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Abstract: Breast cancer (BC) is the most frequent oncologic cause of death among women and
the improvement of its treatments is compelling. Platinum salts (e.g., carboplatin, cisplatin, and
oxaliplatin) are old drugs still used to treat BC, especially the triple-negative subgroup. However, only
a subset of patients see a concrete benefit from these drugs, raising the question of how to select them
properly. Therefore, predictive biomarkers for platinum salts in BC still represent an unmet clinical
need. Here, we review clinical and preclinical works in order to summarize the current evidence
about predictive or putative platinum salt biomarkers in BC. The association between BRCA1/2 gene
mutations and platinum sensitivity has been largely described. However, beyond the mutations of
these two genes, several other proteins belonging to the homologous recombination pathways have
been linked to platinum response, defining the concept of BRCAness. Several works, here reviewed,
have tried to capture BRCAness through different strategies, such as homologous recombination
deficiency (HRD) score and genetic signatures. Moreover, p53 and its family members (p63 and p73)
might also be used as predictors of platinum response. Finally, we describe the mounting preclinical
evidence regarding base excision repair deficiency as a possible new platinum biomarker.

Keywords: platinum; breast cancer; BRCA; BRCAness; homologous recombination repair; base
excision repair

1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer in women and the first cause of
cancer death in women [1]. Despite recent therapeutic advances, metastatic BC (mBC) remains a lethal
disease, and there is fervent interest in the discovery of new drugs that may change the natural history
of the disease [2]. Currently, BC is classified into different subtypes according to the expression of
estrogen and progesterone receptors and the overexpression of HER2 protein. This classification has
a practical implication, since each cancer subtype requires different medical treatments [2]. Of note,
triple-negative BC (TNBC) is characterized by negative hormonal receptor status and negative HER2
status [3].

Platinum salts (e.g., carboplatin (CBDCA) and cisplatin (CDDP)) are long-standing compounds
used in several cancer types [4]. Moreover, these agents are part of the therapeutic armamentarium
for BC, especially TNBC [5–7]. Recently, the discovery that a defective DNA repair system (a quite
common feature of cancer cells) can increase the efficacy of DNA damaging agents, has renewed
interest in platinum salts [8]. The cytotoxicity of CDDP and other platinum agents is exerted through
different cellular mechanisms [9–12]. Platinum salts enter into the cells through the High Affinity
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Copper Uptake Protein 1 (SLC31A1), whereas their efflux is guaranteed by both the ABCC2 and
the Copper-Transporting P-type Adenosine Triphosphate (ATP7B) [13–15]. Interestingly, it has been
hypothesized that platinum and copper could compete for their influx and efflux, causing a mutual
interference of their transport [16,17]. Once inside the cells, platinum salts undergo aquation becoming
highly reactive to many cellular targets, especially DNA [18]. At this level, platinum molecules are
vulnerable to inactivation by antioxidant molecules like glutathione and metallothionein [19,20]. The
aquated platinum salts react with DNA, generating monoadducts, inter- (ICL) and intra-DNA strand
cross-links, and are able to distort the double helix of DNA causing single-strand breaks (SSBs) and
double-strand breaks (DSBs) [11]. The principal effect of this structural distortion is the blockage of
both DNA replication and DNA transcription, that if permanent, causes severe cell cycle arrest and
induces cell apoptosis or necrosis [10]. In particular, triggering cell death is concentration dependent.
Indeed, high CDDP doses cause necrosis, whereas chronic low doses induce apoptosis [21]. Notably,
Becker et al. [22] recently demonstrated that CDDP and other platinum-containing regimens were also
able to directly interfere with mRNA translation, interacting with the nascent transcript and generating
similar RNA adducts. Generally, DNA bulky lesions generated by platinum drugs are efficiently
repaired by nucleotide excision repair and homologous recombination (HR) pathways [18]. Moreover,
several studies have demonstrated that base excision repair (BER) also plays a role in mediating
cisplatin cytotoxicity [23–32]. Though not being directly active on bulky DNA lesions, different studies
have highlighted a role for BER in repairing the platinum-induced DNA ICLs and in modulating other
indirect effects generated by the CDDP exposure.

