutation in ACM in patients with a cardiocutaneous
syndrome, named Carvajal syndrome [93,94]. These earlier discoveries sparked the search for causative
mutations in additional desmosome genes in ACM patients and led to the identification of either
missense or truncating mutations in the following desmosome genes: PKP2 (encoding for plakophilin 2),
DSC2 (encoding desmocollin 2), and DSG2 (encoding for desmoglein 2) (Table 1) [93]. It has been
estimated that mutations in desmosomal genes are present in approximately half of ACM patients,
with PKP2 being the most commonly affected gene in adults [93]. The molecular mechanisms whereby
PKP2 mutations cause ACM are yet to be fully clarified, but no change in the Ca?*-sensitivity of
the desmosomal junctions has been reported [93,95]. Conversely, desmosomal mutations can affect
the electrical activity of the heart by compromising the expression, localization, and/or function of
other components of the ‘connexome’, such as NaV1.5, the « subunit of voltage-gated Na* channels,
and Cx43 (see above). Intriguingly, a recent report demonstrated that the Ca?* cycling machinery is
defective in a conditional Pkp2 knockout mouse model [95].

PKP2

PKP2, encoding for plakophilin-2, is the most frequently mutated gene in ACM patients [37]. It
has also been linked to other inherited cardiac arrhythmia syndromes, such as Brugada syndrome [96],
idiopathic ventricular fibrillation, hypertrophic cardiomyopathy, and dilated cardiomyopathy, even
if with a low frequency [97]. PKP2 is expressed in both myocytes and non-myocytes [54]. The main
function of PKP2 is to guarantee mechanical stability during the desmosomal intermediate filament
assembly required for cell-to-cell contact. PKP2 is part of the so-called ‘connexome” [98]. Different
studies highlighted the consequent novel role for PKP2 in the intracellular signaling regulation,
electrophysiological and trafficking regulation, and the control of transcription processes [95].

Data from a cardiomyocyte-specific tamoxifen-activated Pkp2 homozygous knockout (Pkp2-cKO)
mouse model correlated the lack of PKP2 with transcriptional alteration of Ca?* homeostasis [95]. This
investigation reported the development of a cardiomyopathy of RV predominance that become evident
at 21 days and then progressed into biventricular cardiomyopathy and HF. Transcriptome analysis
showed that the transcripts of proteins involved in maintaining the intracellular Ca?* concentration
were downregulated in Pkp2-cKO hearts. The low level of transcripts relevant to Ca?* cycling, i.e.,
Ryr2, Ank2, Cacnalc, and Trdn, accompanied a decreased expression of corresponding proteins and
the impairment of the EC mechanism [95]. Accordingly, the downregulation of AnkB (encoded
by Ank2) and triadin (encoded by Trdn), which contribute to maintaining the structural integrity
of dyadic junctions [99,100], significantly reduced the distance between CaV1.2 and RYR2 [95]. In
addition, Pkp2-cKO-derived cardiomyocytes showed decreased I, density and a slower rate of
current inactivation, which is consistent with the reduced expression of Cacnalc [95]. It should,
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however, be pointed out that, although the peak Ca?* current was decreased, the total Ca®* charge
(i-e., the total amount of Ca?* entering the cell upon membrane depolarization) was unaltered as
compared to wild-type cardiomyocytes because of the slower inactivation rate [95]. Notably, the
loss of PKP2 was also correlated with a reduction in the SR Ca?* leak due to the downregulation
of both Ryr2 and Casq2 [95] (Figure 1). As a consequence, the SR Ca?* content was remarkably
increased in Pkp2-cKO cardiomyocytes, which exhibited an increase in the amplitude and frequency
of spontaneous Ca?* release events (due to RYR2 sensitivity to intraluminal Ca?* levels) and were
therefore more prone to release SR Ca?* during the EC coupling [95]. Accordingly, when Pkp2-cKO
cardiomyocytes were paced at increasing rates, they displayed both early and delayed after-transients,
which were sufficient to generate ventricular arrhythmogenic events during (3-adrenergic stimulation
with isoproterenol [95]. A more recent investigation focused on the early events driving the remodeling
of the Ca?* handling machinery in RV-derived PKP2-cKO (Pkp2-cKO-RV) cardiomyocytes isolated
14 days after tamoxifen injection [101], i.e., when cardiomyopathy was not evident yet. This report
revealed an increase in RyR2-dependent Ca®* release and RyR2-mediated Ca?* sparks due to the
remarkable elevation in the SR Ca?" load that was caused by a Cx43-dependent increase in membrane
permeability [101]. Notably, uncoupled Cx43 hemichannels may provide an alternative pathway
for extracellular Ca?* influx [102-104] and may, therefore, contribute to refilling the SR Ca?* store
in a SERCA2A-dependent manner. In addition, RyR2’s eagerness to release Ca?>* may be boosted
by the observed phosphorylation in Thr2809, an amino acid residue near the consensus sequence
for CaMKII and PKA [101]. These alterations were not detected in PKP2-cKO LV cardiomyocytes,
thereby suggesting that this asymmetric dysregulation of the Ca?* handling machinery precedes overt
ultrastructural alterations and manifestations of ACM.

