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Abstract: Arsenic (As) contamination affects hundreds of millions of people globally. Although the
number of patients with chronic As exposure is large, the symptoms and long-term clinical courses
of the patients remain unclear. In addition to reviewing the literature on As contamination and
toxicity, we provide useful clinical information on medical care for As-exposed patients. Further,
As metabolite pathways, toxicity, speculated toxicity mechanisms, and clinical neurological symptoms
are documented. Several mechanisms that seem to play key roles in As-induced neurotoxicity,
including oxidative stress, apoptosis, thiamine deficiency, and decreased acetyl cholinesterase activity,
are described. The observed neurotoxicity predominantly affects peripheral nerves in sensory fibers,
with a lesser effect on motor fibers. A sural nerve biopsy showed the axonal degeneration of peripheral
nerves mainly in small myelinated and unmyelinated fibers. Exposure to high concentrations of As
causes severe central nervous system impairment in infants, but no or minimal impairment in adults.
The exposure dose–response relationship was observed in various organs including neurological
systems. The symptoms caused by heavy metal pollution (including As) are often nonspecific.
Therefore, in order to recognize patients experiencing health problems caused by As, a multifaceted
approach is needed, including not only clinicians, but also specialists from multiple fields.
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1. Introduction

Arsenic (As) has a long history of use as a pigment and as a homicidal agent. However, in the
past 100 years, As has been used as a pesticide, medicine, and component of a number of products [1].
As the global population increasingly relies on aquifers for drinking water, and because some aquifers
are contaminated by heavy metals, the population exposed to As has increased dramatically [2].
In addition, reliance on the excavation of deep strata when mining rare metals has increased human
contact with heavy metals. Volcanic eruptions can also affect heavy metal exposure, and together, these
causes dramatically increase the chances of human contact with heavy metals in amounts far above
acceptable thresholds for human health.

Among heavy metals, As is attracting media attention owing to its high toxicity. At least
140 million people in more than 50 countries are exposed to As-contaminated drinking water [3].
However, although a small number of acute As exposure patients have been studied in detail, relatively
few studies have been performed on a detailed neuropathy of patients chronically exposed to As [4–6].
Although patients with chronic As exposure are numerous, their symptoms and clinical courses remain
unclear. Medical care of patients with chronic As exposure is often performed through trial and error.
In this review, we describe not only the research on As toxicity, but also clinical aspects and case studies
with the goal to make this review useful to physicians who examine patients with arsenicosis as well
as to researchers.
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2. Arsenic in the Environment

Arsenic is widely distributed throughout the earth. In the crust, it often exists in its trivalent
atomic state, inorganic As (III), together with other metals such as copper, lead, and iron. In soil
and water, it is generally oxidized to pentavalent As (V). In low oxygen environments, such as deep
well water or deep seawater, it is reduced to trivalent As (III). Sea water has an As concentration of
approximately 2 ppb [7], whereas rain and river water have almost 0 ppb [6]. Despite these levels,
the area most prescient for researchers remains As contamination of aquifers due to exposure risk.

Arsenic accumulation in animals sheds light on the significance of the different chemical species
of As. Land animals contain 0.06–0.4 ppm of As, whereas fish and shellfishes contain 0.78–25 ppm [8].
Although the As quantities in fish and shellfish are much higher than that in land animals, the form
in fish and shellfish is mostly organic As of arsenobetaine (C5H11AsO2). Arsenobetaine is neither
metabolized by nor accumulated in humans, and thus, it is considered non-toxic to humans [9].

3. Arsenic Metabolic Pathway and Toxicity

3.1. Metabolic Pathway

Arsenic metabolites exist both in organic and inorganic forms, and both types can exist in either
trivalent or pentavalent oxidation states. Thus, there are a variety of molecular species that have
different biological effects, which further complicates diagnoses.

The exact metabolic pathways of As are yet to be confirmed in humans and food animals, although
the proposed metabolic pathway of As is shown in Figure 1 [10,11]. Oxidative methylation and
glutathione conjugation are believed to be the primary pathways of As metabolism [12,13]. Inorganic
As (V) is known to reduce to As (III), which is a prerequisite for methylation in mammals. Inorganic
As (III) is methylated to methylarsonic acid (MMA) and dimethylarsinic acid (DMA) by alternating
the reduction of pentavalent As to trivalent As (Figure 1). In some species (though not in humans),
DMA can be converted into trimethylarsine oxide during oxidative methylation [14].
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The mechanism involved in the oxidation and reduction of As is shown.

