
 International Journal of 

Molecular Sciences

Communication

The Intercalation of CORM-2 with Pharmaceutical
Clay Montmorillonite (MMT) Aids for Therapeutic
Carbon Monoxide Release

Muhammad Faizan 1 , Kifayat Ullah Khan Niazi 2, Niaz Muhammad 3, Yongxia Hu 1,
Yanyan Wang 1, Dezhi Lin 1, Yuanyuan Liu 1, Weiqiang Zhang 1,* and Ziwei Gao 1,*

1 Key Laboratory of Applied Surface and Colloid Chemistry MOE,
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China

2 School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
3 Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
* Correspondence: zwq@snnu.edu.cn (W.Z.); zwgao@snnu.edu.cn (Z.G.);

Tel.: +86-181-8243-8818 (W.Z.); +86-150-2929-3998 (Z.G.)

Received: 6 June 2019; Accepted: 10 July 2019; Published: 14 July 2019
����������
�������

Abstract: The pharmaceutical clay montmorillonite (MMT) is, for the first time, explored as a
carbon monoxide-releasing material (CORMat). MMT consists of silicate double layered structure; its
exfoliation feature intercalate the CORM-2 [RuCl(µ-Cl)(CO)3]2 inside the layers to suppress the toxicity
of organometallic segment. The infrared spectroscopy (IR) confirmed the existence of ruthenium
coordinated carbonyl ligand in MMT layers. The energy-dispersive X-ray spectroscopy (EDX) analysis
showed that ruthenium element in this material was about 5%. The scanning electron microscopy
(SEM) and transmission electron microscope (TEM) images showed that the layer-structure of MMT
has been maintained after loading the ruthenium carbonyl segment. Moreover, the layers have been
stretched out, which was confirmed by X-ray diffraction (XRD) analysis. Thermogravimetric (TG)
curves with huge weight loss around 100–200 ◦C were attributed to the CO hot-release of ruthenium
carbonyl as well as the loss of the adsorbed solvent molecules and the water molecules between
the layers. The CO-liberating properties have been assessed through myoglobin assay. The horse
myoglobin test showed that the material could be hydrolyzed to slowly release carbon monoxide in
physiological environments. The half-life of CO release was much longer than that of CORM-3, and it
has an excellent environmental tolerance and slow release effect.

Keywords: CO; CO-releasing materials; CO-releasing molecules; pharmaceutical clay; montmorillonite;
CO kinetic profile; myoglobin assay; therapeutic applications

1. Introduction

Carbon Monoxide (CO) has a notorious reputation for being silent killer and life-threatening
element for living organisms because of its colorless, odorless, and poisonous nature [1]. Using
haemoglobin dissociation parameters, Haldane and Douglas, for the first time, scientifically studied
that CO poisoning nature is exerted in the carboxy haemoglobin (COHb) [2,3]. This discovery, that
revealed the beneficial activity of CO in the living organism as an endogenous gaseous messenger, has
attracted greater attention by the researchers to design and develop such mechanisms and strategies
that could deliver the reserved CO to the specific tissues at a controlled and moderate rate such as
vascular modulator [4–6]. Endogenously released gaseous messengers, or gas transmitters, from these
particular molecules have been calibrated as nanomedicines (NMs) or nanomaterials (NMs), which
are essential for the physiology of all microorganism postulates while performing intra-cellular and
inter-cellular approaches [7]. Apart from CO therapy, other gases like nitric oxide (NO) and hydrogen
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sulphide (H2S) are in the pipeline for clinical development. However, few of them are being used as
clinical agents or either in-clinical development phase.

The technological innovation has become operational to provide CO for pre-clinical [8] and clinical
services (ClinicalTrials.gov identifier: NCT01050712) by means of either inhaled gaseous therapy [9]
or potentially parenteral and orally vigorous CO-administration, which has been developed from
substantial professional medical chemistry initiative [10]. However, few of them are testified in
clinical trials and preclinical models [11,12]. This foundation boosts the awareness of therapeutics
gases as regulators of cellular operations. The exogenous CO facility avoiding the CO induction to
mainstream blood circulation increases the COHb serum level; consequently, CO became a lethal gas.
For CO therapy, it is necessary to engage it with biological stems and become the part of intracellular
mechanism. The myoglobin assay famous as “gold standard” can be performed for observing the CO
behavior in vitro.