The relationship between PKP2 and Ca?* machinery has also been highlighted by a recent
bioinformatic approach that took advantage of a database containing transcriptomic information from
human hearts, searching for coordinated transcription networks that are subjected to variations based
on PKP2 abundance. The results were then validated with the information deriving from Pkp2-cKO
murine hearts, thereby confirming the downregulation of RYR2, ANK2, and CACNAIC [105]. The
results of the combined data supported the idea of a correlation between the PKP2 expression and
the abundance of transcripts related to intracellular CaZ* homeostasis. In this context, mathematical
modeling confirmed that the PKP2-dependent downregulation of RYR2 and CASQ2 proteins is
sufficient to cause the decrease in SR Ca®* leak, which results in enhanced SR Ca?* loading and EC
coupling [95]. Accordingly, studies carried out on human iPSC-CM from a PKP2-mutated ACM patient
showed that they present an abnormal Ca?* handling capacity [106]. Of note, a recent investigation
in iPSC-CM suggested that the Ca?* handling machinery could also be affected by DSG2 mutations.
Accordingly, although the systolic and diastolic Ca?" levels were similar, human ACM iPSC-CM
exhibited spontaneous SR Ca?* release and DADs in both the absence and the presence of 3-adrenergic
stimulation [107]. This investigation did not evaluate the molecular expression of Ca?*-related proteins,
but further supports the notion that desmosomal mutations may affect the cardiac Ca* toolkit in ACM.

6. Non-Desmosomal Mutations and Altered Ca** Handling

As described in Section 2, mutations in Ca?*-related proteins may induce life-threatening inherited
arrhythmogenic diseases, such as CPVT. It is, therefore, not surprising that, besides desmosomal
mutations, ACM may also involve mutations that directly affect genes encoding for the Ca?* cycling
machinery, as suggested for RYR2 and PLN [12].

6.1. RYR2

Despite RYR2 being mentioned in most ACM databases as associated with this disease, not all the
scientific community agrees in considering it an ACM-causative gene. The phenotypic overlapping
with CPVT leaves doubts about the proper clinical classification of patients in whom mutations were
detected [108,109].



Int. ]. Mol. Sci. 2019, 20, 3986 10 of 19

The RYR2 gene encodes for a 565-kDa monomer that forms a homo-tetrameric structure associated
with FK506-binding proteins that stabilize the channel in a closed state and are important for cooperative
interactions among the RYR2 subunits. As previously mentioned, RYR2 is mostly known for its
involvement in EC coupling, releasing Ca?* from the SR and thus driving muscle contraction and heart
beating [9,110,111]. Mutations in the RYR2 gene have been reported in a family with an autosomal
dominant form of ACM, associated with polymorphic ventricular tachycardia (induced by exercise
stress testing) and a risk of sudden death. This condition was first described in 1988 and classified
as arrhythmogenic right ventricular cardiomyopathy type 2 (ARVD2): a clinically different form
because of its particular effort-induced ventricular arrhythmias, high penetrance, and 1:1 male: female
ratio among the affected subjects [112]. Four missense mutations of RYR2 were detected in ARVD2
patients [51] resulting in substitutions of highly conserved amino acids in the cytosolic portion of the
molecule involving two regions also associated with malignant hyperthermia or central core disease
and clustered in the corresponding skeletal muscle isoform, RYR1 [113]. The mutations occur in a
regulatory domain of RYR2 known to be involved in the interaction with FKBP12.6 and therefore in the
stabilization of a tetrameric structure [114]. A functional characterization of these mutations is yet to be
provided at the single-channel level, but the R176Q substitution responsible for ARVD2 corresponds to
the Argl163Cys substitution reported in RYR1, which dramatically increases its sensitivity to halothane
in malignant hyperthermia [115]. It is, therefore, predictable that the RYR2 mutations observed in
ARVD2 patients enhance Ca?* leakage and increase spontaneous SR Ca* release, thereby leading to
DADs and ventricular arrhythmia [51]. In agreement with this hypothesis, transgenic mice carrying
the R176Q mutation underwent ventricular tachycardia, which was associated with the appearance
of spontaneous SR Ca?* release events in both paced and non-paced isolated cardiomyocytes [116].
Notably, a recent structural investigation suggested that the R176Q mutation interferes with the
Ca?*-induced molecular rearrangement of RYR2, thereby increasing the fractional Ca®* release [117].
Besides being pro-arrhythmogenic, these mutations could promote mitochondrial Ca?* overload and
stimulate apoptosis [51], which has actually been observed in ARVD [118].