In humans, the bioavailability of inorganic As is 60%–87% [15,16], and inorganic As and its
metabolites are mainly excreted in urine and bile. The biological half-life of As is approximately 4 days,
depending on the form: arsenite is believed to have a shorter half-life compared to arsenate [17].
The most frequently detected As compounds in human urine are DMA (V) (40%–80%), MMA
(V) (10%–25%), and inorganic As (10%–30%) [18,19]. Arsenosugar and/or arsenobetaine are other
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concerning forms of As that people may be exposed to when eating algae or seafood—these forms are
excreted in the urine.

3.2. Toxic LD50 Concentrations

Methylation is generally considered to be the primary detoxification pathway for inorganic As,
however, the toxicity levels of inorganic and organic As metabolites are mixed. For example, several
studies have demonstrated that trivalent As is more toxic than the pentavalent state [1]. Trivalent As
compounds, As (III), MMA (III), and DMA (III) are thought to interact with thiol groups of proteins
and enzymes and inhibit the catalytic activity of enzymes [20]. The toxicity of these metabolites were
investigated in Chang human hepatocytes using a lethal dose, 50% (LD50) in the three cytotoxicity
assays (LDH, K+ and XTT) [21]. The order of toxicity obtained was as follows: MMA (III) > As (III)
> As (V) > MMA (V) = DMA (V). Similar findings were observed in another study in which LD50
concentrations of As (III), As (V), MMA (III), MMA (V), DMA (III), and DMA (V) were 50 µM, 180 µM,
8 µM, 60 mM, 8 µM, and 15 mM, respectively [22]. This stands in contrast to other As chemical
species—arsenobetaine and arsenosugar—that were judged as non-toxic. In animal experiments, it was
concluded that MMA (III) and DMA (III) are more toxic than inorganic As compounds and induce
chromosomal mutations but not gene mutations [23].

The residents of Kamisu City, Japan (n = 157) were orally exposed to diphenylarsinic acid (DPAA;
C12H11AsO2) via the ingestion of contaminated groundwater. Subsequently, a clinical syndrome
associated with cerebellar and brainstem symptoms was observed in 20 of the 30 residents who
consumed high concentrations of DPAA in the contaminated well water [24]. After this DPAA leak
accident, the toxicity of organic and inorganic As were examined using human cervical carcinoma HeLa
cells by the Japanese government [25]. Using a relative scale, with the toxic level of DPAA defined as
“1,” the levels of As (III), As (V), MMA (V) and DMA (V) were 96, 5.8, 0.18, and 1.0, respectively.

4. Toxic Mechanisms

The underlying mechanisms of As-induced neurotoxicity mostly remain unknown, though several
mechanisms have been proposed, mainly from animal experiments. Metabolites exert their toxic
effect by inactivating a host of enzymes, especially those involved in the cellular energy pathway as
well as DNA synthesis and repair [26]. Several mechanisms—oxidative stress, thiamine deficiency,
and decreased acetyl cholinesterase activity—seem to play key roles in As-induced neurotoxicity [27,28].

4.1. Mitochondrial Dysfunction

One of the most important mechanisms involved in the neurotoxicity of As is its ability to
cause oxidative stress and mitochondrial dysfunction [29,30]. Arsenic decreased the activities of
mitochondrial complexes I, II-III, and IV in the rat brain and increased the levels of reactive oxygen
species (ROS) [31]. The accumulation of ROS is responsible for lipid bi-layer damage and it causes
mitochondrial swelling and a drop in the membrane potential [32]. It has also been shown that
oxidative stress and mitochondrial dysfunction may cause neurodegeneration [33].