The exogenous endeavor CO-releasing molecules (CORMs) and CO-releasing materials (CORMats)
are the appropriate choice for accomplishing the therapeutic activities of CO. The disintegration of
CORM/CORMats into CO can be initiated through peculiar activators/conditions and may also apply
to control administration for CO migration; such morphology has already been experienced in
Photo-CORMs strategies [13,14]. CORMs/CORMats are basically solid forms of CO carriers that require
some formulation for releasing the specific amount. That is why we wish to release the CO from its
origin—a parent element requiring some administration to lose its grip for holding CO. The toxicity
and lacking selectivity of tissue cells of CORMs derived from transition metal carbonyl complex are
challenges to develop the clinical agent. To address this issue, developers are shifting from CORMs to
CORMats (Table 1).

Table 1. The different administrations of CO for therapeutic purpose.

Sr. No. Strategic
Advantages CO CORMs CORMats

(This Work)

1 Therapeutic ways Direct insertion Indirect insertion Indirect insertion
2 Constructability Not recommended Possible Possible

3 Controllability
Proper

arrangement
required

Possible Possible

4 Administration
capability

Proper
arrangement

(In-need hospital)
Itinerant Itinerant

5 Loading capability High Low Controllable

6 Specific equipment Yes No special requirement
(Just orally intake)

No special requirement
(Just orally intake)

7 Targeting tissue
facility Nearly impossible Feasible, moderate

Control Feasible, more Control

8 Tissue selectivity Not prefer Prefer Confident
9 Toxicity of MMCs Not present Difficult to control Reduced toxicity

10 Tissue receptor Impossible Need special
arrangement Easy to modified

Several Scaffold/conjugate formulations have been introduced, and are still under investigation
to employ compatible conjugate CORMats (Ru-, Mn-, Fe-, metal carbonyl complexes) through
various nano-transporting services such as micellar system [15–17], peptide [18–23], vitamins [24–27],
polymer [28,29], protein [30–34], iron MOFs [35], nanofiber gel [21], inorganic hybrid scaffolds [36–39],
and metallodendrimers [40]. Furthermore, the metal residue after CO releasing inevitably accumulates
and dissociated non-carbonyl ligand fragments are probably involved in unpredicted biological toxicity.
This metal residue can be managed through an appropriate framework. The development of the solid
CO precursor in tandem with peculiar trigger for releasing the enclosed CO gas commodity is an
imperative research motive.
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Clay minerals are widely used as excipients and active agents in pharmaceutical products. In
recent years, clay has been proposed as a very useful material for modulating the drug delivery based
on its high retention capacity as well as better swelling and colloidal properties. Clay minerals are
naturally occurring inorganic cation exchangers. So, it might be involved in ion exchange reactions
with the essential drugs in solution and can be continuously biodegraded by the body organism,
especially montmorillonite (MMT) and saponite.

While discussing the montmorillonite intercalation exclusive features, the exfoliation of
montmorillonite layers is one of the prime aspects in understanding the ongoing mechanism in
it [41]. This exfoliation is usually facilitated by different solvent interactions i.e., poly(ethylene glycol)
because of cation exchange capacity (CEC) [42,43]. The as-synthesized morphology has already been
thoroughly investigated by different instrumental techniques and computer simulations [44,45]. For
computer simulation, Material studio is one of the interesting tools to elaborate it (Figure 1) [46]. Our
research team envisioned the CEC analogy while paying attention to reducing the toxic nature [47]. MMT
is a biocompatible substance and widely used for many applications such as pharmaceuticals [48,49],
medicines, drugs [50,51], organo-clay [52,53] and nanoclay [54,55].
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Figure 1. The intercalation of CO-releasing molecule-2 (CORM-2) [Ru(CO)3Cl2]2 inside the
Montmorillonite (MMT) layers presented through Material Studio software.

