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Abstract: Endogenous somatostatin shows anti-secretory effects in both physiological and pathological
settings, as well as inhibitory activity on cell growth. Since somatostatin is not suitable for clinical
practice, researchers developed synthetic somatostatin receptor ligands (SRLs) to overcome this
limitation. Currently, SRLs represent pivotal tools in the treatment algorithm of neuroendocrine
tumors (NETs). Octreotide and lanreotide are the first-generation SRLs developed and show a
preferential binding affinity to somatostatin receptor (SST) subtype 2, while pasireotide, which is a
second-generation SRL, has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). A number
of studies demonstrated that first-generation and second-generation SRLs show distinct functional
properties, besides the mere receptor affinity. Therefore, the aim of the present review is to critically
review the current evidence on the biological effects of SRLs in pituitary adenomas and neuroendocrine
tumors, by mainly focusing on the differences between first-generation and second-generation ligands.

Keywords: somatostatin receptors; somatostatin receptor ligands; pituitary adenomas; neuroendocrine
tumors

1. Introduction

Somatostatin (somatotropin release–inhibiting factor, SRIF) is an endogenous, and ubiquitous
hormonal peptide [1] acting though a family of five G-protein-coupled receptors, named somatostatin
receptors (SST) 1 to 5, and represents one of the main physiological inhibitors of endocrine and
exocrine hormone secretion [2]. SRIF rapidly showed a widespread physiological activity related to
the diffuse expression of its receptors throughout the body [3,4]. In particular, SRIF is able to modulate
immune responses [5,6] and gastro-enteric-pancreatic cell activity [7]. It also shows neurotransmission
and neuromodulatory functions. Particularly, SRIF is mainly involved in learning and memory
processes [8–10], related to β-amyloid clearing [11,12], and in chronic pain modulation [13]. However,
while SRIF itself exhibits effects on neurotransmission, evidence for endogenous SRIF release from
SRIF-containing interneurons is lacking [14]. In the central nervous system (CNS), the characterization
of SST signaling is also complicated by the identification of a novel peptide, cortistatin, able to activate
all the five SSTs [15]. Subsequently, SRIF was recognized to reduce cell proliferation, increase apoptosis,
and inhibit angiogenesis in most tumor tissues [2–4,16]. Thus, the interest in the potential use of SRIF
as an anti-proliferative agent grew in recent years. This novel potential pharmacological use, despite
being preclinically tested with unique results in several human solid tumors, including breast and lung
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carcinomas and gliomas [3,4], acquired particular interest for neuroendocrine tumors, including both
pituitary adenomas and gastro-entero-pancreatic (GEP), as well as thoracic neuroendocrine neoplasms
(NENs). However, SRIF is not a useful tool in clinical practice due to both its short circulating half-life
(<3 min in human serum), resulting in the need for continuous parenteral administration, and to the
post-infusion rebound observed for a number of target hormones, such as growth hormone (GH) and
insulin [17,18].

Therefore, synthetic somatostatin receptor ligands (SRLs) have been designed based on the primary
SRIF structure, in order to overcome the above-mentioned drawbacks. To date, three SRLs have been
already approved in clinical practice due to anti-secretory activity in hormone-secreting pituitary
adenomas and NENs [19–22]. In particular, the SRIF analogues octreotide (OCT) and lanreotide (LAN)
have been approved by the US Food and Drug Administration (FDA) and the European Medicines
Agency (EMA) for treating patients with advanced GEP NENs, after two phase 3 clinical trials [23,24]
showed a significant increase in the progression-free survival (PFS) of treated patients. On the other
hand, pasireotide (PAS), which is a second generation SRL approved for treatment of GH-secreting
and adrenonocorticotropic hormone (ACTH)-secreting pituitary adenomas, is still under evaluation
for NENs.

NEN patients demonstrated a significant benefit from the use of OCT and LAN, which resulted in
a prolonged disease control associated with a satisfactory safety profile.

However, the wide range of cell types expressing SSTs, including tumors of non-endocrine
origin, and the observation that SRLs display anti-proliferative activity in preclinical models of these
tumors [3,25–28], open the possibility of a wider anti-tumor use for these compounds including in
patients suffering from non-endocrine neoplasia. However, no successful trials have been reported
with the use of SRLs as anti-proliferative agents in non-endocrine tumors’ patients so far.

Notwithstanding the negative results reported for non-endocrine tumors, several studies
thoroughly characterized the expression pattern of the five SST subtypes in human tumors and
the molecular intracellular mechanisms by which each of these receptors activates anti-secretory and
anti-proliferative signals in tumor cells.

1.1. Somatostatin Receptor Signaling

Soon after the molecular cloning of a family of five SSTs with a specific, although sometimes
overlapping, expression pattern, most studies focused on the identification of specific intracellular
signaling modulated by each receptor subtype. However, after more than 20 years from the first
receptor cloning, as far as most of the second messenger systems is concerned, most SST subtypes seem
to activate a similar signaling cascade (Figure 1 depicts the better characterized intracellular pathways
modulated by SSTs). In particular, all members of this receptor family are G-protein coupled receptors
(GPCRs) acting through inhibitory G proteins (Gi/Go) [29]. Belonging to the inhibitory receptors, SSTs
are able to inhibit cAMP production and PKA activation [30–32], which is associated with reduced
activity of voltage-dependent Ca++ channels. The latter activity was reported in different cell systems
to be direct, mediated by the α subunit of Gi/Go [33], or induced indirectly either by the reduced PKA
activity or by the βγ subunit-dependent activation of inward-rectifier K+ channels [4,34]. The net result
of these combinations of intracellular signals is plasma membrane hyperpolarization, which leads to all
the anti-secretory activity of SRIF, not only in endocrine cells but also in neurons [35]. This contributes
to the cognitive effects of this peptide in the CNS [8]. The same mechanisms are currently considered
the determinants of the anti-secretory activity of SRLs in hormone-secreting tumor cells, including
pituitary adenomas and NENs.

On the other hand, several intracellular pathways common to most SST subtypes were identified
with regard to their anti-proliferative effects. In particular, the activation of these receptors mainly
exerts cytostatic effects due to the up-regulation of cyclin-dependent kinase (CDK) inhibitors (either
p21cip1/Waf1 or p27kip2, according to the cell types analyzed) [36–39] or the zinc finger protein (Zac1) [40].
Of note, the observed up-regulation of both CDK inhibitors and Zac1 depend on the modulation of
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MAP kinase activity, which is one of the main pathways controlled by tyrosine kinase receptors to
induce cell proliferation [39,41–45].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 31 
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monophosphate (cAMP) levels; ii) the inhibition of voltage-dependent Ca2+ channels; and iii) the 5 
activation of outward K+ channels, leading to cell membrane hyperpolarization. (B) 6 
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Figure 1. Diagram of the main intracellular signaling pathways triggered by agonist binding to
somatostatin (SRIF) receptors to exert anti-secretory and anti-proliferative effects. (A) Anti-secretory
activity of SRIF is regulated by: i) the inhibition of adenylyl cyclase (AC), lowering cyclic adenosine
monophosphate (cAMP) levels; ii) the inhibition of voltage-dependent Ca2+ channels; and iii) the
activation of outward K+ channels, leading to cell membrane hyperpolarization. (B) Anti-proliferative
effects of SRIF are mediated by the activation of the protein tyrosine phosphatases Src homology 2
domain-containing protein tyrosine phosphatase 1 and 2 (SHP-1 and SHP-2) and the protein tyrosine
phosphatase receptor type J (PTPRJ). SHP-1 triggers intracellular pro-apoptotic signals involving the
induction of p53 and Bax, while SHP-2 activates the tyrosine kinase Src that induces the phosphorylation
of PTPη, which, in turn, dephosphorylates PI3K/Akt and ERK1/2, impairing cell proliferation. Green
arrows: Activated pathway. Red arrows: Inhibited pathways.

However, distinct mechanisms were observed after SST activation in different cell systems,
which causes either inhibition or activation of MAP kinases. In most studies, an inhibitory effect
was observed. In fact, the activation of all five SSTs leads to protein tyrosine phosphatase (PTP)
activation, as initially discovered by Pan & Coll. [46], to inhibit tyrosine kinase-related mitogenic
signaling pathways. Some PTPs were then associated with specific SST activity by biochemical
assays, including the cytosolic Src homology region 2 domain-containing phosphatase 1 (SHP1) and 2
(SHP2), and the human receptor-like tyrosine phosphatase PTPRJ (or, as shown in most of the studies,
its murine homologue PTPη) [47,48]. In primary cultures of GH-secreting and non-functioning pituitary
adenomas, LAN induces anti-proliferative activity through the induction of a PTP activity [49,50], while
OCT triggers SHP1 activity in GH4C1 rat pituitary adenoma cell line [51]. SHP1 and/or SHP2 activities
are also induced by SST1 [52,53], SST2 [54,55], SST3 [55], and SST4 [55,56], while PTPη is activated
by SST1, SST2, and SST5, as shown in cells endogenously expressing the different SST subtypes [41].
The molecular mechanisms connecting SSTs and PTPs have not been completely clarified, but likely
are not directly induced by G protein activation and involve the modulation of different intracellular
transducers [47]. However, one of the main targets of the SRIF-induced PTP activity are the MAP
kinases ERK1/2, whose dephosphorylation leads to an inhibition of growth factor activity and cell
proliferation arrest [41,42,44,57,58]. Other studies reported that all SSTs can activate phospholipase C
(PLC) [59], which promotes inositol-1,4,5-trisphosphate formation and Ca++ release from intracellular
stores, and activates protein kinase C (PKC). This signaling causes the activation of MAPK pathway [60],
although SST1 and SST5-dependent anti-proliferative effects are observed in this situation due to the
ability of ERK1/2 to induce up-regulation of p21cip1/Waf1 [37]. It has to be remarked, however, that most
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of the studies showing an SRIF-dependent activation of the PLC/ERK1/2 pathway were performed in
heterologous SST-expressing cells. Therefore, the relevance of this evidence in human cells in vivo is
still unclear.