It is, therefore, clear that a defect in one of these DNA repair pathways, particularly HR and
BER, could represent a useful predictive biomarker for platinum salt sensitivity. Patient selection is
crucial when using platinum salts, and the identification of predictive biomarkers still represents an
unmet clinical need. Therefore, the main purpose of this review is to summarize the currently available
evidence about predictive biomarkers of platinum salt sensitivity in BC, in order to integrate them into
future clinical trials, and hopefully, in clinical practice.

This review will address both translational data regarding HR deficiency (HRD) as a marker of
platinum salt sensitivity and new emerging preclinical biomarkers of platinum salt sensitivity.

2. HRD as a Biomarker of Platinum Sensitivity

2.1. The HR Pathway

Once a DSB occurs, cells activate two different DNA repair mechanisms, depending on the phase
of the cell cycle [33]: the HR system or the non-homologous end joining (NHEJ) system. Homologous
recombination, which is mostly active during S- and G2-phases of the cell cycle [34], repairs the DSBs
by using a homologous DNA molecule, therefore acting as an error-free repair mechanism [35]. In
contrast, NHEJ, which is active through the whole cell cycle [34], ligates the ends of a DSB in an
error-prone way, increasing DNA mutagenicity and genomic instability [36].

The HR pathway consists of a high number of proteins (Figure 1) [35,37–39]. In a simplified view
of the process, the first step involves the MRN complex (MRE11-RAD50-NBS1) that detects the DSB
and recruits ATM and ATR which, in turn, activate the cell cycle checkpoints and induce cell cycle arrest
through p53 [40]. Subsequently, ATM phosphorylates histone H2AX causing the recruitment of 53BP1
and the Breast Cancer Type 1 Susceptibility Protein (BRCA1) to the damaged area. At the beginning
of DSB repair, BRCA1 has a crucial role. Indeed, BRCA1 controls the DSB resection and helps the
transition from DSB resection to PALB2/Breast Cancer Type 2 Susceptibility Protein (BRCA2)-mediated
RAD51 loading [41]. The protein RAD51 eventually forms a filament of nucleic acid and proteins
allowing the alignment of broken DNA with the normal one and the subsequent synthesis of new
DNA to fill the genomic gap [42].

In the case of HR deficiency, the error-prone NHEJ system becomes the central axis of DSB repair,
creating genomic instability and virtual cell death [33]. As platinum salts induce DSBs, cells would
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need a proficient HR to survive. Therefore, cancer cells bearing an HR deficiency might be sensitive to
platinum salts.
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break; HR: homologous recombination repair; Pt: platinum salts; SSB: single-strand break. 
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platinum compounds have been tested as a therapeutic option for BRCA-mutated tumors and TNBC, 
leading to promising results observed among BRCA1 mutation carriers, treated with CDDP, in both 
neoadjuvant and metastatic setting [47,48] (Table 1).  
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was the Triple-Negative Breast Cancer Trial (TNT) [49]. Patients with metastatic TNBC or carrying a 
BRCA mutation were equally randomized to receive six to eight cycles of first-line carboplatin or 
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objective response rate (ORR) (ORR: 31.4% for carboplatin versus 34.0% for docetaxel; absolute 
difference −2.6%, 95% confidence interval (CI) −12.1 to 6.9; p = 0.66). Nevertheless, when looking at 
the pre-specified subgroup analysis according to BRCA mutational status, the use of carboplatin in 
the BRCA-mutated cohort led to a doubling in ORR compared to docetaxel (ORR: 68% for carboplatin 
versus 33.3% for docetaxel; absolute difference 34.7%; p = 0.03), with a significant heterogeneity of 
treatment effect for BRCA-mutated patients (interaction test: p = 0.01). Furthermore, longer 
progression-free survival (PFS) was detected for BRCA-mutated patients (median PFS: 6.8 months 
versus 4.4 months; interaction p = 0.002), even if no advantage was observed in terms of overall 
survival (OS) [49]. Consistently, in the phase II, non-randomized TBCRC009 trial [50], among 86 
metastatic TNBC patients treated with cisplatin or carboplatin as first- or second-line therapy, BRCA-
mutated patients showed higher ORR compared to those without BRCA mutations (ORR: 54.5% 
versus 19.7%; p = 0.022). Taken together, these findings confirm the biological heterogeneity of TNBC 