The construction of new CORMats is highly dependent on the characteristics of the precursor
materials. MMT has a strong capability to absorb the metal carbonyl complexes (MCCs). The
nanoporous and nanostructured MMT consists of the layered structure with octahedral and tetrahedral
alumino-silicate sheet of T-O-T layers [56]. The MMT layered structure has to exfoliate via cation
exchange capacity (CEC) [42], which might be helpful to incorporate CORMs commodity. The
electro-kinetic and rheological characteristics of poly(ethylene glycol) into MMT interlayers favors the
exfoliation [42]. The intercalation of polymer with MMT [57] and organically modified MMT drew
our research team attention [58] to find MMT incorporating capability to apply it for CO-releasing
strategic partnership.

In the beginning, CO is induced in Ruthenium-organometallic complex through a carbonylation
reduction reaction of RuCl3. RuCl3 is firstly transformed into [Ru(CO)2Cl]2 in a solvent of ethylene
glycol monomethyl ether or ethylene glycol ether at a temperature of 80 ◦C. By proceeding the
reaction mechanism, [Ru(CO)2Cl]2 change into [Ru(CO)3Cl2]2 (desire product) at a temperature of
135 ◦C. Meanwhile, HCl and H2O are generated as by-products. The whole process was carried
out though a fast CO gas stream before the temperature reaches to 80 ◦C (Figure 2, Step 1). In the
second and final step; the carbonyl complex of ruthenium complexes with the hydroxyl group in
Na-MMT release the CO from clay MMT-RuClx(CO)y (Figure 2, Step 2). Different solvents have shown
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different degrees of exfoliation and adsorption that pursue the intercalation. Solvent is important for
exfoliation to incorporate with different solvents. It possesses different characteristics according to the
fabrication of CORMs. Furthermore, this layers stretching played a vital role for the ruthenium-loaded
interlayer of MMT. The reaction mechanism can be classified into two different routes because the
carbonylation reduction mechanism is independent and is a reversible reaction. Whereas the ruthenium
carbonyl is easy to load inside the MMT layers after successfully fabricating it with the support of
appropriate solvent.
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intercalates the CORM-2 inside the montmorillonite (MMT) layers (Step 2).

After releasing the CO fragment, MMT layered structure has the ability to contain the transition
metal residue inside the layers spacing [59]. As a result, we are able to restrict the toxicity of MCCs.
Thus we claimed the safe releasing mechanism with biocompatibility. Moreover, porosity, microscopic
level diffusion rate [60], swelling capability [61,62] and degree of penetration together with adsorption
characteristic [63] facilitate the MMT for scaffolding. We are going to present the novel transport
drug services montmorillonite that is already reported as a safe way of curing keeping in view all the
aforementioned challenges and demanding features of prerequisite pro-drug.

2. Characterization Techniques

2.1. Infrared Spectroscopy (IR)

The reaction mechanism is monitored through Infrared spectroscopy. When carbonylation is
completed using ethylene glycol monomethyl ether as solvent (Ru@MMT-1), the ruthenium metal
carbonyl coordination appears at 1986 and 2058 cm−1 absorption bands. Furthermore, the absorption
band at 3631 cm−1 is caused by the stretching vibration of the hydroxyl group in the Al-OH and the
vibration of the Si-O-Si skeleton has been found at 1042 cm−1 band (Figure 3A). When solvent is
replaced with ethylene glycol ether (Ru@MMT-2) same observation has been monitored with slightly
different absorption bands. The 2072 and 2003 cm−1 band referred to the ruthenium metal carbonyl
coordination. The 3628 cm−1 band is caused by the stretching vibration of the hydroxyl group in the
Al-OH, and the Si-O-Si skeleton vibration at 1036 cm−1 band as shown in IR spectra (Figure 3B).
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2.2. Scanning Electron Microscopy (SEM)