Lastly, SST2 and SST4, but not SST3, were shown to increase the activity of p38, which is another
MAP kinase family component mainly endowed with anti-proliferative and pro-apoptotic effects that
causes the overexpression of p21cip1/Waf1 and growth arrest [61].

Heterologous SSTs expression was also reported to induce pro-apoptotic effects [62]. In particular,
this was shown for SST3, which, when expressed in CHO-K1 cells, causes the activation of the
apoptosis-related proteins p53 and Bax [63]. Similarly, besides cytostatic effects, SST2 induces the
activation of pro-apoptotic signaling, through the inhibition of the anti-apoptotic factor Bcl-2 [64].
The signaling differences observed in different cell types, and, in particular, the different signaling
observed after SSTs transfection, support the notion that, besides the specific biochemical features of
receptors, the responses that can be obtained are also extremely dependent on the cell context where
the receptors are activated.

Another relevant pathway, related to SRIF anti-tumor activity, is its ability to directly inhibit
neoangiogenesis in different tumors [4], including those of a neuroendocrine origin [65].

This is mainly a direct effect on vessel formation, as demonstrated in in vivo studies [66], and
involved the activity of SST1 [67], SST2 [68], and SST3 [69]. The specificity of the SST-dependent
anti-angiogenic effect, when compared to the direct anti-tumor activity was demonstrated, by the
observation that it was, in most cases, independent of PTPs, but it involves the inhibition of cAMP
accumulation [70] and, more importantly, the activity of endothelial nitric oxide synthase (eNOS)
and the consequent generation of nitric oxide (NO) [69]. Importantly, the activation of all SSTs,
except for SST4, was shown to be able to inhibit the eNOS-dependent or neural NOS-dependent NO
production, independently of the mechanisms by which the enzyme was induced, which suggests
a direct modulation of their activity [71,72]. Conversely, truncated isoforms of SST5 (SST5TMD4),
recently identified in different tumor histotypes as possible inhibitors of canonical SRIF activity on its
receptors [73], were reported to stimulate the pro-angiogenic pathways. This results in an increased
lymphatic metastasis in breast cancer [74].

Lastly, it was reported that SST1, SST3, and SST4 activation leads to the inhibition of the Na+/H+

exchanger (NHE1), causing intracellular acidification [75], which may be responsible for anti-migration
activity observed by SST activation in several tumor cells [45]. In agreement with this observation,
SST1 activation was also reported to inhibit Rho GTPase, involved in the cytoskeleton reorganization,
cell adhesion, and cell motility, and regulated by NHE1 activity [76].

1.2. Somatostatin Receptor Homo-Dimerization and Hetero-Dimerization

Dimerization is a novel frontier in the regulation of the activity of GPCRs. In fact, this receptor
family activity is modulated by homo-dimerization or hetero-dimerization, the latter possibly occurring
between two GPCRs of the same or different families. While a variable degree of dimerization may
occur according to the GPCR family involved, this process can represent either a constitutive event,
occurring in the endoplasmic reticulum during receptor synthesis and representing a prerequisite
for their correct membrane insertion, or, in other situations, dimerization can be induced by ligand
binding [77]. It is currently accepted that heterodimerization results in the diversification of GPCR
functioning, the modification of ligand binding affinity, intracellular signaling, receptor internalization,
desensitization, and recycling [78].

After heterologous expression in both CHO-K1 and HEK-293T cells, SST2 and SST3 form
constitutive homodimers, which progressively dissociate in the presence of increasing concentrations
of SRIF, independently form the receptor concentration [79,80]. Conversely, in the same cell lines,
human SST5 does not form constitutive dimers, which are formed only after treatment with SRIF [81].
A different response was observed for SST1, which never forms homodimers [82].

More complex results were provided with regard to heterodimerization. Several pharmacological
evaluations showed different responses to SST agonists according to the receptor repertoires in a given
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cell, which is possibly dependent on the interaction between different receptor subtypes, although
not formally demonstrated. For example, in C6 glioma cells, natively expressing all SSTs but SST4,
all endowed with anti-proliferative activity via the activation of PTPη and the inhibition of ERK1/2,
the concomitant activation of SST1 and SST2 caused a synergistic cytostatic effect representing a possible
heterodimerization effect. This did not occur with SST2 and SST5, whose combined activation resulted
in a response resembling the SST5 individual effects [41].

More direct evaluations were also performed after cell transfection with individual receptors.
It was observed that complexes formed among SST subtypes are formed following specific structural
determinants, rather than occurring in the presence of random combinations. Thus, it was proposed
that these events are highly selective and not all the receptor dimer combinations are possible.
The first heterodimers observed are the complexes between SST2 and SST3 [80], and SST1 and
SST5 [83]. Immunoprecipitation studies in prostate carcinoma cell lines showed that SST1/SST2 and
SST2/SST5 heterodimers can be generated by natively expressed molecules. In these cells, receptor
complexes are constitutively present within plasma membrane and their formation rate is increased by
bispecific agonist binding (BIM-23704 and BIM-2324, respectively), which potentiates anti-proliferative
responses [84]. In some cases, SST heterodimerization subverts receptor functioning, since SST2/SST3

heterodimer formation causes loss of SST3 activity while SST2 function is not changed [80]. On the
other hand, SST1/SST5 dimers show higher affinity for SRIF as compared to individual receptors [83].
SST3 within dimers loses its internalization ability, conferring to SST2/SST3 heterodimers that increased
resistance to agonist-dependent desensitization [80]. More recently, co-immunoprecipitation studies
performed in MDA-MB-435S breast cancer cells, reported the formation of SST1/SST4 heterodimers in
basal condition, which was increased after treatment with SRLs. This resulted in a potentiation of the
anti-proliferative activity [85].

SST2/SST5 heterodimers are particularly relevant since these receptors are the target of the clinically
approved SRLs. In co-transfected HEK-293 cells, selective activation of SST2, but not that of SST5 or
the coactivation of both SST subtypes, was able to favor the association between these SST subtypes.
However, SST2 activation caused a higher inhibition of cAMP and a more potent modulation of
ERK1/2 and p27Kip1, which resulted in enhanced inhibition of cell proliferation, in the presence of
both receptors than in cells expressing SST2 alone [86]. Moreover, upon agonist-dependent activation,
monomeric SST2 rapidly desensitize due to β-arrestin binding. Heterodimers display destabilization of
the β-arrestin-receptor interaction, which increases the rate of the membrane recycling of internalized
receptors [86]. This mechanism was proposed as one of the molecular determinants for SRL effectiveness
in controlling pituitary tumors and the absence of tolerance seen in patients undergoing long-term
SRL administration.

SST functioning is also modified by dimer generation with components of other GPCR families,
including opioid [87] and dopamine receptors [88,89]. In particular, SST2 is able to heterodimerize with
the µ opioid receptor-1 (MOR1), after heterologous transfection in HEK-293 cells [87]. This event does
not change the signaling properties of the receptors but causes the desensitization and endocytosis
of both the components of the dimer in response to SRLs [87]. SST5 and dopamine-2 receptor (D2R)
interaction was demonstrated in co-transfected CHO-K1 cells. In the absence of ligand stimulation, these
receptors do not heterodimerize. However, in the presence of either SST-specific or D2R-specific ligands,
a significant association between the two receptor subtypes was observed [88,89]. This heterodimer
displays a completely different pharmacology as compared to individual receptors, with increased
(or decreased) affinity to SRIF in the presence of D2R agonists (or antagonists) able to potentiate
(or inhibit) the ability of SRLs to affect cAMP production [88]. More recently, heterodimerization
between SST5 and β1 adrenergic receptor (β1-AR), was also shown in co-transfected HEK-293 cells.
SST5/β1AR heterodimers, already detected in untreated conditions, were highly increased in the
presence of agonists for both receptors. However, the individual binding of β1-AR or SST5 caused
dimer dissociation. After co-treatment, β1-AR increase in cAMP production was the predominant
effect, while ERK1/2 activity was predominantly regulated by SST5 [90].
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Thus, heterodimerization among SSTs, or with other GPCRs, can represent a significant interfering
factor to be taken into account when patients are treated with ligands able to bind more receptors, and it
could explain the different tissue responses (including those of tumor origin) characterized by specific
receptors repertoire. Since the clinically approved SRLs (OCT, LAN, and PAS, see next paragraph)
display high affinity binding to multiple SSTs, and receptor repertoire of the target cells included the
presence of apparently off-target receptors able to heterodimerize with SSTs, which could dramatically
change the responses to these drugs. However, this issue has not yet been deeply analyzed and will
require further investigation in the coming years.