Six further rare missense variants have been identified in RYR2, mapping the locus to chromosome
1g42-q43 [50,51] in four independent families with the same clinical manifestations and close to CPVT
based on exercise-induced ventricular arrhythmias, high penetrance, and a 1:1 sex ratio. The described
variants affect different RYR2 domains [119]. Several mutations were found in the cytoplasmic region
of the protein (NH2-terminal), whose alterations are responsible for the gain of function of RYR2 and
are associated with hypertrophic cardiomyopathy and unexplained sudden cardiac death, as described
elsewhere [120-122]. Missense variants mapped to the transmembrane domain of the protein and
involved in the pore formation of the Ca?* channel have been associated so far with CPVT or sudden
death [119].

Two common single nucleotide polymorphisms in exon 37 of the human RYR2 gene, causing
non-conservative amino acid exchanges, i.e., G1885E and G1886S, have been associated with
arrhythmogenic right ventricular cardiomyopathy (ARVC) [123]. These polymorphisms, found
in a subgroup of patients in whom no known RYR2 mutations have been detected, are responsible for
creating a putative protein kinase C phosphorylation site known to be involved in cardiac contractility
and propensity to heart failure [124]. Genetic analysis and single-channel measurement of RYR2
activity revealed that the combination of these polymorphisms in a single individual led to a leaky SR
channel under diastolic conditions, thereby triggering arrhythmia and sudden cardiac death.

6.2. PLN

PLN is one of the main regulators of Ca?* cycling and an effector of B-adrenergic stimulation. PLN
is sensitive to PKA-dependent phosphorylation and PLN expression levels and its phosphorylation state
is a key to fine-tuning SERCA activity. The de-phosphorylated PLN interacts with SERCA, resulting in
a low Ca?* affinity state that limits Ca®* sequestration into SR lumen; when it is phosphorylated, the
inhibitory activity on SERCA is abolished and the affinity of SERCA to Ca?* is restored, so that a larger
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amount of Ca?* is pumped back into the SR [9]. Therefore, PLN is a crucial modulator of SR Ca?* content
and the major determinant of cardiac contractility and relaxation, depending on its phosphorylation
levels: increased phosphorylation improves contractility; Vice versa, the de-phosphorylation state
promotes heart failure [125].

Mutations in the human PLN gene were firstly associated with dilated cardiomyopathy (DCM) [126]
Patients, but have also been reported for patients diagnosed with ACM [45], as for the PLNArg14Del
mutation. This is a deletion of Arg-14 in the coding region and has been identified in a family in
which heterozygous carriers exhibited inherited DCM and died by middle age. Notably, a mouse
model with cardiac-specific expression of the heterozygous PLNArg14Del mutant recapitulates the
human phenotype, such as depressed cardiac function, fibrosis, and premature death [126]. At
molecular level, the PLNArg14Del mutation prevents the phosphorylated PLN from relieving SERCA
inhibition, thereby causing a reduction in SR Ca?* concentration [12]. Accordingly, when SERCA2 was
co-expressed with the PLNArg14Del mutant in HEK-293 cells, Ca?* uptake into microsomal vesicles
was severely impaired [126]. Likewise, SERCA2a-mediated Ca?* transport in cardiac homogenates
isolated from transgenic mice expressing the PLNArgI14Del mutation was impaired as compared to
wild-type samples [126]. Immunohistochemistry on samples derived from patients clinically diagnosed
with DCM or ACM and carrying the PLNArg14Del mutation further revealed that plakoglobin is
downregulated at cell junctions, mostly in ACM samples [45]. Moreover, a comparative analysis
performed on myocardial tissue from ACM and DCM patients showed that, in ACM patients, PLN
total mRNA, total and phosphorylated protein levels are significantly increased compared to healthy
controls and patients with DCM [127]. This finding suggests a role of PLN in the pathogenesis of
ARVC and indicates the existence of overlapping pathways with DCM [45].