4.2. Lipid Peroxidation

Oxidative stress and the resulting lipid peroxidation are involved in various pathological
states including inflammation, atherosclerosis, neurodegenerative diseases, and cancer [34]. Lipid
peroxidation is a basic cellular deterioration process induced by oxidative stress [35]. Lipid peroxidation
induced by oxidative stress due to As exposure leads to DNA damage and subsequent brain cell death,
and it induces the degeneration of the central nervous system (CNS) [36]. In addition, plasma lipid
peroxidation has been shown to be positively correlated with As levels in urine [37].
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4.3. Apoptosis

Apoptosis is a cellular response to maintain normal cell development and proper function of
multicellular organisms. Arsenic neurotoxicity involves the induction of apoptosis by activating p38
mitogen-activated protein kinase and JNK3 pathways [38]. In another study using HepaRG cells,
the DMA (III) exposure increased the activity of caspase-9, an apoptosis initiator caspase [39]. Exposure
to As reduced rat cerebellar neuron viability and induced nuclear fragmentation and condensation
as well as DNA degradation to oligonucleosome fragments, which are processes associated with
apoptosis. Together, these studies indicate that As-induced apoptosis may be related to As neurotoxicity
in humans.

4.4. Increased Calpain

Inorganic As (III) causes compositional changes in sciatic nerve proteins, such as reduction in
NF-L expression [40]. Furthermore, in vitro studies with various As metabolites have shown that
MMA (V) and DMA (V) affect the expression of neurofilaments and tau genes, but not inorganic As
(III) [41]. In animal experiments, As exposure reduced the expression of the neurofilament protein and
induced destabilization and disruption of the cytoskeletal framework which may eventually lead to
the axonal degeneration of peripheral nerves [42]. It has been speculated that the cleavage of p35 is
caused by calpain activation, which is induced by Ca2+. The inhibition of calpain by calpeptin prevents
the cleavage of p35 to p25. These results suggest that cleavage of p35 to p25 by calpain, likely promotes
As-induced Ca2+-influx, and therefore, it may be the mechanism by which As induces its neurotoxic
effects [41].

4.5. Thiamine Deficiency

The deficiency of thiamine (vitamin B1) induces neuronal complications, and As causes thiamine
deficiency and inhibits pyruvate decarboxylase [43], an enzyme responsible for converting glucose
to energy. Trivalent As inhibits enzyme complexes through ROS. ROS production causes pyruvate
dehydrogenase inactivation through oxidation, which can occur at a much lower concentration than
arsenite binding directly to the critical thiols [44,45]. Axonal neuropathy, which is similar to beriberi
neuropathy or mild Wernicke’s encephalopathy, may be induced by thiamine deficiency and the
inhibition of pyruvate decarboxylase due to As exposure.

4.6. Decreased Acetylcholinesterase Activity

Acetylcholinesterase is one of the many important enzymes needed for the proper functioning
of the human nervous system. In rats, As trioxide significantly decreased the activity of serum
acetylcholinesterase in a dose-dependent manner [46]. The decreased acetylcholinesterase activity
caused cholinergic crisis, which may be associated with peripheral neuropathy or CNS damage [28,46].
There are several possible mechanisms of toxicity, and the correspondence between the mechanisms
and the symptoms remains unclear.

5. Clinical Neurological Symptoms

Peripheral neuropathy due to chronic As exposure is caused by drinking water with As
concentrations as low as 10–50 ppb [6]. The resulting impairment is observed predominantly in
sensory fibers, and less so in motor fibers [5,47]. Sural nerve biopsies revealed a reduction in both
small myelinated and unmyelinated fibers, which occurred with the axonal degeneration of peripheral
nerves [47,48]. CNS impairment may occur at 50 ppb or more in children [49], though in adults, CNS
impairments are only known to be caused by As exposure at high concentrations [50]. Peripheral
neuropathy due to As exposure may recover in the long term, however, CNS impairments are less
likely to recover. Organ damage is related not only to As exposure concentrations, but also to acute or
chronic factors (Figure 2).
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5.1. Acute As Poisoning

Oral exposure to As is associated with gastrointestinal symptoms including cramps, nausea,
vomiting, and diarrhea and with cardiovascular and respiratory symptoms such as hypotension,
shock, pulmonary edema, and heart failure [51]. In acute As poisoning, death is usually due to
cardiovascular collapse and hypovolemic shock. The fatal human dose for ingested As trioxide is
70–300 mg [18,26]. After the ingestion of a lethal dose, death occurs after 12–24 h. Acute As exposure
also includes neurological symptoms such as light-headedness, delirium, encephalopathy, muscle
weakness or cramping, and peripheral neuropathy [52]. Peripheral neuropathy occurs as symmetrical
sensory-motor polyneuropathy one or more weeks after the initial toxic exposure, which usually shows
axonal degeneration but sometimes shows demyelinating polyradiculoneuropathy-like Guillain–Barré
syndrome [53].