SEM images of sodium montmorillonite after CORM-2 intercalation (Ru@MMT-1, Ru@MMT-2)
are shown in Figure 4. It has been clearly identified that the montmorillonite layered structure has not
been damaged. Since some particles were rearranged but did not lose their crystallinity as was in the
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2.3. Transmission Electron Microscope (TEM)

SEM provided the information about the montmorillonite layer structure confirming that it has not
been destroyed. However, the interlayers’ interaction can be explained by performing the Transmission
electron microscope (TEM) analysis. TEM provided the collection of data at microscopic level (crystal
lattice) to analyze the structural transformation of MMT, surface properties and layers interaction with
COMR-2 through different solvent. The characterization of natural montmorillonite explained by the
particle morphology that could be specific to the different genesis along with wide spread of welted
edges, might be helpful for obtaining lattice visualization. We found no significant contrast at 200 nm
scale-bars among montmorillonite, Ru@MMT-1 and Ru@MMT-2 (Figure 5). Through TEM images we
can conclude that flakes of MMT persist before and after synthesis. Simply we can say that the layered
structure has not been transformed. On the other hand, we can be assuming that layered structure
involved in cation-exchange at different octahedral and tetrahedral edges of MMT.Int. J. Mol. Sci. 2019, 20, x 7 of 17 
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2.4. X-Ray Diffraction (X-ray)

After the confirmation of layered structure, the layered exfoliation was investigated through
X-ray diffraction; this exfoliation helps to understand the intercalation strategy. Using X-ray we found
the diffraction of montmorillonite, Ru@MMT-1 and Ru@MMT-2; the characteristic peaks at 5.7 and
5.6 degree confirms the structure of material (Figure 6). The montmorillonite has been exfoliated and
this layers exfoliation is helpful for the carbonylation and Ruthenium insertion.
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Figure 6. The X-ray diffraction (X-ray) observed the characteristic peaks of Ru@MMT-1 and Ru@MMT-2
at 5.7 and 5.6 degree as a consequence of exfoliation.

2.5. Thermogravimetric Analysis (TGA)

The montmorillonite peeling layer was further characterized by thermogravimetric analysis
(TGA) to observe the adsorbed quantity inside the layer. For MMT, the weight loss rate in the
first step of weightlessness was 3.9% due to the loss of coordination water in the MMT layered
structure. The TGA characterization of Ru@MMT-1 and Ru@MMT-2 showed a decrease in mass
with increases in temperature, and the weight loss was greater at the initial stage due to solvent
volatilization, loss of coordination water and cleavage of Ru-CO bond, and their corresponding weight
loss rate were 15.5% and 12.1% respectively (Figure 7). After the temperature reached at 200 ◦C, the
thermogravimetric curves of Ru@MMT-1 and Ru@MMT-2 were similar to the thermogravimetric curve
of montmorillonite, indicated that the coordination bond on Ru@MMT-1 and Ru@MMT-2 were no
longer cracked, meanwhile layered structure of montmorillonite itself prolonged. The TGA describes
that the adsorbed content decreased under the temperature gradient and explains the temperature limit
of the reaction. This figure helps to understand the temperature profile of Ru@MMT-1 and Ru@MMT-2
too. Eventually, it can be observed that solvent molecules have been adsorbed inside the layers of
MMT, which is confirmed in corresponding to the XRD results.
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2.6. Energy-Dispersive X-Ray Spectroscopy (EDX)

EDX spectroscopy was used to analyze the elemental composition of nanoparticles between the
layered structures. EDX energy spectrum of both the products and the MMT was used to compare
their elemental content (Figure 8). It is found that the metal content of Mg, Al, Si, Fe, and Pd have
been reduced in final product as compared to the energy spectrum of pure MMT. The total amount of
reduction (Ru@MMT-1: 8.21%, Ru@MMT-2: 14.57%) is greater than the mass percentage of Ruthenium
metal content (Ru@MMT-1: 5.38%, Ru@MMT-2: 4.18%), which indicated that there must be cation
exchange occurred between the MMT layers (Table 2). It can be assumed that Ru element entering the
MMT layers and corresponding cations of these elements were also exchanged with H+ in the solvent.
According to the EDX spectrum, Ruthenium content ratio present in Ru@MMT-1 and Ru@MMT-2 as
9:1 and 4:1 respectively (calculated from 0.3 mg of product).
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Table 2. The comparison of main element content is present in two products before and after degradation.