The pathological mechanisms of the PLN mutation underlying ACM are still unclear, but, in
general, the PLNArg14Del mutation is likely to result in reduced SR Ca?* content. In agreement with
this hypothesis, a recent investigation revealed that the intracellular Ca?* dynamics were perturbed in
human iPSC-CM deriving from a patient affected by DCM and bearing the PLNArg14Del mutation [128].
Indeed, although the releasable SR Ca®* pool was significantly reduced, there was an increase in the
diastolic Ca®* levels, beating rate, and frequency of irregular Ca?* waves [128]. Interestingly, when the
PLNArg14Del mutant was introduced into a PLN null mouse model, it did not associate with SERCA2a,
but translocated to the plasma membrane to physically interact with the Na*/K* ATPase [129]. As a
consequence, cardiac contractility became insensitive to 3-adrenergic stimulation [126]. The causative
relationship between the PLNArg14Del mutation and ACM could be better interpreted by considering
another DCM-associated PLN mutation, i.e., R25C [130]. This mutation renders the heart susceptible to
ventricular arrhythmia because of a dramatic remodeling of the Ca* cycling machinery. Indeed, when
R25C-PLN was overexpressed in rat adult cardiomyocytes, it suppressed SERCA2a activity, thereby
reducing SR Ca?* content and the amplitude of voltage-dependent Ca?* transients, with impairment of
contractile activity following [130]. The resulting increase in diastolic Ca®* levels was found to recruit
CaMKII, which in turn phosphorylated RYR2 to induce an increase in SR Ca?* leakage, spontaneous
Ca?* sparks, and resultant arrhythmias [130]. Compared to desmosomal mutation carriers, PLN
mutation carriers more often showed T-wave inversion and are associated with additional left ventricle
(LV) involvement and low-voltage electrocardiogram. However, as reported for desmosomal mutation
carriers, PLN mutation carriers also showed RV disease, fibrofatty replacement, and arrhythmogenic
phenotype [45,131]. In addition, PLN mutation carriers are unlikely to show downregulation of
synapse-associated protein 97, which is commonly reduced in the ventricular sarcomeres of ACM
patients, while they do not present redistribution of glycogen synthase kinase-3 beta to the intercalated
disks, as reported in a desmosomal ACM cohort [132].

7. Conclusions

ACM is classified as a genetically determined cardiac disease that is clinically characterized by
arrhythmic events. Different pathways have been associated with ACM and were mostly correlated
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with enhanced adipogenesis and electrical dysfunction. Despite the identification of different molecular
mechanisms, a full understanding of the ACM pathogenesis is still lacking. Ca?* dysregulation can be
considered as a possible causative event based on its involvement in the cells” adhesive property and
its pro-arrhythmic ability. The desmosomes’ adhesive state is Ca?*-dependent and their structural
stability consists of a PKC-mediated mechanism. Moreover, defects in the CaZ* cycling machinery,
also identified among the ACM-causative genetic mutations, are responsible for dysregulated Ca?*
homeostasis, leading to cardiac arrhythmia. Of note, a loss of PKP2, most frequently mutated in ACM
patients, correlates with an alteration of Ca** machinery [95]. These observations raise the possibility
that the ACM-causative mechanism may involve a defect in the expression and/or activity of the
cardiac Ca?* handling machinery, not only limited to myocytes, ultimately leading to arrhythmias, but
also in the stromal compartment, which is actively involved in the pathological remodeling [54].

To date, pharmacological treatments generically targeting Ca>* homeostasis, such as calcium
antagonists and flecainide, are used to treat arrhythmias. However, confirming the involvement of
Ca’* signaling and understanding the molecular underpinnings of Ca?* signaling in the pathogenesis
of ACM could be pivotal to finding targeted therapies (cell-specific and/or molecule-specific) that could
be beneficial for the treatment of this life-threatening disease.
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