2. “Old” and “New” Somatostatin Receptor Ligands

As mentioned in the previous paragraphs, anti-secretory and anti-proliferative effects of native
SRIF are currently exploited using synthetic SRLs, among which OCT and LAN were the first drugs
clinically approved [18,91]. They are both small molecules (octapeptides), which retain the Cys–Cys
bridge present in native SRIF and then stabilizing the structure substituting a Tryptophan (Trp) with its
D-enantiomer (D-Trp). Therefore, these compounds show enhanced half-life compared to SRIF (about
2 h for OCT and 90 minutes for LAN) as well as lower clearance, which results in longer duration of
action and long-lasting biological activity [18,92]. Both compounds show a preferential binding affinity
to SST2. As for the other SST subtypes, OCT has moderate affinity for SST5 and a weak interaction
with SST3, while LAN shows a slightly more pronounced affinity to SST5. Of note, differently from
native SRIF, both octapeptides have a negligible binding to SST1 and SST4 (Figure 2) [93,94].Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 7 of 31 
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Figure 2. Octreotide and pasireotide binding affinity toward human somatostatin receptor subtypes.

OCT and LAN became clinically available in the last 30 years, with different formulation developed,
tested, and then approved by both EMA and FDA [95]. First, in 1988, a short-acting formulation of OCT,
administered subcutaneously (s.c.) or intravenously (i.v.), received approval for treating acromegaly
patients in Europe, while the long-acting repeatable formulation (LAR, long-acting repeatable) was
introduced and approved in 1995. The technology underlying OCT LAR formulation consists in a
depot preparation in which OCT molecules are encapsulated in microspheres of a biodegradable
polymer. The LAR formulation allows clinicians to treat patients with an intramuscular (i.m.) injection



Int. J. Mol. Sci. 2019, 20, 3940 7 of 31

every four weeks, instead of the standard three s.c. administrations/day required for the short-acting
drug. A single OCT LAR injection results in an initial peak within 1 hour of administration, with a
progressive decrease in the following 12 h, and a subsequent second-release phase showing a sustained
drug release reaching a plateau between days 14-42 [96]. Of note, the steady-state concentrations of
OCT in serum are reached after three LAR injections. Currently, OCT LAR is commercially available
in three different dosages (10, 20, and 30 mg), with a maximum allowed dose of 40 mg (two 20 mg
injections in acromegaly) every four weeks.

As far as LAN is concerned, the first approved formulation consisted in a sustained-release
formulation (LAN SR), developed using a microparticle-based delivery system. LAN SR is available as
a power for suspension for intramuscular injection at a dosage of 30 mg. Starting treatment schedule
is recommended as 30 mg/14 days, but subsequent injections may be given every seven to 10 days,
depending on patients’ responses. However, in 2001, another LAN formulation, LAN Autogel, has been
approved by EMA for treating acromegaly patients [95]. LAN Autogel represents the first available
sustained-release formulation based on self-assembling nanotube technology [97], available in prefilled
syringes (dosages 60-90-120 mg) administrated by deep s.c. injection every four weeks, even though
administration frequency can be modulated according to the patient’s response (i.e., every three to five
weeks) [98]. Therefore, the improved patients’ compliance, determined that, currently, LAN Autogel
has almost completely replaced the SR formulation in daily clinical practice. LAN Autogel has a
different release pattern than OCT LAR, since peptide monomers are slowly released by the nanotubes
after injection. In more detail, the drug pharmacokinetic is characterized by an initial acute increase of
serum LAN concentrations, which reaches a peak during day 1, followed by a gradual decrease during
the following four weeks [99].

Lastly, PAS represents a second-generation SRL. The molecule consists of a stable cyclohexapeptide
with a long half-life (about 24 h), synthetized based on the SRIF structure and showing high affinity for
multiple SSTs (SST5 > SST2 > SST3 > SST1). In detail, different from the first-generation SRLs, OCT,
and LAN, PAS shows a binding affinity in the low nanomolar range for SST5 (IC50: 0.2 nM), SST2 (IC50:
1 nM), and SST3 (IC50: 1.5 nM) (Figure 2) [100].

Since first-generation SRLs mainly target SST2, but different SST subtypes are heterogeneously
expressed in pituitary and neuroendocrine tumors, researchers aimed to generate a compound with
a more universal binding profile for SSTs, similar to that of native SRIF. Among a number of novel
compounds tested in vitro and described in the recent literature [28,101], PAS is the only SST pan-ligand
that has been approved by EMA and FDA for clinical use.

Currently, two formulations of PAS are available for clinical practice: a short-acting s.c. formulation
approved for treating Cushing’s disease, and a long-acting formulation (PAS LAR) for intramuscular
injection developed using the same technology than OCT LAR, which was approved for treating
Cushing’s disease and acromegaly [95].

Short-acting PAS is available as a solution for s.c. injection in three dosages (0.3 mg, 0.6 mg, and
0.9 mg), with a recommended starting treatment schedule of 0.6 mg twice a day. On the other hand,
PAS LAR is available as powder and solvent for deep intramuscular injection at different dosages
(20 mg, 40 mg, and 60 mg), with a recommended starting dose of 40 mg/four weeks and a maximum
allowed dose of 60 mg/four weeks. Studies in healthy volunteers show that PAS s.c. is rapidly absorbed,
with maximum plasma concentrations reaching in <1 h [102], while, similarly to that observed for
OCT LAR, PAS LAR exhibits an extended-release profile with an initial burst release, a subsequent
decline of plasma concentrations, and then another increase rising to a peak over approximately one
week and three weeks [103].

To summarize, PAS shows a pattern of binding affinity for SSTs similar to native SRIF compared to
first-generation analogs. However, despite the initial search for a compound able to closely mimic native
SRIF effects, and possibly overcoming its limitations (i.e., short half-life), a number of studies already
demonstrated that PAS has different functional properties compared to both SRIF and first-generation
SRLs when binding SSTs, and particularly SST2. These differences, going beyond the different binding
properties for membrane receptors, will be described in detail in the following chapter of the review.
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Differential Functional Properties of Somatostatin Receptor Ligands

First-generation and second-generation SRLs differ in their biological properties, which causes
different biological responses, including SST pathway activation and modulation of receptors’
phosphorylation, internalization, and trafficking.

As mentioned above, the first clear difference resides in a broader SST binding affinity of PAS
compared to both OCT and LAN [100]. Particularly, the significantly higher binding affinity of PAS for
SST5 results in a more potent activation of different intracellular pathways. In more detail, Lesche &
Coll. demonstrated that, in HEK 293 cells stably transfected with human SST5, PAS was superior to
OCT in decreasing intracellular cAMP levels and in the stimulation of ERK1/2 phosphorylation [104].
This evidence, derived from transfected cell models, is in line with subsequent preclinical studies
carried out in corticotroph pituitary cells (mainly expressing SST5 among all SST subtypes), which
show a greater efficacy of PAS, compared to first-generation SRLs, in the inhibition of basal and/or
CRH-stimulated ACTH secretion [105,106].

However, the differences between first-generation and second-generation SRLs go far beyond
the mere membrane receptor binding. The specific intracellular pathways activated by SRLs, as well
as their potency, is different in the different tumor types, depending on the specific SST distribution
pattern, as well as signaling elements, receptor desensitization, internalization, and cross talk [107,108].

Since SST2 is the SST subtype mostly expressed in the majority of pituitary adenomas and NENs,
and first-generation SRLs mainly target SST2, most studies focused on the differential activation of this
specific SST subtype when investigating the biological differences between PAS and the other SRLs.

In this context, a number of studies demonstrated that, in the same cell type, PAS may elicit
differential effects compared to both OCT, native SRIF, and SST selective ligands, when targeting SST2,
possibly due to the activation of different subsets of intracellular mediators [104,108–110].

This phenomenon, also named biased-agonism, depends on specific agonist-receptor interactions.
In this light, Cescato & Coll. observed that, in HEK 293 cells stably transfected with rat SST2 and
rat pancreatic AR42J cells, PAS is less potent than OCT in inhibiting intracellular cAMP production.
Furthermore, differently from OCT, it antagonizes SRIF modulation of intracellular Ca++ concentrations
([Ca++]i), and behaves as partial agonists for SRIF-mediated ERK1/2 phosphorylation [111]. These
data were in line with previous findings showing that, in HEK cells transfected with human SST2,
PAS induced a less potent cAMP synthesis inhibition and a lower ERK1/2 phosphorylation compared
to both OCT and native SRIF [104].

