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Abstract: Cisplatin is one of the worldwide anticancer drugs and, despite its toxicity and frequent
recurrence of resistance phenomena, it still remains the only therapeutic option for several tumors.
Circumventing cisplatin resistance remains, therefore, a major goal for clinical therapy and represents
a challenge for scientific research. Recent studies have brought to light the fundamental role of
mitochondria in onset, progression, and metastasis of cancer, as well as its importance in the resistance
to chemotherapy. The aim of this review is to give an overview of the current knowledge about the
implication of mitochondria in cisplatin resistance and on the recent development in this research
field. Recent studies have highlighted the role of mitochondrial DNA alterations in onset of resistance
phenomena, being related both to redox balance alterations and to signal crosstalk with the nucleus,
allowing a rewiring of cell metabolism. Moreover, an important role of the mitochondrial dynamics
in the adaptation mechanism of cancer cells to challenging environment has been revealed. Giving
bioenergetic plasticity to tumor cells, mitochondria allow cells to evade death pathways in stressful
conditions, including chemotherapy. So far, even if the central role of mitochondria is recognized,
little is known about the specific mechanisms implicated in the resistance. Nevertheless, mitochondria
appear to be promising pharmacological targets for overcoming cisplatin resistance, but further
studies are necessary.
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1. Introduction

Cis-diamine-dichloroplatinum (II) (best known as cisplatin or CDDP) is the most employed
platinum-based compound and the first approved by FDA (Food and Drug Administration) in 1978
for the treatment of testicular and bladder cancer. It exerts clinical activity in the treatment of a wide
variety of cancers, including ovarian, testicular, bladder, head and neck, cervical, lung and colorectal
cancers [1–3] either alone or in combination with other anticancer agents like paclitaxel, doxorubicin,
5-FU etc. [4].

Despite toxicity even at low doses (especially nephrotoxicity and ototoxicity), cisplatin remains
the first-line therapy for several types of solid tumors [5].

In CDDP-based therapy, the treatment often is effective in inducing an initial therapeutic success
associated with a cancer stabilization or partial response. Nevertheless, many patients present an
intrinsic resistance to the drug or develop cisplatin resistance during the course of the treatment,
leading to therapy failure [6,7].

In particular, colorectal, prostate and lung cancers are intrinsically resistant to cisplatin while
acquired resistance is more often observed in ovarian cancer patients [8–10]. The clinically acquired
resistance appears to be a multifactorial phenomenon, which involves several unrelated mechanisms
exploited simultaneously within the same cell and since now, little is known about this intricate process.
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Researches highlight how the acquisition of resistance can be due to decrease in drug accumulation,
which includes reduced uptake or increased efflux of the drugs, enhanced drug detoxification system
due to high levels of scavengers such as glutathione/metallothioneins, increased tolerance to damaged
DNA, increased DNA repair mechanisms or to a metabolic rewiring of the cells in order to elude
cisplatin-induced death [11–15]. These mechanisms are peculiar to each cancer cell line in such
a way that a particular tumor may exhibit one, two or even all the above-mentioned resistance
mechanisms [16].

Cisplatin can enter the cells by passive diffusion but recently a lot of interest has been given
to active uptake of the drug. In particular, for the transport of cisplatin into the cells via facilitated
diffusion, the copper transporter proteins (CTR1 and CTR2) seem to be involved in the uptake of the
drug [17,18]. Once inside the cell, the activation of CDDP is due to the different chloride concentration
between blood plasma (~100 mM) and cell cytoplasm (~4 mM). This drop in the chloride concentration
facilitates the mono- or diaquation of the drug making it a potent electrophile prone to react with
a variety of nucleophilic sites, especially nucleic acids and sulfhydryl groups of proteins. For these
reasons, DNA is thought to be the primary target of cisplatin [4,11]. The platinum atom of CDDP forms
covalent bonds with the purine bases (with the N7-position) producing 1,2- or 1,3-intrastrand crosslinks
and a lower percentage of interstrand crosslinks. This formation of CDDP-DNA adducts interferes
with DNA replication and transcription, and the formation of crosslinks disrupts the structure of DNA
which is recognized by cellular proteins to repair the DNA damage [19]. Studies of the last decade
have shown that only a very tiny percentage of CDDP (1%) interacts with nuclear DNA, while the
largest amount interacts with sulfur donors (such as cysteines, methionines, thiols, etc.), proteins or
mitochondrial structures, as well as with the mitochondrial DNA (mtDNA) [12,20].

The study of the details of the binding of platinum compounds to nucleic acids and to other
cellular structures has not only led to a better understanding of the mechanism of action, but may
also result in the development of new drugs, new formulations or of special drug-dosing protocols,
making use of combined therapies with protective —rescue or synergic—agents [21,22]. Moreover, it
is important to underline that to comprehend the overall pharmacological and toxicological profile
of platinum drugs, it is necessary to explore alternative intracellular pathways and interactions. The
identification of different pathways and molecular targets may offer new perspective for overcoming
resistance phenomena and to reduce the toxic effect of the platinum drugs [23].

2. Mitochondria

Mitochondria are dynamic subcellular organelles which are capable of rapidly sensing stress
signals, thus coordinating several biochemical pathways required to adapt to environmental changes.

A hypothesis about the origin of mitochondria suggests that several billion years ago, a precursor
of modern eukaryotic cell swallowed an α-proteobacterium giving rise to the mitochondrion [24]. In the
last few years, this endosymbiotic origin was confirmed by proteomics, genomics and bioinformatics
techniques [25,26].