Figure 1. Representation of the main DNA repair pathways involved in platinum salts-induced DNA
damage. SSBs are mainly repaired by the BER pathway, which needs proficient DNA glycosylases that
recognize and cleave the damaged base. Then, APE1 removes the abasic site that can be sealed by Polβ
and ligases. In the case of DSBs, HR plays a crucial role. The MRN complex recognizes the DSB and
recruits ATM and ATR, which can eventually induce cell cycle arrest through p53. Subsequently, ATM
can cause the recruitment of BRCA1, BRCA2, and PALB2 which determine the RAD51 loading and the
subsequent DNA synthesis. BER: base excision repair; DBS: double-strand break; HR: homologous
recombination repair; Pt: platinum salts; SSB: single-strand break.

2.2. BRCA1/2 Mutations

The BRCA1/2 proteins represent an essential component of HR and germline mutations of their
genes are detected in about 5% of unselected BC and in up to 10–20% of TNBC [43,44]. The BRCA1/2
proteins, along with others (e.g., PALB2, RAD51, and CHEK2), play a critical role in ensuring genomic
stability and efficient DNA repair through the HR machinery [45,46]. On these bases, platinum
compounds have been tested as a therapeutic option for BRCA-mutated tumors and TNBC, leading to
promising results observed among BRCA1 mutation carriers, treated with CDDP, in both neoadjuvant
and metastatic setting [47,48] (Table 1).

The first randomized phase III study, investigating the role of platinum salts in unselected TNBC
was the Triple-Negative Breast Cancer Trial (TNT) [49]. Patients with metastatic TNBC or carrying
a BRCA mutation were equally randomized to receive six to eight cycles of first-line carboplatin
or docetaxel. In the overall population, no difference was observed among the two arms in terms
of objective response rate (ORR) (ORR: 31.4% for carboplatin versus 34.0% for docetaxel; absolute
difference −2.6%, 95% confidence interval (CI) −12.1 to 6.9; p = 0.66). Nevertheless, when looking at
the pre-specified subgroup analysis according to BRCA mutational status, the use of carboplatin in the
BRCA-mutated cohort led to a doubling in ORR compared to docetaxel (ORR: 68% for carboplatin
versus 33.3% for docetaxel; absolute difference 34.7%; p = 0.03), with a significant heterogeneity
of treatment effect for BRCA-mutated patients (interaction test: p = 0.01). Furthermore, longer
progression-free survival (PFS) was detected for BRCA-mutated patients (median PFS: 6.8 months
versus 4.4 months; interaction p = 0.002), even if no advantage was observed in terms of overall survival
(OS) [49]. Consistently, in the phase II, non-randomized TBCRC009 trial [50], among 86 metastatic
TNBC patients treated with cisplatin or carboplatin as first- or second-line therapy, BRCA-mutated
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patients showed higher ORR compared to those without BRCA mutations (ORR: 54.5% versus 19.7%;
p = 0.022). Taken together, these findings confirm the biological heterogeneity of TNBC and its
differential sensitivity to platinum salts, that seems to be much greater for BRCA-mutated patients. A
further contribution came from the phase 2 study BROCADE, in which 290 patients, having metastatic
breast cancer carrying a BRCA1/2 mutation were randomized to receive the combination of veliparib, a
poly(ADP-ribose) polymerase (PARP) inhibitor, with carboplatin plus paclitaxel versus carboplatin
plus paclitaxel and versus temozolomide plus veliparib [51]. Although no difference was found in
terms of PFS and OS with the addition of veliparib to carboplatin plus paclitaxel, it is noteworthy to
consider the clinically relevant performance of the carboplatin plus paclitaxel arm (PFS: 12.3 months;
OS: 25.9 months), that may represent a reasonable treatment for these patients, as it will be further
evaluated in the phase III BROCADE 3 trial (NCT02163694).