Despite SRIF, OCT, and PAS show similar binding affinity for SST2 (within the low nanomolar
range), PAS was reported to induce an SST2 phosphorylation pattern and trafficking rate, that were
clearly different to those caused by OCT and native SRIF [104,109,110,112]. In this context, similarly
to several other GPCRs, SST2 undergoes agonist-induced endocytosis following agonist binding.
The activated receptor is then phosphorylated by G protein coupled receptor kinases (GRKs) and,
subsequently, recruited by cytoplasmic proteins, named β-arrestins, which determines uncoupling
between the receptor and its related G proteins [113,114]. The receptor/β-arrestin complex is then
internalized by dynamin-dependent endocytosis. In more detail, regulation of SST2 involves the
phosphorylation of specific serine (Ser) and threonine (Thr) residues identified in the C-terminal tail of
the receptor. After SRIF and/or OCT stimulation, phosphorylation of Ser341, Ser343, Ser348, Thr353,
and Thr354 has been observed in rat SST2-transfected CHO and GH4C1 cells [115], while Ser341,
Ser343, Thr353, Thr354, Thr356, and Thr359 have been identified in HEK293 cells transfected with rat
or human SST2 [112,116]. Furthermore, an agonist-dependent SST2 phosphorylation of the four Thr
residues has been documented in rat pituitary GH3 cells transfected with rat SST2, rat insulinoma
β-cells (INS1 cells), and rat pancreas in vivo [110]. Of note, unlike SRIF and OCT, PAS stimulates only
phosphorylation of Ser341 and Ser343 residues of human SST2, which is followed by a partial receptor
internalization [104,116]. In this context, GRK2 and GRK3 have been pointed out as the receptor kinases
mainly involved in SST2 phosphorylation of C-tail Ser and Thr residues, since GRK2/GRK3 upregulation
results in an increased receptor phosphorylation both after OCT and PAS treatment [110,112].
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The differential SST2 phosphorylation induced by PAS, as compared to SRIF and/or OCT, results in
a striking different β-arrestin recruitment and receptor internalization rate. PAS causes a significantly
lower internalization of SST2 compared to both OCT and SRIF in HEK cells transfected with the human
receptor, as well as in rat cell lines and endocrine tissues (rat pituitary and pancreas) [104,110,116].
Another study confirmed that, compared to SRIF and/or OCT, the degree of SST2 internalization
following PAS application is smaller, both in terms of potency and percent maximal internalization
reached after receptor activation [109] (Table 1). These data on cell lines (SST2-transfected or
endogenously expressing the receptor) have been recently confirmed in an elegant study carried out on
human pancreatic neuroendocrine tumor primary cultures [117]. The authors observed that, differently
from OCT, PAS results in a rapid and transient internalization of SST2 followed by a persistent recycling
of the receptor at the cell surface. Based on our knowledge, there are no studies published so far
evaluating the role of PAS compared to OCT and/or native SRIF on SST2 internalization and trafficking
in primary cultures of somatotroph and/or corticotroph adenomas. This could be important to further
confirm the above reported findings in a reliable model of human pituitary adenomas.

Table 1. Trafficking properties of transfected human and rat somatostatin receptor subtype 2 (SST2)
after binding to endogenous somatostatin (SRIF), octreotide (OCT), and pasireotide (PAS).

SST2
Trafficking Properties Ligand Receptor Internalization

(EC50, nM)
Maximal Internalization

(% of total) a
Receptor Recycling

(min) b

hSST2 * SRIF 3.26 − n.a.
OCT 6.46 − n.a.
PAS 31.78 − n.a.

rSST2 ** SRIF 0.4 82.8 42.3
OCT n.a. n.a. n.a.
PAS 23.3 46.0 4.8

hSST2, human SST2. rSST2, rat SST2. EC50, half-maximal effective concentration. min, minutes. n.a. not assessed.
In most preclinical studies, pasireotide (PAS) was named as SOM230.* Data about hSST2 are reproduced from
Reference [102]. ** Data about rSST2 refers to Reference [107]. a Internalization of hSST2 is evaluated after 30 min
of SRIF, OCT, and PAS treatment at 1 µM concentration, while internalization of rSST2 is assessed after 90 min of
SRIF 100 nM and PAS 1 µM concentration. b rSST2 recycling was measured after 30 min of SRIF 100 nM and PAS
1 µM concentration.

However, in line with analysis of current data investigating the agonist-dependent receptor
internalization, multiple studies demonstrated that, after PAS binding, less β-arrestins are recruited
to the cell membrane compared to SRIF treatment, which results in a less stable complex with
SST2 [109,110].

Since β-arrestins play a pivotal role in the desensitization-internalization processes of GPCRs,
including SST2, the agonist-dependent recruitment of these molecules may impact receptor signaling
and drug efficacy. Our group recently demonstrated that β-arrestin expression correlates with
the anti-secretory efficacy of first-generation SRLs in GH-secreting adenoma, both in vitro and
in vivo [118,119]. In this light, the differential properties of PAS compared to both SRIF and
first-generation SRLs shed light on the importance of the agonist-induced receptor conformation in
affecting receptor signaling and regulation, besides and beyond agonist-binding affinity alone.

3. Comparison between First-Generation and Second-Generation Somatostatin Receptor Ligands
in Clinical Studies and Preclinical Models of Pituitary Tumors

3.1. Acromegaly

Acromegaly is a severe systemic condition mainly dependent on somatotroph pituitary adenomas.
It is characterized by high plasma levels of GH and IGF-1 leading to increased mortality and
morbidity [120]. Treatment of acromegaly aims to normalize GH and IGF-1 levels, which reestablishes
a normal life expectancy [120]. The first line treatment in most acromegaly patients is represented by
trans-sphenoid surgery since it provides instantaneous reduction of GH levels with low complication
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rates [121]. However, up to 50% of patients with macroadenomas do not normalize GH and/or IGF-1
levels, which, therefore, require medical adjuvant therapy [122,123].

To date, first-generation SRLs, OCT, and LAN represent the first line medical treatment of
acromegaly because of the predominant expression of SST2 on tumor pituitary cells [124]. However,
studies on long-term efficacy and safety of first generation SRLs demonstrated that only 30% to 40% of
patients achieve normalization of predefined GH and IGF-1 levels during long-term treatment [125],
even though a significant percentage of pituitary adenomas shows a variable degree of shrinkage
during long-term SRL treatment. Moreover, only a small subgroup of GH-secreting adenomas is
truly SRL resistant, mainly because SST2 expression is lacking or extremely low. In this context,
the second-generation SRL PAS, displaying increased affinity for SSTR5 and other SSTRs, may have
adjunctive effect over OCT or LAN.

The first in vitro study comparing the effect of OCT and PAS on GH secretion was performed
on GHRH stimulated primary cultures of rat anterior pituitary cells after 3 h of treatment with the
compounds [100]. This study showed that PAS-dependent GH reduction was three-fold to four-fold
higher compared to both SRIF and OCT, with a half-maximal inhibitory concentration (IC50) in the
sub-nanomolar range (0.4 ± 0.1 nM PAS vs. 1.5 ± 0.3 nM SRIF, and 1.3 ± 0.2 nM OCT). Moreover,
the same study compared the efficacy of OCT and PAS in the modulation of GH, IGF-1, insulin,
and glucagon levels in rat animal models, after both short-term and long-term treatment (1 hour to
126 days). OCT demonstrated to be slightly more effective than PAS in reducing GH secretion after 1
hour of treatment (median effective dose [ED50] 0.13 vs. 0.22 µg/kg), whereas PAS was more effective
than OCT after 6 h of treatment (ED50 23.7 vs. 5.5 µg/kg) demonstrating its prolonged biological action.
After 126 days of continuous infusion at stable dose (10 mg/kg/h), PAS also reduced IGF-1 levels by
75% compared with placebo-treated animals, while OCT only caused a 30% decrease of IGF-1 [100].

Different results were obtained in a subsequent in vitro study evaluating the effect of PAS, SRIF,
and OCT on GH secretion in primary cultures from rat pituitary cells, human fetal pituitary tissues, and
human GH-secreting pituitary adenomas [126]. After treatment of murine pituitary cells, no statistical
difference between OCT and PAS were observed as far as the inhibition of GH secretion (IC50 for
PAS and OCT: 1.2 and 0.8 nM, respectively). Apparently, in line with the latter finding, results on
human pituitary adenoma cell cultures (n = 6) demonstrated a superimposable effect of OCT and PAS
in inhibiting GH secretion after 20 h of treatment. However, a careful analysis of individual human PA
primary culture showed that PAS and SRIF inhibited GH secretion by more than 20% in five out of
six samples, while OCT was as effective as PAS (or SRIF) only in three out of six tumors. The lack of
statistical significance, as stated by authors, was likely due to the low number of samples analyzed [126].
In order to establish the prevalent SST subtype involved in PAS anti-secretory effect, the SST expression
profile was evaluated in the six human pituitary cultures by reverse transcriptase (RT)-PCR. SST2 was
expressed in all samples, while SST5 was expressed in only four out of six cultures. The effect of PAS in
inhibiting GH secretion by more than 20%, was observed in two SST5-negative samples suggesting,
for the first time, that PAS could drive its effect through SST2 despite its higher binding affinity for
SST5. However, the limited number of samples analyzed prevents the establishment of a conclusive
correlation between SST differential expression and the anti-secretory effects of PAS, even though these
results opened a new scenario because of their translational significance [126].