Mass Percentage
[Wt%] 1 MMT 2 Before Degradation After Degradation

Ru@MMT-1 Ru@MMT-2 Ru@MMT-1 Ru@MMT-2

Mg 2.26 1.81 1.41 1.99 1.87
Al 10.54 8.99 7.34 12.44 13.01
Si 34.40 29.72 25.76 40.15 38.04
Ru 0.00 5.38 4.18 3.81 2.71

1 EDAX ZAF Quantification Standardles, 2 montmorillonite before treated.

2.7. Myoglobin Assay (Mb)

To test whether the [Ru(CO)3Cl2]2-functionalized montmorillonite might be appropriate for the
liberating agent of carbon monoxide to the biological environment. CO released mechanism was
studied through standard myoglobin assay [64]. For that prospective, horse skeletal myoglobin (Mb)
(a phosphate-buffered aqueous solution PBS, pH~7.4) was freshly reduced deoxy-Mb (dMb) through
excess sodium dithionite (Na2S2O4) under nitrogen environment, after metal-carbonyl [Ru(CO)3Cl2]2

-functionalized montmorillonite was added. When CO gas is passed into dMb solution, color of the
solution turns red then the spectrum of the saturated Mb-CO at different concentration (0.3 mg a,
0.5 mg b, and 1 mg c) is tested as illustrated in kinetic release profile (Figure 9). Ru@MMT-1 has been
observed to release the maximum amount of CO at 18.36 uM (a), 22.788 uM (b), and 37.612 uM (c) and
their half-lives were recorded as 10 min, 12 min, and 11 min respectively (Figure 9A). We observed that
as the concentration of Ru@MMT-1 was increased then amount of CO released also increased without
too much affecting their half-lives. But, In Ru@MMT-2 half-lives became shorter and showed fastest
release the CO molecules in 14 min (a), 12 min (b), and 1 min (c) (Figure 9B). Although, CO released
quantity increased when the concentration was increased such as 30.170 uM (a), 31.064 uM (b), and
42.461 uM (c). In comparison, the half-life of CORM-3 is 3.6 min when anticipate with plasma [65], but
Ru@MMT-1 and Ru@MMT-2 has a greater half-life, indicating that MMT has excellent sustained effect.Int. J. Mol. Sci. 2019, 20, x 10 of 17 
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3. Discussion

IR spectrum shows the ruthenium metal carbonyl coordination at different CO absorption bands
(1986 ~ 2058 cm−1). Coordination of carbonyl complexes compared with various other CORMs infrared
spectroscopy data such as Sawhorse CORM (1942, 1972 and 2026 cm−1) [66] and [Mn(tpm(CO)3]+

(1941 and 2047 cm−1) [13]. This CO insertion was caused by MMT layers exfoliation. The MMT
layered behavior was explained through XRD and TG analysis. The XRD diffraction showed the layers
diffraction (Ø) deviated from 7.3◦ to 5.7◦ and 5.6◦. This diffraction is associated with the basal spacing.
It also confirmed the enlarged interlayer spacing of MMT. This layers stretching is also monitored
from the temperature gradient profile of TG curves. At 200 ◦C, weight loss rate of Ru@MMT-1 and
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Ru@MMT-2 were 15.5% and 12.1% respectively. Strategically Ru@MMT-2 has more molecular weight
of solvent than Ru@MMT-1, but weight loss of Ru@MMT-1 is greater than Ru@MMT-2, we can assume
that Ru@MMT-1 adsorb more solvent than Ru@MMT-2. MMT exclusive feature of the adsorption is
also described through the TG analysis. The layered structures formation is observed form the SEM
and TEM images.