Dealing with the neoadjuvant setting, the role of platinum salts is still controversial. A recent
meta-analysis, considering data from nine randomized clinical trials, confirmed an absolute 15%
increased pathologic complete response (pCR) rate, when adopting platinum-based regimens in TNBC
(pCR rate from 37.0% to 52.1%; OR 1.96, 95% CI 1.46–2.62; p < 0.0001), even though high heterogeneity
was detected among the included studies. Nevertheless, no statistical benefit was observed on both
event-free survival (EFS) and OS within the same pooled analysis [6]. This discrepancy represents
one of the most-debated arguments when discussing the implementation of platinum salts in the
neoadjuvant treatment of TNBC, together with toxicity issues and a missing standard combination
regimen. However, it is important to consider that none of these studies were designed to detect
any impact on long-term outcomes. Hence, the power of the studies may not be adequate for these
speculations. The two most representative randomized phase II studies conducted in this setting are
the GeparSixto and the CALGB 40603 trials [52–54]. Both studies confirmed a pCR benefit with the
addition of platinum agents to a neoadjuvant chemotherapy with taxanes and anthracyclines [52–54].
Nevertheless, the GeparSixto is the only study detecting a significant increase in disease-free survival
(DFS) in this setting (DFS at 3 years: 86.1% versus 75%; HR: 0.56, 95% CI 0.34–0.93; p = 0.0244) [53],
while no significant EFS difference was observed in the CALGB 40603 trial (EFS at 3 years: 76.5%
versus 71.6%; HR: 0.84, 95% CI 0.58–1.22, p = 0.36) [55]. When looking at the BRCA-mutated subgroup
of the GeparSixto trial (representing only the 17.4% of the overall population), high pCR rates
were observed irrespectively of carboplatin use (pCR rates: 66.7% for non-carboplatin arm versus
65.4% for carboplatin arm; HR: 0.94, 95% CI 0.29–3.05; p = 0.92), confirming high chemo-sensitivity
of BRCA1/2 carriers. However, no additive effect was observed for carboplatin (interaction test:
p = 0.58) in this subgroup [56]. Surprisingly, the BRCA wild-type cohort benefited the most from the
addition of carboplatin, in terms of pCR (pCR rates: 36.4% for non-carboplatin arm versus 55% for
carboplatin arm; HR: 2.14, 95% CI 1.28–3.58; p = 0.004) [55]. This observation may be justified by
the presence of BRCA-like phenotypes among sporadic TNBC, but also by the use of an intensified
chemotherapy regimen. Additionally, the BrighTNess trial, a randomized clinical trial evaluating the
role of neoadjuvant carboplatin alone or in combination with veliparib for TNBC patients, reported
similar pCR data according to BRCA-mutational status [57]. However, these post-hoc subgroup
analyses were performed among a very limited number of BRCA-mutated patients (50 patients in the
GeparSixto trial and 46 patients in the BrighTNess study), and their relevance remains exploratory.

In conclusion, the neoadjuvant management of BRCA-mutated patients is still a matter of debate,
with no definitive data supporting the utility or futility of platinum salts in this setting. Interestingly, a
significant contribution will be provided by the ongoing INFORM study (NCT01670500), a randomized,
phase II trial comparing four cycles of neoadjuvant cisplatin versus four cycles of doxorubicin plus
cyclophosphamide among BRCA-mutated patients with early breast cancer.
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Table 1. Predictive biomarkers of platinum salts efficacy in BC.

Reference Setting Biomarker Treatments Outcomes/Observations

BRCA1/2 Mutations

TNT [49]
(phase III) Stage IV TNBC BRCA1/2m CBDCA versus

Docetaxel
Increased ORR and PFS with
Carboplatin versus Docetaxel

TBCRC009 [50]
(phase II) Stage IV TNBC BRCA1/2m CBDCA or CDDP Increased ORR in BRCA1/2m

versus BRCA1/2 wt

BROCADE [51]
(phase II)

Stage IV
BC with

BRCA1/2m
BRCA1/2m CP versus CPV

versus TV
Increased ORR and PFS with CP

and CPV versus TV

GeparSixto [53]
(phase II) Stage II–III TNBC BRCA1/2m P+A+Bev ±

CBDCA
No additive effect on pCR for

carboplatin

BrighTNess [57]
(phase III) Stage II–III TNBC BRCA1/2m CP ± V then AC No additive effect on pCR for

carboplatin

BRCAness

Telli et al. [58]
(pooled analysis) Localized TNBC HRD score > 41

Various platinum
containing
regimens

Increased pCR in HRD versus
HRD < 41

Kaklamani et al.
[59]