The role of SST2 as a mediator of a PAS anti-secretory effect on GH was confirmed in nine
GH-secreting pituitary adenoma primary cultures, analyzing the effect of 10 nM OCT, PAS, and SRIF on
GH release after 72 h of treatment [127]. It was reported that the three compounds inhibit GH secretion
in a superimposable manner in almost all tested cultures (SRIF 6/6, OCT 7/9, and PAS 8/9). Similar
to the study by Murray & Coll. [126], analysis of SST mRNA expression performed in seven of these
tumor samples showed a predominant, although variable, expression of SST2 and SST5. However,
apart from the previous study, a direct and significant correlation between SST2 mRNA expression and
the anti-secretory activity of both OCT and PAS was demonstrated [127]. No correlation between the
inhibitory effect of PAS on GH secretion and SST5 expression was found, despite the high binding
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affinity of this drug for this receptor subtype. This finding clearly suggest that the anti-secretory effect
of PAS on GH-secreting adenoma cell cultures could be achieved via SST2.

Subsequently, the effect of OCT and PAS on GH secretion was tested in a large number of
GH-secreting pituitary adenomas (n = 32) [128]. SST2 and SST5 (with the latter more expressed
than SST2) were the prevalent subtype expressed in GH-secreting pituitary adenoma cells, and
the treatment of primary cultures with 100 nM OCT and PAS at different time-points (4 and 24 h)
demonstrated superimposable effects of the two drugs in reducing GH secretion. Similar to GH
reduction, a comparable effect of both compounds in lowering [Ca++]i, which is a pivotal second
messenger involved in the regulation of hormone secretion, was reported, despite the number of OCT
responsive samples (15/21) being slightly higher than samples responsive to PAS (11/21).

In another study, comparing 33 primary cultures derived from human somatotroph pituitary
adenomas [129], GH levels after treatment with OCT and PAS were measured in correlation with the
SST expression profile of each adenoma. In detail, OCT and PAS (10 nM for 72 h) demonstrated an
overall comparable efficacy in GH reduction (36.8% vs. 37.1%, respectively). However, the analysis of
a large number of samples allowed the authors to subdivide the adenomas in subgroups depending
on their prevalent response to OCT or PAS, respectively. The PAS+ group, comprising six adenoma
cultures (18%), which showed a better response to PAS, and OCT+ group, in which five samples (15%)
showed a better response to OCT. SST2 and SST5 mRNA expression levels were correlated to the
drug-dependent inhibition of GH release demonstrating, as expected, a significant positive correlation
between SST2 expression and the anti-secretory activity of OCT. However, a slight, although not
significant, trend of correlation was also found between SST2 expression and PAS-induced inhibition
of GH secretion. Conversely, no correlation was found between SST5 expression and the anti-secretory
effect of both drugs. The expression of SST2 as well as SST2/SST5 ratio, were significantly lower
in PAS+ adenoma group, as compared to the other samples. However, among this group, higher
amounts of SST2 mRNA were detected in the samples displaying ≥ 50% of GH inhibition, compared to
samples with a lower response. Furthermore, a strong and direct correlation between the percentage of
GH decrease induced by PAS and OCT was found by using a pairwise comparison of the different
33 adenoma cell cultures (r = 0.829, p < 0.0001), which strengthens the observation of a prevalent
involvement of SST2 in mediating the biological action of both OCT and PAS [129].

All these studies demonstrated an overall comparable efficacy of the two drugs in reducing GH
levels in somatotropinomas in vitro. Moreover, based on direct evidence of a positive correlation
between SST2 mRNA expression and PAS efficacy [127,129], they highlighted a prevalent involvement
of SST2 in the clinical effects, of both OCT and PAS.

Based on these results, several clinical trials aimed to evaluate the efficacy of PAS in acromegaly
patients both medically naïve or non-responding to first generation SRLs (OCT and LAN), used as
first-line medical treatment. A prospective, randomized, double-blind study compared OCT and PAS
activity in 358 patients from 27 different countries [130], by enrolling medically naive acromegaly
patients with GH >5 µg/L or GH nadir ≥1 µg/L after an oral glucose tolerance test (OGTT), and IGF-1
above the upper normal limit. Patients were treated with PAS LAR 40 mg/28 days (n = 176) or OCT
LAR 20 mg/28 days (n = 182) for 12 months, which allows the possibility to increase the dose of both
compounds (PAS LAR 60 mg or OCT LAR 30 mg) after three and/or seven months, if GH values
were ≥2.5 µg/L and/or IGF-1 remain above the upper limit of normality. The main endpoint was the
achievement of biochemical control (GH <2.5 µg/L and normal IGF-1) after the 12th month. Results
demonstrated that the percentage of patients who achieved biochemical control was higher in the
PAS LAR treated group than in the OCT LAR group (31.3% vs. 19.2%, p = 0.007, 35.8% vs. 20.9%,
when including patients with IGF-1 below the lower normal limit). In more detail, 38.6% and 48.3% of
patients in the PAS LAR group achieved normal IGF-1 and GH <2.5 µg compared to 23.6% and 51.6%,
respectively, in the OCT LAR group (p = 0.002). Patients who did not achieve biochemical control
(31.0% of PAS LAR group and 22.2% of OCT LAR group) did not receive the recommended dose
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increase. The main adverse event was hyperglycemia, which shows a higher percentage of incidence
in the PAS LAR group compared to the OCT LAR group (57.3% vs. 21.7%).

These results represent the first clear evidence of a higher efficacy of PAS LAR over OCT LAR,
which allows PAS LAR to be considered a viable new treatment option for acromegaly [130].

In the same year, a randomized, clinical phase 3 trial comparing the effect of PAS with continued
treatment with OCT or LAN in patients with inadequately controlled acromegaly (PAOLA study) was
published [131]. Acromegalic patients, who were previously treated with 30 mg long-acting OCT or
120 mg LAN Autogel for ≥6 months as monotherapy, who did not normalize GH and IGF-1 levels
(5-point, 2 h of mean growth hormone concentration >2.5 µg/L, and IGF-1 concentration >1.3 times
the upper normal limit) were enrolled, and stratified according to the previous treatment (OCT or
LAN) and GH concentrations at screening (2.5−10 µg/L and >10 µg/L). The patients were randomly
assigned to PAS 40 mg (n = 65), PAS 60 mg (n = 65), or active control (n = 68) groups. After 24 weeks of
treatment, 10 patients (15%) in the PAS 40 mg group and 13 patients (20%) in the PAS 60 mg group
achieved biochemical control, which was not obtained in all the patients in the active control group.
The most common adverse events were hyperglycemia (n = 21 [33%] for treatment with 40 mg PAS,
n = 19 [31%] with 60 mg PAS, and n = 9 [14%] with active control) and diarrhea (n = 10 [16%], n = 12
[19%], and n = 3 [5%]). Most were grade 1 or 2 in severity. Serious adverse events were reported in six
(10%) patients in the PAS 40 mg group, two (3%) in the PAS 60 mg group, and three (5%) in the active
control group [131].

3.2. Cushing’s Disease

The presence of ACTH-secreting pituitary adenoma in the anterior lobe of the pituitary gland
is the primary cause of Cushing’s disease (CD). In CD, the physiological negative feedback exerted
by adrenal steroids is disrupted, which contributes to the autonomous ACTH hypersecretion from
the adenoma. The resulting state of hypercortisolism is associated with peculiar clinical signs and
symptoms and is correlated with a significant increase in patient morbidity and mortality [132].

When facing the challenge of the medical treatment of CD, it is well recognized that the ideal therapy
should target the primary cause of the disease resulting in the control of hormone hypersecretion and
reduction of the adenoma mass. This result still represents a “chimera” for clinicians and researchers,
despite all the efforts and the different compounds developed and tested, especially in recent years [132].

Based on the well-recognized expression of SSTs on ACTH-secreting pituitary adenomas,
first-generation SRLs, OCT, and LAN, were initially tested for the treatment of CD [133]. However,
a lack of efficacy in suppressing both basal and CRH-stimulated ACTH secretion in patients was
reported [133,134], likely because SST2, which is the main target of OCT and LAN, is significantly
down-regulated by high levels of glucocorticoids occurring during active CD [135]. However, since
SST5 is the most predominantly expressed SST subtype in human ACTH-secreting pituitary adenomas
and in other CD cell models such as murine AtT20 cell line [136]. Its expression is not influenced by
exposure to high glucocorticoid levels [137,138]. PAS has been identified as the main candidate in
the medical treatment of CD. Several preclinical studies compared the effects of PAS and OCT in CD
models before and after its approval in clinical practice.