5.2. Toroku As Pollution

Toroku is a small village in a narrow valley in Miyazaki prefecture, Japan with a total population
of less than 300. Arsenic was mined intermittently and refined at the Toroku mine between 1920 and
1941 and between 1955 and 1962. The roasters used at the mine’s refinery were primitive and lacked
dust-collecting systems. Therefore, residents were exposed to very high concentration of As via air,
food, water, and skin contact. Dozens of people died at a young age, mainly the workers and residents
near the mine. Although As concentrations in the environment were not measured until 1962, they were
investigated by Miyazaki prefecture in 1972 [54]. The average As concentrations in the neighboring
soil and in the water percolating from the slag were 2,760 mg/kg and 180 mg/L, respectively.

Since 1974, Miyazaki prefecture has been conducting medical examinations for residents in the
district, and according to the data, subjective symptoms such as sensory disturbances, skin lesions,
upper airway symptoms, hearing impairments and dizziness have been present in over 85% of
chronically exposed patients [5]. In terms of sensory impairments, only 30% of the patients were
judged to be objectively abnormal by neurological examination. Studies using somatosensory-evoked
potentials showed that the prolongation of the central sensory conduction time, which indicates
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sequelae in the CNS, may remain even after more than 40 years post-As exposure [50]. Similarly, more
than 40 years after the final As exposure, 50% of the residents had hearing impairment, however, no
significant differences were observed in auditory brainstem response from the normal group [55].
In the determination of sequelae in elderly patients, it is difficult to distinguish them from typical
age-related phenomena.

5.3. Arsenic Poisoning in Morinaga Dry Milk

In the early summer of 1955, physicians in the western part of Japan became worried about
outbreaks of an unusual disease characterized by anorexia, skin pigmentation, diarrhea, vomiting,
fever, and abdominal distention among infants, most less than 12 months of age [56]. It was determined
that Arsenic (V) was inadvertently added to powdered milk products made by the Tokushima plant of
the Morinaga Milk Industry. The company used an alternative low-cost industrial dibasic sodium
phosphate as a stabilizer which was added to the infant powdered milk products. It was found that As
was also used as a catalyst in the manufacturing process. The As concentration in the milk was 4–7 mg/L
(4000–7000 ppb) [56]. The As intake for the exposed infants was estimated to be 1.3–3.6 mg/day, and the
total intake was estimated to be 90–140 mg. In a long-term follow-up study, skin disorders such as
keratosis, as well as central nervous disorders such as deafness, mild brain damage, mental retardation,
and epilepsy remained [56,57]. Generally speaking, neurological impairment induced by As has
been reported as peripheral neuropathy [4,5,58]. However, in the Morinaga milk incident, severe
CNS impairments were induced, likely due to the very high concentration of As and the immature
blood-brain-barrier of the infants.

5.4. Arsenic Contamination in Groundwater

Unfortunately, As contamination in groundwater is now a common phenomenon being reported
from various countries, including Bangladesh, India, Myanmar, Argentina, Chile, China, Hungary,
Mexico, Nepal, Taiwan, the United States, and others. At least 140 million people from 50 countries are
exposed to As through low-dose As-contaminated groundwater at levels above 10 ppb [3]. Several
studies have shown that As exposure induces peripheral neuropathy or neuritis [4,58–60]. The type of
neuropathy caused by such extremely long exposure to low As concentrations in water has gradually
become clear over the last decade. For neurological impairments, it has been suggested that mild
peripheral neuropathy may occur by drinking As-contaminated water at the level of 10 ppb [6]. On the
other hand, there is no study showing that CNS impairments occur due to drinking As-contaminated
groundwater in adults [4,6,61] except the DPAA exposure of the Kamisu city incident [24]. In a
study in Cambodia, neurobehavioral function was found to be affected in the group of children that
consumed more than 50 ppb of As-contaminated drinking water compared to those in the normal
control groups [49]. The long-term prognosis for the above impairments is unknown.