(phase II)
Stage I–III TNBC HR status (HRD

score + BRCA1/2m) CBDCA + E HRD status and the HRD score
predict pCR

GeparSixto [53]
(phase II) Stage II–III TNBC HRD status * P+A+Bev ±

CBDCA

HRD positive status associated
with increased pCR versus HRD

negative Adding carboplatin
increased pCR in HRD positive
but not in HRD negative tumors

SWOG9313 [60]
(phase III) Stage I–II TNBC HRD status *

Concomitant
versus sequential

AC

HRD positive status associated
with DFS. No significative trend

observed with OS

Gene Signatures and p53 Family

Lehmann et al. [61]
(in vitro analysis) TNBC cell lines BL Platinum salts Increased sensitivity

TNT [49]
(phase III) Stage IV TNBC BL, core-basal CBDCA versus

Docetaxel
Reduced ORR and PFS in not-BL

and not-core basal

Silver et al. [62] Stage II–III TNBC p53 NSM Cisplatin Increased pCR versus not p53
NSM

Silver et al. [62] Stage II–III TNBC ∆Np63/TAp73 ratio
> 2 Cisplatin Numerical increased pCR vs.

∆Np63/TAp73 ratio < 2

BER

Kothandapani et al.
[26]

(in vitro analysis)

MDA-MB-231
TNBC cell line PolB CDDP Upon KO, cells are resistant to

CDDP treatment

Kothandapani et al.
[26]

(in vitro analysis)

MDA-MB-231
TNBC cell line UNG CDDP Upon KO, cells are resistant to

CDDP treatment

Kothandapani et al.
[26]

(in vitro analysis)

MDA-MB-231
TNBC cell line APE1 CDDP Upon MX, APE1 inhibitor, cells

are resistant to CDDP treatment

A: non-pegylated liposomal doxorubicin; AC: doxorubicin + cyclophosphamide; APE1: apurinic/apyrimidinic
endonuclease 1; BC: breast cancer; Bev: bevacizumab; BL: basal-like gene signature; BRCA1/2m: BRCA1/2
mutation; CBDCA: carboplatin; CDDP: cisplatin; CP: carboplatin + paclitaxel; CPV: carboplatin + paclitaxel +
veliparib; DOR: duration of the response; E: eribuline; HRD: homologous recombination deficiency; KO: knock-out;
MX: Methoxyamine; NSM: non-sense or frameshift mutation; ORR: objective response rate; P: paclitaxel; PFS:
progression-free survival; PolB polymerase beta; TNBC: triple-negative breast cancer; TV: temozolomide + veliparib;
V: veliparib; wt: wild type. * HRD status was defined positive as either a deleterious tumor BRCA1/2 (tBRCA)
mutation or a pre-defined HRD score ≥ 42. HRD status was defined negative as either an absence of deleterious
tumor BRCA1/2 (tBRCA) mutation or a pre-defined HRD score < 42.
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2.3. BRCAness