An in vitro “head-to head” study evaluated the effect of PAS and OCT on ACTH release by six
primary cultures of human corticotroph cells, as well as their effect on AtT20 cells [105]. The SST
expression profile demonstrated a predominant expression of SST5 mRNA (> SST2) in all CD samples
analyzed. As expected, treatment with 10 nM PAS for 27 h was more effective than OCT in the
inhibition of basal ACTH secretion. PAS significantly decreased ACTH secretion in three out of five
primary cultures (30% to 40%), while OCT inhibited ACTH release in only one out of five cultures
(28% suppression). Similar results were obtained in AtT20 cells, in which only PAS, but not OCT,
was able to inhibit with high potency (IC50 0.2 nM) basal ACTH secretion [105]. Another detailed
study used AtT20 cells to define the role of SST2 and SST5 in PAS and OCT-mediated inhibition of
ACTH release, which reproduces the in vivo condition of glucocorticoids exposure observed during
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CD [137]. First, to better understand the role of SST5 in the inhibition of CRH-induced ACTH release,
an experimental SST5-selective agonist (BIM-23268) was tested in addition to PAS, SRIF, and OCT,
using culture conditions in the absence (basal condition) or presence of high levels of glucocorticoids.
In basal conditions, PAS demonstrated a significantly higher potency (IC50 0.06 nM) than OCT (IC50

0.2 nM) in reducing ACTH secretion. Pre-treatment of AtT20 cells with 10 nM dexamethasone (DEX)
led to a 20-fold decrease of OCT-induced inhibition of ACTH secretion (IC50 from 0.2 to 4.3 nM) while
it did not affect a PAS anti-secretory effect.

The analysis of SST mRNA profile after DEX exposure for 48 h demonstrated a down-regulation of
SST2 (45%), while SST5 expression was not affected. This supports, at a molecular level, the persistent
effects of PAS in these experimental conditions, as compared to OCT [137]. In this context, the SST5

preferential compound BIM-23268 was significantly more effective in reducing CRH-induced ACTH
release after DEX pretreatment than in basal conditions (60% vs. 15%). This finding could be related to
possible modifications of the interactions among SSTs, such as SST2/SST5 crosstalk, induced by high
levels of glucocorticoids, as well as to a possible effect of DEX on the intracellular machinery, which
leads to an enhanced activation of the anti-secretory pathway [114,133,136].

In 2009, Ben-Shlomo & Coll. reported the effects of PAS, SRIF, and OCT, alone or in combination
with selective receptor antagonists, on cAMP accumulation and intracellular Ca++ oscillation [139].
Authors used wild-type (WT) and transfected AtT20 cells, which overexpressed human SST2 or
SST5 [139]. In WT cells, a significantly higher inhibition of cAMP accumulation was induced by PAS,
as compared to both SRIF and OCT (IC50: 55 pM, 370 pM, and 470 pM, for PAS, SRIF, and OCT,
respectively), as well as a more effective suppression Ca++ oscillation. However, different results were
obtained in SST2 transfected cells, in which PAS was less effective in inducing cAMP reduction when
compared to WT cells. As expected, co-treatment with the SST2-selective antagonist BIM-23454 did
not affect PAS-induced cAMP reduction, which supports the evidence of a negligible involvement of
this receptor subtype in PAS-mediated activity [139]. In SST5 transfected cells, the PAS effect was not
enhanced by the high expression of the receptor, likely because, in the WT-setting, IC50 was already in
the picomolar range. However, it induced a sustained efficacy on cAMP reduction, which suggests
that SST5 can play a role in preventing cells from desensitization of different SSTs.

More recently, van der Pas & Coll. directly compared the efficacy of PAS and OCT on ACTH
secretion in primary cultures of corticotroph pituitary adenomas from patients grouped according
different levels of urinary free cortisol (UFC) measured before adrenalectomy [135]. In detail,
they evaluated the effect of OCT and PAS on four primary cultures from patients with normal UFC
levels before surgery, which demonstrates a significantly higher effect of PAS compared to OCT in
inhibiting ACTH release in three out of four cell cultures (overall mean percent reduction: 49% vs.
26%, respectively). Although almost all samples showed a prevalent expression of SST2 mRNA,
at the protein level, SST5 was expressed more in two out of four samples. Then, authors evaluated
the effect of PAS and OCT on ACTH secretion in cells from a patient nearly reaching normal UFC
before surgery (UFC 1.06 × ULN), which demonstrates that PAS was able to reduce ACTH levels at
lower concentrations (IC50: 0.2 nM) than OCT, supporting previous reports [105]. Conversely, OCT
significantly decreased ACTH secretion only at relatively high concentrations (IC50 39 nM), which is in
line with the results obtained by Ibáñez-Costa & Coll. [128].

These results strengthen the hypothesis of a major role of SST5 in driving the anti-secretory activity
of PAS in ACTH-secreting pituitary adenomas when compared to OCT, even in the presence of higher
expression of SST2 than SST5 mRNA in tumor cells [135].

On the other hand, different results were obtained by Ibáñez-Costa & Coll. who tested OCT
and PAS on ACTH release and [Ca++]i kinetics in primary cultures of human corticotroph pituitary
adenomas [128]. Treatments with 100nM OCT (three tumor samples) or PAS (four tumor samples)
caused a significant ACTH reduction in two out of three tumors in the presence of high OCT
concentrations, while only a slight ACTH reduction in two out of four samples was observed with PAS,
despite a prevalent expression of SST5 mRNA in all samples as compared to SST2 mRNA. The effect
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of OCT and PAS on [Ca++]i was evaluated in 10 and nine primary cultures, respectively. Although
both drugs prevented an [Ca++]i increase in about 50% of primary cultures (4/10 and 5/9, respectively),
OCT was significantly more effective than PAS, as demonstrated by the proportion of responsive
cells induced by the two compounds (56.1% OCT vs. 12.9% PAS) [128]. A possible explanation of
these discordant results could be related to the supra-physiological concentrations of OCT used in this
study (10-fold higher to the estimated therapeutic dose), which could have partially activated SST5,
over SST2, despite the lower affinity of OCT for the latter receptor.

Moreover, most of the primary cultures were obtained from CD patients who underwent medical
treatment before surgery and this condition could have caused an increase of SST2 mRNA levels,
which leads to an SST2-related responsiveness [128]. However, the main pitfall concerning this study
is related to the methodological setting of the experiments because these authors did not perform a
head-to head comparison between OCT and PAS in the same cell culture, as in previous studies [105].
This experimental condition needs to be taken into account because the well-recognized inter-tumor
heterogeneity of corticotroph pituitary adenomas, which could modify the responsiveness to medical
treatments [140,141]. However, it is important to remark that all these data from preclinical studies
were decisive for the approval of PAS as medical treatment for CD by both EMA and FDA.

In 2009, a multicenter Phase II clinical trial reported that PAS treatment decreased UFC levels
and ACTH release in 76% of patients during a treatment period of 15 days [142]. The first phase
3 trial assessing PAS LAR in patients with CD was published in 2018 [143]. In this study, 150 patients
with persistent, recurrent, or de-novo (non-surgical candidates) CD were enrolled: 74 patients (49%)
were treated with 10 mg i.m. PAS LAR every four weeks for 12 months and 76 patients (51%) with
30 mg. The primary efficacy endpoint (mUFC normalization) was met by 31 out of 74 patients (41.9%
[95% CI 30.5−53.9]) in the 10 mg group and 31 out of 76 patients (40.8% [29.7−52.7]) in the 30 mg
group. Authors concluded that long-acting intramuscular PAS LAR displays a similar efficacy than the
twice-daily subcutaneous injections, with positive responses in about 40% of patients with CD, which
provides a convenient monthly administration schedule.

Lastly, a very recent study by Pivonello & Coll. evaluated the efficacy and safety of PAS treatment,
according to the real-world evidence [144]. This study, performed on 23 CD patients, demonstrated
that, in the real-life clinical practice, a six-month treatment with PAS normalizes, or nearly normalizes,
UFC in about 68% of patients with a very mild to moderate disease. In line with the previously described
clinical studies, the main adverse event was the induction or worsening of glucose imbalance, which
confirms the usefulness of this treatment in patients with mild disease, without uncontrolled diabetes.

3.3. Other Pituitary Tumors

Because other pituitary adenomas, such as prolactinomas, TSH-secreting and FSH-secreting
adenomas and non-functioning pituitary adenomas (NFPAs) express different SST subtypes besides
SST2 and SST5, and/or other GPCRs, such as D2R. Additional medical treatments are used in these
tumors (e.g., D2R-preferential drugs, such as cabergoline, in prolactinomas). Moreover, pituitary
tumors such as TSH-secreting and FSH-secreting adenomas are very rare. Therefore, only a few studies
evaluated the effects of OCT and PAS in these tumors.

Ibáñez-Costa & Coll., in the previously mentioned study [128], compared the effect of OCT and
PAS in four primary cultures of prolactinomas and in 28 NFPAs measuring [Ca++]i and cell viability.