EDX spectrum analysis confirmed the Ruthenium presence in [Ru(CO)3Cl2]2 -functionalized
montmorillonite. According to the EDX spectrum, the mass percentage (Wt%) of the ruthenium
element contained in the two samples were 5.38% and 4.18% respectively (Table 3). In comparison
with EDX spectrum data of pure Na-MMT, it was found that the amount of Ruthenium present in the
two products, we consider 0.3 mg sample of each product. It can be seen that the ratio of ruthenium
element to carbonyl group in the two samples is about 9:1 and 4:1, respectively.

N1 = 0.0003 ∗ 5.38% g/101.07g mol−1 = 0.1597 umol.

N2 = 0.0003 ∗ 4.18% g/101.07g mol−1 = 0.1240 umol.

Table 3. The detail EDX spectrum data analysis of Ru@MMT-1 and Ru@MMT-2 compared with
pure Na-MMT.

Elements 1 Montmorillonite 2 Ru@MMT-1 Ru@MMT-2

Wt [%] At [%] Wt [%] At [%] Wt [%] At [%]

O K 43.20 58.07 35.55 55.33 33.20 46.29
Na K 02.41 02.25 02.97 03.21 02.40 02.33
Mg K 02.26 02.00 01.81 01.85 01.41 01.30
Al K 10.54 08.40 08.99 08.30 07.34 06.07
Si K 34.40 26.34 29.72 26.35 25.76 20.46
Pd L 01.35 00.27 00.63 00.15 00.15 00.03
Ca K 01.98 01.06 02.06 01.28 01.52 00.85
Fe K 03.15 01.21 01.53 00.68 01.27 00.51
Ru L 0.00 0.00 05.38 01.33 04.18 00.92

1 EDAX ZAF Quantification Standardles, 2 montmorillonite before treatment.

Considering the release kinetic curve at two different concentrations of 0.3 mg sample product
(Figure 9), it can be seen that the equilibrium concentrations of Mb-CO were 18 uM and 28 uM
respectively. The volume of Mb-CO is 1000 uL. Thus, the amount of Mb-CO is 0.018 and 0.028 umol
respectively. According to the relationship of CO + Mb→Mb-CO, it was calculated that the amounts
of carbonyl groups contained in the two products were 0.018 umol and 0.028 umol respectively
(back-calculation). As the concentration of Ru@MMT-1 increases, the released CO amount also
increased, although their half-life was relatively close to each other. In the case of Ru@MMT-2, as
the concentration increases, the released CO amount also increased. Thus, the releasing mechanism
becomes faster and faster. Compared with CORM-3 half-life (3.6 min, we found that CO-MMT has a
higher half-lives indicating that MMT has a better-sustained release effect.

The broad scope of Ru@MMT CO-releasing segment has many advantages over different
established transport services. Materials such as graphene oxide sheet (GO nanosheet) and metal
organic framework (MOFs) are unable to contain the toxic metal fragment and metal leaching dilemma,
which becomes a challenge for therapeutic applications.
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4. Materials and Synthesis Procedure

4.1. Materials

Montmorillonite, RuCl3, ethylene glycol monomethyl ether and ethylene glycol ether were
purchased from Aldrich. All chemical used in this study were reagent grade. For carbonylation
reduction mechanism, firstly inert environment of N2 gas was used and then switched to CO gas.

