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In the past 10 years, the world has witnessed the revolutionary development of X-ray free electron
lasers (XFELs) and their applications in many scientific disciplinaries [1]. Lasers at wavelengths such
as the visible light regime have been broadly applied in scientific research, industry, and even in
daily life, mainly by utilizing the ‘bound’ electrons transiting from higher energy quantum states to
lower states, but this mechanism limits the energy range of the emitted photons. The X-ray lasers
became possible by passing high energy ‘free’ electrons through periodic alternating magnetic fields [2].
The commissioning of the Linac Coherent Light Source (LCLS) in 2009 marks a milestone for both laser
and hard X-ray technologies [3]: the dream of X-ray lasers came true, and the constructions of several
other multi-billion-dollar XFEL facilities immediately followed (see [4] and Figure 1 for the updated
laser guns). XFELs produce fully coherent, ultrabright, femtosecond X-ray pulses (each containing
about 1 × 1011–1 × 1012 photons), boosting the peak brilliance of X-ray sources by about 10 billion
times compared to the third generation synchrotrons. The unprecedented bright X-ray beams have
been applied to determine electron density distributions and electronic structures.
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Figure 1. A map of X-ray free electron laser (XFEL) facilities. Five of these are in operation (red circles), 
and two facilities (Linac Coherent Light Source (LCLS)-II and Shanghai HIgh repetition rate XFEL 
aNd Extreme light facility (SHINE), orange circles) are designed to operate at 1 MHz in continuous 
wave (CW) mode, in contrast to the long pulse (LP) mode in Eu-XFEL. 

Figure 1. A map of X-ray free electron laser (XFEL) facilities. Five of these are in operation (red circles),
and two facilities (Linac Coherent Light Source (LCLS)-II and Shanghai HIgh repetition rate XFEL aNd
Extreme light facility (SHINE), orange circles) are designed to operate at 1 MHz in continuous wave
(CW) mode, in contrast to the long pulse (LP) mode in Eu-XFEL.
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Thanks to the femtosecond X-ray laser pulses, experiments can be carried out in the so-called
‘diffraction-before-destruction’ mode (Figure 2): the X-ray beams are so bright that they destroy the
samples after each exposure, yet the pulses are so short that the measurement (exposure) is finished
before the onset of radiation damage [5–8]. Furthermore, experimental data have shown that the
diffraction signals have a self-terminating nature when measured using XFEL pulses, i.e., the diffraction
intensity would fade out as the crystalline orders are damaged by the X-ray radiation [9]. The X-ray
wavelength is highly tunable at XFEL facilities, and even two-color X-rays can be generated by specially
designed undulators [10]. These advancements make it possible to measure the anomalous diffraction
signals for experimental phasing purposes [11] and the dynamic nature of protein at room temperature.
One major application of XFEL protein crystallography is the structure determination of membrane
proteins, which are naturally good targets for drug development. The atomic resolution structures of
several important G-protein coupled receptor (GPCR) proteins have been resolved using the XFEL
serial femtosecond crystallography (SFX) method [12,13]. Given the fast development of this emerging
technology, four excellent articles related to XFEL protein crystallography are selected and published
in this special issue.

There are four essential components in XFEL protein crystallography: (1) batched microcrystal
sample preparation; (2) sample delivery and manipulation; (3) XFEL and instrument operation for
diffraction data collection; and (4) data analysis and model interpretation. Four articles nicely cover
components (1), (2) and (4). The sample delivery methods are summarized by Nam, with a focus on
the sample delivery medium that carries the crystals to the XFEL interaction volume [14]. The sample
preparations are well presented in the articles on XFEL applications in determining the structure
and dynamics of the HIV integrase catalytic core domain (CCD) [15] and the HIV-1 Gag matrix
domain with inositol hexaphosphate (MA-IP6) [16]. XFEL protein crystallography not only determines
high resolution structures of proteins, but also reveals the time-stamped conformational changes of
proteins. Schmidt reviews the time-resolved SFX using XFELs to study the ultrafast dynamics of
protein molecules [17]. Data analysis has been a challenging task for time-resolved SFX because of the
complexities raised in the pumping methods and the electron density re-arrangement upon pumping.
The analysis protocol using extrapolated structure factors and model refinement provides a systematic
approach to convert experimental data to dynamics information.

Compared to conventional crystallography, the SFX at XFELs has a few differences:

1. Each crystal usually results from a single diffraction pattern within tens of femtoseconds of
exposure time, so the measured intensity for each reflection in a single pattern is incomplete
(inaccurate) due to the excited volume defined by the overlapped region between the thin Ewald
shell and the full reflection volume. Therefore, a high measurement redundancy is desirable
for accurate diffraction intensity. This can be achieved by the high repetition rates of XFEL
pulses. The processing of large data volumes requires special software for screening [18–20],
auto-indexing [21–23], merging and also post-refinement, as summarized in [24].

2. With the ‘diffraction-before-destruction’ approach, the cryogenic protection of crystals is not
required, so the experiments can be done with the samples at room temperature (if the temperature
changes during the injection can be neglected). Therefore, the structures might be different from
those determined at synchrotrons in some regions, as discussed by Park et al. in the HIV-CCD
structure analysis [15]. Such comparisons may provide important clues for the understanding of
protein functions and how they may apply to drug development [25].

3. With the femtosecond XFEL pulses, the temporal resolution can also reach the femtosecond time
scale in theory, making it possible to study ultrafast dynamics. Light-triggered reactions are very
suitable for time resolved SFX, revealing conformational changes down to a sub-picosecond time
scale [26,27]. Enzymatic reactions or receptor conformational changes triggered by substrate
binding are possible by using a fast mixing device or premixed solution of engineered substrates
that are photocaged, although the time resolution will be limited to a longer time scale [28,29].
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4. The ultimate goal of structure studies is to probe structure information from single molecules using
XFELs, similar to the cryogenic electron microscopy method. Even with the most powerful XFELs,
the resolution for single particle imaging can only reach a few nanometers for viruses [30,31].
Nonetheless, the ensemble measurement can yield interpretable solution scattering signals,
providing dynamics information when combined with pump–probe technology [32,33].

The protein crystallography at XFELs has shown encouraging results—127 structures were found
using XFEL as the searching keyword in the protein data bank when this manuscript was prepared.
We would anticipate more structures reported using the XFEL crystallography method as several
X-ray lasers are commissioned. Two super-XFELs, the LCLS-II in USA and the SHINE in China,
each designed to produce up to 1 million XFEL pulses per second, are under construction. More
excitingly, the time resolved crystallography at XFELs will capture the conformations of proteins
in-action, producing three-dimensional (3D) molecular movies to reveal the functioning state down to
atomic levels.
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Figure 2. The workflow for protein crystallography at XFELs. The upper panel shows the forward
process: high energy electrons produce coherent X-ray pulses that intercept microcrystals delivered via
the injecting method, resulting in diffraction signals. The lower panel shows the data analysis and model
interpretation, i.e., the inverse problem, to be solved using computational modeling methods. The
pumping laser (purple dashed line) can be included for time-resolved experiments (Figure reproduced
from [24] with permission).
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