Primary cultures were established from prolactinomas, which displayed in vivo resistance to
cabergoline treatment. Analysis of the SST profile demonstrated high levels of SST1 associated with a
low expression of the other SSTs. Treatment of cells with OCT and PAS showed a poor effect on [Ca++]i
of both SRLs: OCT decreased [Ca++]i in two out of four cultures, but only in 7.0% of the cells, while
PAS failed to induce appreciable effects. Both SRLs decreased cell viability in one-third of tumors after
48 to 72 h.

As far as NFPAs, the SST expression profile demonstrated a high expression of SST3, followed
by SST2, SST5, SST1, and SST4, which suggests a possible prevalent effect of PAS compared to OCT.
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Despite SST expression profile, both compounds showed a poor effect on [Ca++]i kinetics inhibition
even though OCT was slightly more effective than PAS in an isolated subset of cells [128]. Discordant
results were obtained in the evaluation of cell viability. NFPA primary cultures differently responded
to OCT and PAS treatment showing a slight and no significant decrease in cell viability after treatment
with OCT (5/16 cell cultures after 24 h, 2/8 after 48 h, and 2/7 after 72 h), as well as with PAS (4/15 cell
cultures after 24 h, 1/7 after 48 h, and 1/4 after 72 h). Conversely, a moderate significant increase in
cell viability was induced by treatment with OCT when compared to untreated cells in 11/16 cell
cultures after 24 h, in 5/8 cell cultures after 48 h, and in 2/6 cell cultures after 72 h. Similarly, to OCT,
PAS increased cell viability in in 11/15 NFPA cell cultures after 24 h, in 6/7 after 48 h, and in 3/4 after
72 h.

In three TSH-secreting pituitary adenoma primary cultures, the SST2/SST5 expression ratio was
predictive of the hormonal and cell viability effects of OCT, likely due to the prevention of tachyphylaxis.
However, the association of D2R agonists to SRLs could prevent the pharmacological escape [145].

To sum up, based on preclinical evidence, we can reasonably state that OCT and PAS
can alternatively act by activating SST2 and/or SST5 depending on the specific tumor cell type.
Indeed, as expected, OCT is mainly effective in SST2-expressing GH-secreting cells as well PAS in
SST5-expressing tumor corticotroph cells. However, a number of results showed that PAS is also able
to inhibit GH secretion in somatotropinomas by activating SST2, despite its prevalent affinity for SST5.
Similarly, high doses of OCT can act through the activation of SST5 in some corticotropinomas, which
highly expresses this receptor subtype.

Figure 3 summarizes all the reported data as far as the effects of OCT and PAS on pituitary
adenomas, in relationship with the SST profile evidenced in the respective study.
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4. Comparison between First- and Second−Generation Somatostatin Receptor Ligands in
Neuroendocrine Neoplasms

Neuroendocrine neoplasms (NENs) comprise clinically and biologically heterogeneous tumors,
originating from neuroendocrine cells disseminated in different organs (e.g., pancreas, stomach, lung,
and colon) [146]. The most common NENs occur in the gastrointestinal tract or pancreas (GEP-NEN) and
bronchopulmonary system [147], with an incidence increasing over the years, likely due to more efficient
diagnostic tools [148]. Regardless of the anatomic origin, NENs include neuroendocrine carcinomas
(NECs), characterized by poor differentiation and high-proliferation rate, and neuroendocrine tumors
(NETs), well-differentiated and low-proliferating lesions, whose metastatic potential depends on tumor
type, localization, and grade. By means of Ki-67 index and mitotic count, WHO 2017 classification
grades NENs as: low-grade NET G1 (Ki-67 < 3%, mitotic index <2/10 hpf), NET G2 (Ki67 3-20% or
mitotic index 2-20/10 hpf), while NECs are by definition G3 (Ki67 index >20% or mitotic index >20/10
hpf). G3 pancreatic NENs include both differentiated low proliferating NETs and undifferentiated
aggressive small or large cell NECs [149]. These grading parameters reflect biologic aggressiveness
of NENs and have prognostic and therapeutic relevance. NETs are also divided in two subgroups:
(i) non-functioning tumors, which are the most common and do not secrete detectable levels of
hormones with no or non-specific clinical symptoms [150], (ii) functioning tumors whose hormone
hypersecretion leads to distinct signs of disease (flushing, diarrhea, hypoglycemia, hyperglycemia,
peptic ulcers, etc.), and express biomarkers of neuroendocrine differentiation such as chromogranin A
(CgA) and synaptophysin [151], as well as peptide hormones.

Furthermore, a specific staging system has been developed for GEP-NENs, which is the classic
tumor/node/metastasis (TNM) classification and a clinical staging for mortality risk assessment based
on the anatomical extent of NEN [152]. This is useful for decision-making regarding treatment.

The great majority of GEP-NENs, as well as approximately 50% of small intestine NETs and
insulinomas, express multiple SST subtypes involved in hormone secretion and tumor cell growth. SST2

expression is predominant, followed by SST5, while SST1, SST3, and SST4 are scarcely detected, even if
a great variability among NET types and localization was observed [153–155]. Moreover, molecular
investigation revealed that pNETs also express a truncated splice variant of the SST5 (SST5TMD4) [156].
In GEP-NEN, SST2 expression is inversely correlated with grading and patient outcome, as well as
the expression of the chemokine receptor CXCR4 [153,157]. Similarly to SSTs, CXCR4 is often present
in highly proliferative and advanced tumors of various origin, and the chemokine-receptor system
CXCL12-CXCR4 largely influences neuroendocrine regulation and functions [158,159]. It may represent
an additional diagnostic and therapeutic target in NENs [160].

4.1. Somatostatin Receptor Ligands in Preclinical Models of Neuroendocrine Neoplasms

The small incidence and large heterogeneity of NENs, along with inadequate availability of disease
experimental models, often prevents a satisfactory preclinical and translational research. Nevertheless,
knowledge of molecular alterations associated with NEN pathogenesis and progression (e.g., activation
of mTOR signaling and tyrosine kinase activity of PDGFR and VEGFR) has improved over recent
years, by favoring the identification of targeted drugs such as everolimus [161] and sunitinib [162],
which currently are complementary to SRLs as medical management of NET clinical symptoms [19].

The paucity of NEN-derived cell lines (the two most used are the human pancreatic carcinoid
cell, BON-1, and the human pancreatic islet cell carcinoma cell line, QGP-1, which show mutations
in accordance with those detected in sporadic pNET patients) [163], and the technical issues in the
establishment of patient-derived primary cultures and xenografts, makes preclinical research difficult
to adequately recapitulate in vitro NET disease. Moreover, the usefulness of cell lines as a model for
studying NEN responses to SRLs is debatable.

First, the in vitro activity of OCT was tested in BON-1 cells, which express SST1, SST2, and SST5:
OCT inhibited cAMP accumulation, CgA secretion, and MAP kinase activity [164], Akt-phosphorylation
and cell growth [36], and tumor growth [165]. On the contrary, other studies reported the lack of
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significant anti-proliferative effects in both BON-1 and QG-1 cells [166,167] neither in 2D cultures nor
in 3D-spheroid models [168], as well as in mice bearing BON-1 xenografts [166]. The BON-1 cell line
has been also proposed as a model mimicking the IGF system on GEP-NETs and a model used to test
the activation of IGF-related factors upon treatment with OCT and PAS [169].

OCT also failed to exert anti-proliferative activity in the most frequently used NET cell lines, which
showed SST2 expression levels lower than observed in human NEN tissues [165]. Overall, the lack of
SRL effects might be explained by: (i) low SST2 expression in BON-1 and other cell lines, (ii) limited
similarity of GEP-NET cell lines with a tumor phenotype, and (iii) cancer-associated mutations
occurred in cell cultures [170]. This implies a careful extrapolation of results, which encourages a shift
to patient-derived cultures and xenografts.

The NET cell line QGP-1 was also used to analyze SST2 domains regulating receptor trafficking and
signal transduction: the treatment with the SST2-specific analog BIM23120 caused SST2 desensitization
and internalization, which possibly explains SRL resistance detected in vivo after prolonged treatment
with SST2 preferential compounds [171].

A better understanding of SRL effects was obtained after isolation and characterization of primary
NET cultures. Cell cultures from 15 human pNETs were shown to retain in vitro SST expression profile
(predominantly SST2) and a secretory phenotype (CgA) of the original tumor, and were used to explore
and compare the biological activity of OCT and PAS [117]. OCT reduced both cell viability and CgA
release via SST2 activation, which, however, rapidly results in prolonged receptor internalization.
On the contrary, PAS, which similarly exerts anti-proliferative and anti-secretory effects but does not
phosphorylate SST2, induced a fast and transient receptor internalization/membrane trafficking cycle.
Therefore, primary cultures explain clinical observations of tachyphylaxis induced by OCT in GEP–NET
patients [117,172,173], together with modulation of downstream pathways [173]. The observation of a
lower desensitization induced by PAS might imply that its activation of SST5 stabilizes SST2 at the cell
membrane, which forms a heterodimer that sustains long-lasting efficacy of SRLs.