4.2. Characterization

4.2.1. General Remarks

We used oven-dried Schlenk glassware for carrying out reactions mechanism under pure nitrogen
atmosphere. The reaction vessels were covered by wrapping foil if required. Rotary evaporator
RV 10 digital (Janke & Kunkel KG.IKA-Werk Company, Staufen Germany) was used to dry the
product sample. Infra-red spectra were recorded on Bruker Tensor 27 IR spectrometer. Environmental
scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) were performed
on a FEI Quanta 200 microscope equipped with an EDX spectroscopy at an accelerating voltage
of 30 KeV. Transmission electron microscope (TEM) was performed at JEM-2100 (Japan Company,
Tokyo, Japan). X-Ray diffraction (XRD) was monitored by Burker D8 Quest (Burker, Karlsruhe,
Germany). Thermogravimetric analyses (TGA) were performed at Q1000DSC + LNCS + FACS
Q600SDT (American TA Company, New Castle, USA). The UV-Visible spectra were recorded at Japan
company U-3900/3900H with high-resolution concave diffraction and high-sensitivity photomultiplier
tube detector (wavelength range is about 190~900 nm).

4.2.2. Preparation Ru@MMT-1

Add 0.0588g of RuCl3 and 20 mL ethylene glycol monomethyl ether to a three-necked flask,
one port of flask is attached with condenser to regulate the temperate mechanism and another one
is connected with the gas connection (N2/CO cylinders) for continues supply of gas to the reaction
vessel. Meanwhile, we placed it at the heating plate. After-that, supply of N2 gas was opened for
environment change (ensure the inert environment) and switched to CO at moderate rate (2 bubbles/s).
Then heating system was turned and confirming the condenser reflux circulation and activate the
magnetic stirrer at the rate of 570 rpm. After the adjustment of the whole apparatus, the oil temperature
was set 80 ◦C. When the temperature reached at exactly 80 ◦C, then the reaction was carried out for
35 min. At the end of that time lapse, we observed that the physical appearance of the reactant has
been changed, color of the solution changed from brownish black to blood red, confirming the chemical
changes. At last, 1.0190 g of sodium montmorillonite (Na-MMT) was added to continue the reaction
for 30 more minutes, until the color of the solution turned into egg yellow. After observing the yellow
appearance the heating was stopped and mixture was cooled down to room temperature. The product
was transferred into a round bottom flask. The flask was placed into rotary evaporator for drying. We
obtained a pale grayish green solid Ru@MMT-1 of 1.1201 g. Finally, the as-obtained sample was sealed
and stored at low temperature.

4.2.3. Preparation Ru@MMT-2

The same procedure was repeated with different solvent ethylene glycol diethyl ether for produces
the Ru@MMT-2. After the adjustment of the whole apparatus, oil temperature was set 80 ◦C. When
the temperature reached at 80 ◦C, the reaction was carried out for 35 min until color of the solution
changed from brownish black to blood red, confirming the chemical changes. Then temperature was
raised to 135 ◦C for 20 min until the solution turned into golden yellow, then the temperature was
lowered to 75 ◦C. At last, 1.0190 g of sodium montmorillonite (Na-MMT) was added to continue the
reaction for 20 min, until the color of the solution turned into egg yellow. After observing the yellow
appearance the heating was stopped and mixture was cooled down to room temperature. The product
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was transferred into a round bottom flask. The flask was placed into rotary evaporator for drying. We
obtained a light gray green solid Ru@MMT-2 of 1.0247 g. Finally, the as prepared sample was sealed
and stored at low temperature.

4.3. Myoglobin Assay for CO Kinetics Profile

Myoglobin (Mb) method was used to determine the CO release kinetics of [Ru(CO)3Cl2]2