Although BRCA1 and BRCA2 gene products are considered the major players in the HR system,
cancers harboring a pathological variant of BRCA1/2 genes represent only the tip of the iceberg of the
overall BC characterized by a homologous recombination deficiency, due to the emerging subgroup
of tumors that share clinico–biological features of BRCA-mutant tumors in the absence of a BRCA1
or BRCA2 mutation, a condition known as BRCAness [63]. Since therapies, such as platinum-based
chemotherapy and PARP inhibitors, have revealed their efficacy in BRCA1/2 mutation carriers [64,65],
searching for BRCAness has become more appealing especially for those tumors characterized by poor
outcomes and treatment options (Table 1). In TNBC, for example, BRCAness is found in more than
25% of cases [66]. Unfortunately, an unequivocal BRCAness biomarker is currently lacking, due to the
wide spectrum of genetic and epigenetic alterations that may be involved. Among them, the most
frequent genetic alteration involve ATM, ATR, PALB2, CHEK1, CHEK2, RAD51, Nijmegen breakage
syndrome protein 1 (NBS1) and the Fanconi anaemia complementation group (FANC) family [63]. In
addition, the modification of the cellular transcriptional activity, like those induced by BRCA1 promoter
hypermethylation, can be a cause of epigenetic BRCAness. Given the evidence that cancer with an HRD
system shows a typical mutational signature produced by the error-prone NHEJ activity in repairing
DSBs [67], two commercial assays detecting the main three genomic structural rearrangements founded
in HRD tumors has been developed. In “myChoice HRD” (Myriad genetics) test, loss of heterozygosity
(LOH), telomeric allelic imbalance (TAI), and large-scale transition (LTS) are measured and can be
combined in an HRD score. The predictive power of a specific HRD threshold derived from the
combined HRD score has been evaluated retrospectively by Telli et al. [58]. In this study, HR deficiency
(defined as an HRD score ≥ 42 and/or the presence of BRCA1 or BRCA2 mutation) was evaluated as a
predictor of response to neoadjuvant platinum-based chemotherapy for TNBC in two different clinical
cohorts. The dichotomized HRD score was significantly associated with both RCB 0/I (no residual
cancer burden or minimal residual disease) and pCR in both cohorts. Moreover, HRD was still able
to significantly predict RCB 0/I and pCR also when adjusted for clinical variables [58]. Concordant
results have been found in a small trial addressed to patients with early stage TNBC enrolled to receive
neoadjuvant platinum-based therapy. In the exploratory analysis of this trial, HRD status and the
HRD score could predict pCR (HRD status p = 0.0012; HRD score p = 0.0024) [59]. Additionally, a
post-hoc analysis of the GeparSixto study tried to explore the role of HRD score in predicting pCR to
neoadjuvant chemotherapy in 193 patients treated for TNBC. Homologous recombination deficiency
was defined as either a high HRD score (≥42) or a BRCA mutation in the primary tumor. Tumors
with HRD were more likely to achieve pCR than HR proficient ones (55.9% versus 29.8%, p = 0.001).
Moreover, patients with HRD tumors showed higher pCR rates with the addition of carboplatin to
the chemotherapy backbone (64.9% versus 45.2%; p = 0.025) [68]. In a retrospective analysis of 425
patients with TNBC treated with adjuvant doxorubicin and cyclophosphamide in the SWOG9313
trial, a high HRD score (≥42) was observed in more than a half of BRCA wild-type patients and it
was independently associated with better DFS when adjusted for treatment and nodal status (HR
0.64, 95% CI 0.43–0.94; p = 0.023) as well as OS (HR 0.65, 95% CI 0.47–1.53; p = 0.59). Moreover,
BRCA1 promoter methylation was associated with higher HRD scores but no predictive value was
established [60]. Conversely, in the previously discussed TNT trial, HRD score and BRCA1 promoter
methylation were not associated to a better response to first-line platinum salts [49]. However, since HR
biomarkers in TNT were evaluated on archival tissue, a possible explanation of these findings is that
the “soft BRCAness” of HRD tumors is easily revertible under the selective pressure of neo/adjuvant
DNA-damaging therapy. Therefore, when tumors relapse, cancer cells may be no longer methylated
and sensitive to platinum agents [49,63].

Moreover, BRCAness has not only been investigated as a predictive biomarker, but also as a
new therapeutic strategy through its pharmacological induction. Intriguing results suggest that the
induction of a BRCA-mutant-like phenotype could be achieved through the epigenetic silencing of
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BRCA1, enhancing platinum salts’ activity and enabling the use of targeted drugs such as PARP
inhibitors [69,70].

3. New Emerging Biomarkers

3.1. Gene Signatures

Lehmann et al. [61] showed that TNBCs can be further sub-classified into six different molecular
entities. Among these, basal-like 1 (BL1) and basal-like 2 (BL2) subtypes had a peculiar sensitivity to
platinum salts, irrespectively to BRCA1 mutation status, suggesting the presence of other defects in
the HR pathway [61]. Concordant data came from a recent study on 465 Chinese TNBCs [71]. In that
study, the authors classified TNBCs into four main classes through a multi-omics approach. Among
these classes, the basal-like subtype was characterized by an HR defect, and thus, may be especially
sensitive to DNA damaging agents like platinum salts.