Human pNET primary cultures were also used to test the possible synergism as far as the anti-tumor
and anti-secretory activity of SRLs and everolimus [174], which is a mTOR inhibitor approved for
advanced pancreatic, gastrointestinal, and lung NETs [175], to elucidate possible mechanisms at the
basis of disappointing efficacy and resistance occurrence observed in patients. Everolimus inhibited
CgA production and cell viability, but co-treatment with SRLs neither improved its efficacy nor
circumvented everolimus-dependent Akt activation [174]. Again, the primary culture model closely
mimics the lack of synergistic/additive anti-tumor effects of SRLs in combination with everolimus,
as observed for overall survival in patients. Mutations and alterations of the mTOR pathway in subsets
of NETs [176,177] as well as preclinical efficacy of everolimus in NET cell lines [166,177–180] were
extensively reported, and provided the rationale for mTOR inhibitor therapy. However, remarkable
clinical benefits were limited and still debated [181]. mTOR inhibition leads to multiple compensatory
pro-survival signals (e.g., activation ERK1/2 and PI3K/Akt pathways) [181], which could explain
everolimus resistance as reported in primary NET cultures [174].

4.2. Somatostatin Receptor Ligands in Clinical Management of Neuroendocrine Neoplasms: Improvement of
Symptoms and Anti-tumor Effects

Due to NENs heterogeneity, multimodal treatment strategies such as surgery, systemic pharmacological
treatment, and radiotherapy are used to control clinical symptoms due to hypersecretion and tumor
growth, and to delay disease progression [182]. Although surgery represents the first line treatment of
NENs, a high percentage of tumors is not surgically resectable because of their metastatic condition at
the time of initial diagnosis (mainly small intestine and pNETs). In this condition, the use of medical
treatment represents the main tool to control tumor-related symptoms and to prolong patient survival.

First line systemic treatment of well differentiated, locally advanced or metastatic NETs consist
of SRLs (OCT LAR and LAN Autogel). Alpha-interferon and targeted drugs, such as everolimus,
sunitinib, and bevacizumab, an anti-VEGFA antibody, or other tyrosine kinase receptor targeting
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antibodies and small molecules [183], are additional treatment options. Chemotherapy for advanced
poorly or well differentiated NETs with a high-tumor burden [184].

GEP-NET patients progressing or recurring after failure of initial therapies have limited treatment
options. Therefore, peptide receptor radionuclide therapy (PRRT) with SRL-based 177 Lu-DOTATATE,
90 Y-DOTATATE, or 90 Y-DOTATOC could be further treatment options [185]. G1 and G2 NENs
satisfactorily respond to PRRT, while the response in G3 NENs is still unclear. Therefore, guidelines
for G3 NECs did not recommend radiopharmaceutical therapy [186,187].

OCT and LAN (both immediate-release and long-acting formulations) are the standard of
care for functioning and non-functioning NETs [182,188] to control severe symptoms (diarrhea and
flushing, carcinoid syndromes) associated with hypersecretion of serotonin, and pancreatic islet cell
hormonal-secretory syndromes sustained by gastrin, glucagon, insulin, vasoactive intestinal peptide
(VIP), and parathyroid hormone-related peptide [189].

First-generation SRLs have been widely demonstrated to control symptoms in patients with
NETs [190–192]. Anti-tumor efficacy, as well as time to tumor progression, was prolonged from 6 to
14.3 months, which was observed with OCT LAR in the PROMID Phase 3 study analyzing metastatic
midgut NETs [24], and significant increases in PFS was reported in LAN Autogel-treated patients
entered in the placebo-controlled Phase 3 CLARINET trial [23]. These results encouraged FDA and
EMA approvals for clinical use in GEP-NETs. Both OCT and LAN are highly effective in managing
carcinoid symptoms [189], which shows an increase in patients’ PFS [27] and good tolerability [193].

The response to SRL treatment in terms of inhibition of secretion and tumor growth is
extremely variable among NEN patients, likely due to both inter-tumor variability and differences
in the development of resistance to therapy, besides pharmacological properties of SRLs (biased
agonistic activity). After prolonged treatments with first generation SRLs, GEP-NET patients often
exhibit inadequate control of symptoms due to hormonal overproduction at conventional doses.
Therefore, resistance due to tachyphylaxis is a frequent clinical problem [194]. Several mechanisms
underlying SRL resistance have been proposed including SST2 downregulation/internalization or
stabilization/degradation [172,173], as previously discussed, and changes in SST signaling/functioning
and upregulation of proliferative genes [195]. At least initially, higher doses successfully counteract the
loss of susceptibility to SRLs, which allows an adequate disease control and maintains good tolerability.
However, the outcome in terms of PFS and overall survival (OS) with the escalation-dose are still
unclear [196].

Preclinical studies, showing the lower impact of PAS on SST2 phosphorylation, internalization,
and recycling [104,117], suggested the potential of this agent to overcome tachyphylaxis and prolong
the response. OCT LAR-refractory GEP-NET patients treated with PAS achieved a satisfactory relief
of diarrhea and flushing (~30% of patients) and tolerability in a Phase II study [197]. Subsequently,
a Phase 3 trial in advanced and symptomatic patients after SRL treatment exploring the efficacy of PAS
did not show benefits when compared to high doses of OCT LAR [198].

PAS is not routinely used in the treatment of NETs since the evidence of efficacy of this drug in
patients progressing after OCT or LAN treatments is still scanty and rather controversial [198,199],
even in escalated-doses studies [200]. In addition, the frequent occurrence of hyperglycemia (~80% of
patients) observed with this drug [201], likely due to the effect of SST5-mediated reduction of insulin
production by pancreatic β-cells, makes its risk/benefit profile questionable. Further studies will help
clarify the reliability of PAS, alone or in combination with other agents [199,202], in the management
of NETs.

In summary, currently OCT LAR and LAN Autogel remain the cornerstone of systemic therapy
for NETs, either alone, or in combination with other targeted therapies [203]. Advances in the
knowledge of the SST pathways, which are molecular and microenvironmental mediators relevant for
the pathogenesis of these tumors, will be crucial to discover novel therapeutic targets and improve
anti-proliferative efficacy and safety of the drugs currently used in the management of NENs.
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5. Conclusions and Future Perspectives

First-generation SRLs (OCT and LAN) primarily differ from the second-generation SRL (PAS),
for their peculiar membrane receptor binding affinity. While OCT and LAN are mainly SST2-preferential
ligands, PAS shows high binding affinity for multiple receptor subtypes (predominantly SST5, SST2,
and SST3). However, a number of preclinical studies published in the last decade have demonstrated
that the differences between first-generation and second-generation compounds go far beyond the mere
SST binding affinity. In most reports, PAS showed a peculiar pattern of receptor phosphorylation, likely
due to the activation of ligand-specific changes in receptor conformation. Therefore, PAS treatment
results in a specific activation of intracellular pathways, as well as in a peculiar target-receptor
internalization and trafficking compared to both OCT and native SRIF, mainly when evaluating SST2

(the SST mostly expressed in the majority of pituitary adenomas and NENs).
However, these observations mainly result from preclinical studies carried out on transfected cell

models, which do not always represent reliable models for pituitary adenomas and NENs. Furthermore,
evidence from data collected using tumor primary cultures suggests that the biological effects of a
pan-ligand such as PAS may also vary depending on the specific tumor type. This hypothesis is
supported by the evaluation of studies carried out on somatotroph and corticotroph adenomas. While
in GH-secreting pituitary cells, PAS seems to act mainly via SST2. Its effect is predominantly exerted
through SST5 in corticotroph cells. Of note, the biased-agonist effect observed after PAS binding to
SST2 in transfected cell models has not been confirmed when using cells from somatotroph primary
cultures, which endogenously express the receptors and represents a more reliable preclinical model of
acromegaly. On the other hand, the higher potency and efficacy of PAS, in comparison to both OCT and
LAN when targeting SST5 in transfected cell models is confirmed by preclinical evidence on human
corticotroph adenoma cells (mainly expressing SST5). Although it was not formally demonstrated,
these discrepancies observed in different cell types might also reflect the general receptor profile of the
cells, which included the presence of receptors other than SSTs that can influence the SRL responses
due to heterodimerization pathways. Further studies are warranted to address this issue.

In conclusion, data published so far demonstrate that, despite the initial aim to generate a drug
with a universal binding profile for SSTs with biological characteristics similar to that of native SRIF,
the second-generation SRL PAS shows cell and tissue specific properties that are not completely
understood yet. In our opinion, future research studies should aim to go deeper and investigate the
peculiar biological mechanisms activated by PAS (in comparison to first-generation SRLs) in preclinical
models that are able to closely mimic the behavior of NEN in vivo. Although we are aware that this
represents a huge challenge for the scientific community, some steps forward have been achieved in
recent years (i.e., zebrafish xenografts, identification of pituitary adenoma cell hierarchy [204,205]),
and new tools may help reach these goals).
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