

1 Supplementary Materials

Supplementary Figure S1. Cells were treated with IL-22 (50 ng/ml) for 30 min and checked for (A) phosphorylated NFκBp65 through western blotting. Following 12 and 24 h of treatment, cells were harvested to collect RNA. Then qRT PCR were performed to check the expressions of (A) GRP78 and (B) IL-22 receptor subunit IL-22RA1 and (C) goblet cells-associated factors SPDEF. (D) at 24 h of treatment, MTT assay was performed to check any possible cytotoxicity induced by IL-22. Data are presented as mean ± SEM with individual dot points (n=6-12 from 2-3 independent experiments). Nonparametric Man-Whitney t-test was performed to check statistical significance.

11Supplementary Figure S2. mIECs were treated with IL-22 (100 ng/mL) for 1 h and checked for (A)12phosphorylated STAT3, (B) Akt, (C) ERK1/2, (D) STAT1, (E) STAT5, (F) p38, (G) NF κ Bp65, (H)1390RSK, and (I) c-Jun through western blotting. Data are presented as mean ± SEM with individual14culture from different mouse (n=4). *p<0.05; **p<0.01, ****p<0.0001 compared with control</td>15(Nonparametric Man-Whitney t-test).

17

22

Supplementary Figure S3. mIECs were treated with 100 ng/mL of mIL-22 for 4 h. RNA-Seq was
 conducted and KEGG pathway analyses showed activation of (A) Jak-STAT, (B) ERK1/2, and (C) Akt
 pathways. (B) gene ontology analyses showed differential expression of a cluster of genes associated
 with regulation of cell differentiation.

Lcn2, (D) Lrg1, (E) Trim15, and (F) Stom in mIECs and (G) ER stress marker sXBP1, (H) oxidative
stress marker NOS2, (I) protein disulphide isomerase AGR2, (J) matrix metalloprotease MMP7, (K)
valosin containing protein (VCP), and (L) suppressor of cytokine signaling 3 (SOCS3) in LS174T cells.
Data are presented as mean ± SEM with individual dot points (n=3 from 1 experiment). ###p<0.001;
####p<0.0001 compared with control and *p<0.05; ***p<0.001compared with IL-22 (one-way ANOVA
followed by Dunnett's post hoc test).

32

Supplementary Table S1. List of primers used in this study.

Primer	Sequence
hβ-ACTIN	Forward: CCTGTACGCCAACACAGTGC
	Reverse: ATACTCCTGCTTGCTGATCC
hIL-22RA1	Forward: TCGATTCAGATGATTGTTCA
	Reverse: CTGATCTGGGAGTCACTGGAC
hGRP78	Forward: GCCTGTATTTCTAGACCTGCC
	Reverse: TTCATCTTGCCAGCCAGTTG
hsXBP1	Forward: CAAAAGGATATCAGACTCAGAATCTGAA
	Reverse: GAGTCCGCAGCAGGTGC
hNOS2	Forward: CACTCAGCTGTGCATCGAC
	Reverse: CAGTTCCCGAAACCACTCGT
hMUC2	Forward: CAGCACCGATTGCTGAGTTG
	Reverse: GCTGGTCATCTCAATGGCAG
hREG3a	Forward: AGCTACTCATACGTCTGGATTGG
	Reverse: CACCTCAGAAATGCTGTGCTT
hREG3y	Forward: GGTGAGGAGCATTAGTAACAGC
	Reverse: CCAGGGTTTAAGATGGTGGAGG
hACR2	Forward: GAGCTGTATCTGCAGGTTCGT
IL/IGR2	Reverse: ATTGGCAGAGCAGTTTGTCC
hHFS1	Forward: AGTGAAGCACCTCCGGAA
ппезі	Reverse: TCACCTCGTTCATGCACTC
h <i>ATOH1</i>	Forward: AACGCCTTGTCCGAGCTGCTA
	Reverse: TTTTGCAGGAGGCTGGAG
hspdff	Forward: GCACTGCAGCAGACA
	Reverse: GGGGATACGCTGCTC
hDDR2	Forward: GCTATATGCCGCTATCCTCTGG
	Reverse: ACTCTGACCACTGACTGGAAG
hLRG1	Forward: GGACACCCTGGTATTGAAAGAAA
	Reverse: TAGCCGTTCTAATTGCAGCGG
h <i>TRIM15</i>	Forward: TCCCTGAAGGTGGTCCATGAG
	Reverse: CAGGATCTTGCCCGAGGATT
hLCN2	Forward: CCACCTCAGACCTGATCCCA
	Reverse: CCCCTGGAATTGGTTGTCCTG
h <i>STOM</i>	Forward: CACACACGGGACTCCGAAG
	Reverse: ATGAGAACGCCACCAAAATCC
hMMP7	Forward: TCGGAGGAGATGCTCACTTCGA
	Reverse: GGATCAGAGGAATGTCCCATACC
hVCP	Forward: GGAGYTGGTYCAGTATCCTGTGG
	Reverse: CAGCTTGSCGKGCCTTGT
hSOCS3	Forward: CCTGCGCCTCAAGACCTTC
	Reverse: GTCACTGCGCTCCAGTAGAA
mβ-actin	Forward: GAAATCGTGCGTGACATCAAA
	Reverse: CACAGGATTCCATACCCAAGA

m <i>Ddr</i> 2	Forward: ATCACAGCCTCAAGTCAGTGG
	Reverse: TTCAGGTCATCGGGTTGCAC
mLrg1	Forward: TTGGCAGCATCAAGGAAGC
	Reverse: CAGATGGACAGTGTCGGCA
m <i>Timp1</i>	Forward: TACACCCCAGTCATGGAAAGC
	Reverse: CGGCCCGTGATGAGAAACT
m <i>Trim15</i>	Forward: TGAGCGAGACCTACTGTGAAG
	Reverse: AACCGACTCCTGAGACGATCC
mReg3β	Forward: ACTCCCTGAAGAATATACCCTCC
	Reverse: CGCTATTGAGCACAGATACGAG
m <i>Osmr</i>	Forward: TCAAGCCACGAAGGGTCCTAA
	Reverse: GTCTTAAAGTCTCGGGTTTCACA
mLcn2	Forward: TGGCCCTGAGTGTCATGTG
	Reverse: CTCTTGTAGCTCATAGATGGTGC
m <i>Stom</i>	Forward: ATCATCTTTAGACTGGGTCGCA
	Reverse: TGAACACGGTAGTAGACCACA