Another genomic classification is PAM50, which differentiates at least five BC entities [72]. Among
these, the basal-like can be ideally assimilated to TNBC. However, it is important to note that not all
TNBCs display a basal phenotype [73–76] and basal-like cancers account for 60–90% of TNBCs [77,78].
The basal-like molecular subtype can be approximated to the core-basal breast cancer, which is only
defined by the absence of ER, PgR, HER2, and the presence of EGFR and cytokeratin 5/6 [79]. In the TNT
trial reported above [49], the basal-like molecular subtype and the core-basal type were investigated as
possible predictive biomarkers of CBDCA sensitivity. Interestingly, in both of these types, carboplatin
performs as well as docetaxel in terms of ORR and PFS. On the contrary, in non-basal-like BCs, docetaxel
outperforms carboplatin in terms of ORR and PFS. A trend toward a better ORR and PFS for docetaxel
was seen in non-core-basal BCs.

3.2. p53 Family

Other putative biomarkers of platinum sensitivity may be represented by the p53 status and the
levels of p53 family members (p63 and p73). The protein p53 represents a crucial node in the DNA
repair pathway [80], and its defects could be causative of platinum salt cytotoxicity [81,82]. Until now,
only p53-nonsense or frameshift mutations have been associated to response to cisplatin in TNBCs [62].
Moreover, a high incidence of p53-truncating mutations in BRCA1-mutated BCs has been observed [83].
Therefore, p53-truncating mutations may represent an alternative marker of BRCA1 deficiency.

Both p63 and p73 proteins belong to the p53 family and govern a variety of cellular functions [84].
From a molecular point of view, the p63 isoform ∆Np63 antagonizes the pro-apoptotic activity of the
p73 isoform TAp73 through direct physical sequestration [85]. Cisplatin showed to promote ∆Np63
dissociation from TAp73 in vitro [86]. Free TAp73 can, therefore, trigger the pro-apoptotic cascade.
In light of this evidence, it has been hypothesized that ∆Np63/TAp73 levels might represent a proxy
for cisplatin sensitivity. Indeed, some data suggest that a ∆Np63/TAp73 ratio > 2 may predict a
favorable outcome for cisplatin [62], though the predictive role of the ∆Np63/TAp73 ratio needs further
confirmation [50].

3.3. BER

Generally, BER is involved in processing non-bulky DNA lesions, usually induced by oxidative,
alkylating, and methylation agents [87–89]. Although BER is composed of few sequential steps
acting to guarantee the correct DNA repair, it involves a great number of non-classical DNA-repair
proteins and post-translational modifications that are finely regulated [90–93]. Among BER modulators,
nucleophosmin (NPM1), p53, and XRCC1 are the most effective [88,94,95], mostly in CDDP response.

The first BER step involves lesion-specific DNA glycosylases, including 8-oxoguanine DNA
glycosylase (OGG1) [96] and uracil-DNA-glycosylase (UNG) [97], that recognize and cleave
the damaged base or Uracil, thus generating an abasic site (AP) (Figure 1). Then, a specific
apurinic/apyrimidinic endonuclease, called APE1, cleaves the abasic site [98,99]. Finally, the SSB
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generated by APE1 is sealed by other BER factors, including Polymerase β (Polβ) and ligases [100,101].
Although all the enzymes are needed for the good success of the entire BER, APE1 represents the core
of the pathway, being able to coordinate every step.

As previously proposed [23,32], the clear documentation of a novel role of BER in mediating
cisplatin cytotoxicity was produced by Kothandapani et al. [26]. The authors have finely demonstrated
how Polβ- and UNG-deficient MDA-MB-231 TNBC cells are more resistant to CDDP treatment. The
same effect was obtained by treating cells with Methoxyamine, an inhibitor of the endonuclease activity
of APE1. Although the authors specified that BER enzymes are not directly involved in the removal of
cisplatin-produced ICLs on DNA, they demonstrated that BER is active in damages indirectly induced
by CDDP.