6. Exposure Dose–Response Relationship in Various Organs

Exposure dose–response relationships of As have been described in previous studies [62]. There
are significant As exposure dose–response relationships for the occurrence of skin lesion, internal
malignancies, vascular diseases, and elevated hepatic enzyme levels [62–64]. However, the comparisons
of these studies are difficult because the exposure period is different among these studies, and acute
and chronic As exposure have distinct clinical symptoms [26]. Furthermore, the longer the exposure
period, the lower is the threshold at which organ impairments might occur (Figure 2) [26,61]. However,
the damage and the mechanism of the effects of high As concentrations with short-term exposure
would be different from those of low concentrations with long-term exposure.

In the studies of chronic As exposure, an increased prevalence of skin lesions was observed
in people drinking As-contaminated groundwater at a level of 5–10 ppb [62,65]. In the analysis
of internal malignancies and As exposure, the dose–response relationships for the occurrence of
lung, bladder, and kidney cancers were linear [62,66,67]. A threshold level for inorganic As in the
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drinking water for these cancers is estimated to be between 50 and 150 ppb [68]. In a survey of 1,185
people in the United States, those who consumed As-contaminated water of more than 10 ppb were
statistically more likely to report a history of circulatory problems [69]. Long-term exposure to As
from drinking water has been shown to have a dose–response relationship with an increased risk
of diabetes, mellitus, and hypertension [70]. A significant As exposure dose–response relationship
was also observed in serum hepatic enzyme levels, with statistically higher levels found in subjects
who consumed As-contaminated water of more than 34 ppb [63]. In the context of neurological
impairments, subjective neurological impairments occurred at As contamination levels of around
10 ppb, and objective peripheral nerve disturbances occurred at more than 50 ppb [6].

7. Effect on Children

There are no conclusions as to whether the intake of low concentration As-contaminated drinking
water adversely affects the brain of children. An epidemiological study indicated that CNS impairments
such as cognitive or intellectual deficits were associated with As exposure in children [71–73]. However,
a study in West Bengal showed no association between long-term As exposure in water and intellectual
functions in children [74].

To discuss the effect of As exposure on children, we will contrast a few differences between adults
and children. First, exposure durations in children are shorter than those in adults. If toxic effects
are cumulative, adults would be affected more severely than children. Second, children may have a
higher As methylation capacity than adults [75,76], resulting in more efficient detoxification [76] and a
lower incidence of neuropathy. In fact, in the case of the Wakayama curry-poisoning cases, the majority
of the children were in the process of recovery approximately 1 week to 10 days after the high dose
As-contaminated curry intake, whereas the poisoning symptoms in adults were exacerbated [77].
Third, compared with adults, children have an immature defense system of the blood–brain–barrier
against toxic substances. Therefore, CNS damage due to As may occur easily in children. Therefore,
when determining the reference value of drinking water, it is necessary to carefully consider whether
the value for children is the same as that for adults.

8. Factors to Consider

When considering the effects of As on humans, the degree of injury varies depending on the
route, concentration and duration of exposure, the total amount, and the target organ. Patient factors
such as nutrition, age and general health status may also amplify or diminish the ill effects of As
exposure [78]. The protection provided to the CNS by the blood–brain barrier is impaired if exposed to
high concentrations, however, if exposed to low concentrations, damage may not occur easily, even if
exposed for a long time. Among the damaged organs are those that can be expected to regenerate,
such as peripheral nerves and the liver, and those that are difficult to regenerate, such as the CNS. It is
also necessary to consider the effects of heavy metals other than As. At the As polluted area, there is
often contamination with other toxic heavy metals such as lead, manganese, cadmium, chromium,
uranium, and copper [49,54,79] which may have compounding effects on As contamination.

9. Conclusions

Arsenic-contaminated drinking water has long been a global problem, especially in South Asia.
To evaluate the health damage caused by heavy metals in drinking water, we estimated the residents’
clinical findings based on past data. However, several factors such as exposure route, As quantity,
characteristics of the patients and their organs are intricately intertwined. The emerging symptoms are
often nonspecific and the diagnoses require a different public health approach than the conventional
clinical approach. To determine whether health problems in certain residents or patients caused by As,
a multifaceted approach is needed, including not only clinicians but also specialists from multiple fields.
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