-functionalized montmorillonite. The release of carbon monoxide by CORM was monitored by
ultraviolet (Q-band region) absorption spectroscopy of deoxy-Mb→carbon-oxymyoglobin (Mb-CO)
changes. The liberated CO molecules from the nanocomposite, bind with Mb to form MbCO; and thus
the concentration of Mb-CO was quantitatively determined by measuring the change in absorbance
from 500 nm to 600 nm UV spectrums. 10 mg of horse skeletal muscle myoglobin (Mb) was dissolved
in 5 mL volumetric flask of phosphate-buffered saline (PBS) (0.1 M, pH = 7.4) and located into quartz
cuvette (l = 1 cm). Then UV spectroscopic background was established. For this purpose, add PBS
buffer solution to the two cuvettes and record the UV spectrum from 500 nm to 600 nm for completing
the background correction to ensure the baseline is zero, which was used as background spectrum for
reference. After that, the solution has to degas through bubbling of dinitrogen. Since, the myoglobin
was reduced to deoxy-Mb by the excess addition of 100 µL sodium dithionite Na2S2O4, then charge into
same solvent with total volume 990 µL (0.1% saturation), and recorded the UV/Vis absorption spectrum
of the reduced myoglobin (deoxy-Mb, dMb). When the sufficient amount of carbon monoxide gas was
bubbled into the mixture (0.1% saturated solution), then color of the solution turns red. After that, the
spectrum test of saturated Mb-CO has been carried out. 1000 uL (1 mL) of dMb solution was obtained
and the nanocomposites (about 0.3 mg CORMats sample) were quantitatively uniformly dispersed in
the transport solvent dimethylsulfoxide (DMSO) with the minimum amount. After mixing quickly,
5–6 drops of paraffin oil were added to prevent CO from spillage and deoxy-Mb from being oxidized
again. Hence, the final concentration was maintained up to 1 mM of sodium dithionite (Na2S2O4)
and 4 mM, 8 mM and 12 mM of prepared DMSO mother liquors along 20 µM, 40 µM and 60 µM
of myoglobin. The cuvettes were placed in the UV spectrophotometer sample chamber and started
recording the spectrum until no longer significantly changes in spectrum variation appeared. For
measuring the CO-MMT kinetic release profile, the same procedure was repeated with two products
Ru@MMT-1 and Ru@MMT-2 at different concentrations 0.3 mg, 0.5 mg, and 1 mg respectively. The
same sample of the same concentration was treated with the same Mb solution.

5. Conclusions

Based on transition metal carbonyl compounds of carbon monoxide- releasing molecules in the
hypertension, lung damage and organ allograft rejection interventional treatment such effect is obvious,
has successfully replaced carbon monoxide gas fields of biomedical research to become the new hot
spot. But the toxicity of such release molecule itself and the release of toxic metal residues limit its
application as a therapeutic drug precursor. This paper for the first time presents the pharmaceutical
clay montmorillonite and deliberated as new class of carbon monoxide-releasing materials (CORMats)
by successfully incorporating with CORM-2 and exhibited the good bio-compatibility as well. MMT is
the first biocompatible material to capture the CO for therapeutic release. MMT is already prescribed
in so many drugs formulations. The main advantage of using MMT is to reduce the toxicity of MCCs.
Firstly, the crystalline layer structure of MMT has been exfoliated using solvent penetration then cation
exchanged capability favors the ion exchange between the MMT layers and CORM-2′s commodity
either swapping or inserting. SEM and TEM images confirmed the layered structure. The Ruthenium
metal carbonyl coordination has been verified by IR spectroscopy using absorption bands at 1986 cm−1,
2058cm−1 (Ru@MMT-1) and 2072 cm−1, 2003 cm−1 (Ru@MMT-2). The XRD characterized the layered
exfoliation using diffraction parameter. EDX analysis assured the Ruthenium presence (Ru@MMT-1:
5.38%, Ru@MMT-2: 4.18%) and myoglobin assay acknowledged the CO liberation to biological system.
The determination of CO sustained release shows that the CO releasing rate of prepared CO-MMT
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(maximum half-live ~ 14 min) has been much higher than CORM-3 (3.6 min) with an excellent sustained
release effect. The heavy metal adsorption of montmorillonite could end up solving transition metal
carbonyl compounds release problem of residual heavy metal ions; thus providing a treatment for
carbon monoxide-releasing new material. The metal leaching and reduced the toxicity of MCCs have
been well addressed in this article.

CO has therapeutic potential for Ulcerative Colitis disease and MMT has the ability to transport
the CO analogous to diseased organs. Hence, the biocompatible pharmaceutical drug MMT has a
potential for curing the murine colitis disorders. In the future, we will present the clinical study about
Ulcerative Colitis in rats.
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