A part of CDDP cytotoxicity requires the generation of reactive oxygen species (ROS) [102].
Reactive oxygen species are mainly generated as a by-product of the aerobic mitochondrial respiration
or by following continuous exposition of chemical agents [103]. When ROS levels increase, thus
destabilizing the redox homeostasis of the cell, DNA, proteins, and lipids can be severely damaged.
Reactive oxygen species-induced DNA damages, including the oxidation of the guanine (8oxoG), are
efficiently repaired by the BER pathway. Notably, the most important side effect characterizing the use
of CDDP, and to a lesser extent, of other platinum drugs, is the development of a severe peripheral
neuropathy. In 2009, Preston et al. [29] demonstrated that both cisplatin and oxaliplatin increase ROS
and 8oxoG levels, and then later, Kelley et al. [24] supported the hypothesis that this phenomenon
might be considered a secondary effect of DNA damage induced by platinum drugs in sensory
neurons. Remarkably, Kelley et al.’s [24] work has demonstrated that neuron cells, silenced for APE1
expression, are more sensitized to CDDP and oxaliplatin, but not carboplatin, observing a decrease of
cell viability and a parallel increase of apoptosis. The cause of this high mortality is associated with an
increased production of ROS levels within the cells that, by destabilizing the redox cell balance, induces
an increase amount of 8oxoG. On the contrary, the stimulation of the APE1 endonuclease activity
significantly decreases the toxicity of CDDP on neuronal cells [104]. Moreover, the treatment with the
APE1-targeted first-generation (E3330) and the novel second-generation (APX2009) agonists protect
against neurotoxicity induced by platinum compounds [105,106]. This should explain the role of APE1
in mediating inflammation induced by platinum drugs, principally through its redox activity [107].

Concordantly, by applying a CRISPR-based genetics screening, it has been shown how both
BER-factors XRCC1 and OGG1 are involved in restoring ICLs and ROS-mediated oxidative damages
induced by platinum drugs [31], highlighting again the role of BER enzymes in protecting against
platinum-induced cytotoxicity.

Taken together, these observations explain how CDDP and platinum drugs may induce DNA
damage by formation of bulky DNA lesions that are efficiently repaired by the cooperation of several
DNA repair pathways, including BER. At the same time, the observed increase in ROS levels and
the increased sensitization effect in BER-deficient cells could explain the primary involvement of the
BER pathway in response to platinum drug cytotoxicity. These important observations led to consider
BER enzymes as new anti-tumoral targets to be used in combination treatments with platinum drugs.
The protein APE1 can be considered a new promising target for the combination of CDDP-based
chemotherapy as proposed by Wang et al. [108] in NCSLC patients. Moreover, APE1 protein expression
quantification revealed higher levels in CDDP-resistant patients and was correlated with a lower OS
and event-free interval (EFI). Recently, we have improved the knowledge of the role of APE1 and
NPM1 in mediating the response of CDDP and carboplatin in TNBC cells lines, differing for APE1 and
NPM1 protein expression [109]. As already demonstrated by Poletto et al. [28], for other cell models,
CDDP induced a shuttling of APE1 and NPM1 from nucleolus to nucleus compartments, which is
possibly regulated to the non-DNA repair functions of APE1 on RNA metabolism. Particularly, TNBC
cells, characterized by lower levels of both APE1 and NPM1 proteins, were much more sensitized to
the combined treatment of platinum drugs and inhibitors of APE1 endonuclease activity as well as
inhibitors of APE1–NPM1 interaction.
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4. Conclusions

Despite being widely used for the treatment of multiple cancer types, platinum salts are only
recently gaining momentum for the treatment of breast cancer, especially TNBC. Due to the great
molecular heterogeneity of this subtype, several efforts have been made to identify predictive factors
capable of effectively guiding patients’ stratification, but to date, the most solid one is the BRCA1/2
mutational status. Alternative biomarkers, such as BRCAness and BER enzymes are currently under
investigation to further develop the role of platinum salts in breast cancer, not just for treatment
benefit prediction but also as targets for new therapeutic strategies aimed at synergizing with this class
of compounds.
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SLC31A1 High Affinity Copper Uptake Protein 1
ATP7B Copper-Transporting P-type Adenosine Triphosphate
ICL Inter-DNA cross-link
SSB Single-strand break
DSB Double-strand break
HR Homologous recombination repair
BER Base excision repair
HRD Homologous recombination deficiency
NHEJ Non-homologous end joining
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ORR Objective response rate
OS Overall survival
PFS Progression-free survival
PARP Poly(ADP-ribose) polymerase
pCR Pathologic complete response
EFS Event-free survival
DFS Disease-free survival
RCB Residual cancer burden
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OGG1 8-Oxoguanine DNA glycosylase
UNG Uracil-DNA-glyucosylase
Polβ Polymerase β

ROS Reactive oxygen species
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EFI Event-free survival
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