While originally relegated to the role of “energy powerhouse of the cells”, it is now well established
that mitochondria are the hub of numerous signal pathways implicated in most cellular processes.
In fact, besides exerting central bioenergetics functions via tricarboxylic acid cycle (TCA), oxidative
phosphorylation (OXPHOS) and fatty acid oxidation (FAO), mitochondria exert also anabolic functions
like biosynthesis of amino acids, lipids, and nucleotides. Moreover, they provide maintenance of
homeostatic levels of Ca2+ and of reducing equivalent carriers and are involved in the intrinsic apoptotic
signaling pathway hence governing cell death [27,28].

These various functions of mitochondria enable them to sense cellular stress and allow
them to confer a high level of plasticity to cells, which permits a fast adaptation to challenge
microenvironmental conditions.
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It is, however, evident, and firmly confirmed the fundamental role of mitochondria metabolism
on all steps of oncogenesis, from malignant transformation to tumor progression and response to
treatment [29].

3. Mitochondria and Cancer

The first description of the role of mitochondria in cancer metabolism is linked to Warburg. He
was the first to demonstrate that tumor cells present an altered energy metabolism relying more
on glycolysis with respect to oxidative phosphorylation, even in presence of high oxygen tension.
Warburg hypothesized that mitochondrial dysfunction causes the necessity of cancer cells to rely on
glycolysis as the only alternative for ATP production [30]. Today, this “Warburg effect” is currently
referred to as “metabolic reprogramming” and is a recognized hallmark of cancer [31,32] even if
the spotlight of metabolic transformation research is today focused on the anabolic processes. This
oxidative phosphorylation provides a biosynthetic advantage to tumor cells, diverting energy substrate
into reactions which lead to the production of building blocks for high-proliferative cancer cells (amino
acids, lipids, and nucleotides). Besides producing ATP, the oxidative phosphorylation is the major
source of ROS within the mitochondrion and the entire cell. The most notable sites of ROS production
are complexes I, II and III of the mitochondrial electron transport chain. The early observation that
cancer cells present high ROS levels, led to the idea that ROS inhibition could be a useful therapeutic
strategy [33–35]. However, in the past two decades, a more complex picture has emerged, that depicts
the role of ROS in different signaling pathways involved in the control of several physiological and
pathological cell processes [36,37]. In response to elevated ROS, many tumors present an upregulation
of protective antioxidant pathways able to neutralize ROS. Superoxide dismutase (SOD2), glutathione,
thioredoxin, and peroxiredoxins represent the major antioxidant mechanism exploited by cells in order
to maintain redox homeostasis. Cells resistant to chemotherapeutic drugs have been shown to present
elevated levels of antioxidant factors able to neutralize the increased ROS production caused by the
drug [38–41]. The upregulation of these antioxidants in cancer can prevent ROS-mediated cytotoxicity
and may give a selective advantage in tumor cells growing [35]. Several studies demonstrated that
cisplatin-induced cytotoxicity is closely related to ROS generation [42,43]. Increased ROS generation
alters mitochondrial membrane potential and induces damages in the respiratory chain triggering to
apoptosis. The high presence of antioxidant actors may be one of the mechanisms involved in cisplatin
resistance onset and it has been demonstrated that an increase in mitochondrial ROS scavenging
reduces cellular sensitivity to cisplatin [44]. Mitochondria are also involved in sequestration and release
of Ca2+. Calcium signaling between ER-mitochondria and cytosol appears to be a major contributor
to the cytotoxic effects of chemotherapy and many chemotherapeutic drugs trigger a rapid onset of
cytosolic calcium [45–47]. Several studied have already demonstrated that many chemotherapeutic
drugs act via Ca2+ signaling altering ER-mitochondria calcium transfer [48,49].

Over the years, some interest has been given to proteasome inhibitors in treating refractory cancers;
in addition to the cytosolic ubiquitin/proteasome and protein quality control systems, mammalian cells
displayed of other families of ATP-dependent proteases located within the mitochondria including
ClpXP [50]. A study by Zhang and Maurizi (2016) highlighted an involvement of the mitochondrial
ATP-dependentClp matrix protease (ClpP) in cisplatin resistance in human cells. In this in vitro model,
ClpP and ClpX (respectively a homolog of the self-compartmentalized protease, ClpP and a homolog of
the Escherichia coli ATP-dependent protein unfoldase, ClpX), are imported into the mitochondrial matrix
where they interact to form the ATP-dependent protease ClpXP and play a role in the mitochondrial
unfolded protein response. They found that a reduction of mitochondrial ClpP or ClpX subunits
induces a sensitization to cisplatin treatment. HClpXP (human ClpXP) activity positively affects the
ability of cells to efflux cisplatin and suggests that targeting these proteins could be a new strategy to
sensitize cancer cells to cisplatin [51].



Int. J. Mol. Sci. 2019, 20, 3384 4 of 17

4. Mito-Nuclear Crosstalk

Communication among cytoplasm, nucleus and mitochondria is fundamental for maintaining
mitochondrial function and cellular homeostasis [52,53]. Bi-directional communication between
mitochondria and nucleus has been shown to provide the equilibrium of cellular homeostasis.
The anterograde signaling consists in the nuclear control of the mitochondria by regulation of
nuclear-encoded mitochondrial genes, while the complementary retrograde signaling is aimed to
permit mitochondrial communication with the nucleus [54,55].

The nucleus, in response to environmental signals, directly controls the transcription and
translation of genes, regulating mitochondrial biogenesis and OXPHOS functions, via anterograde
pathway. On the other site, retrograde signaling is a mitochondrial quality control mechanism by
which dysfunctional mitochondria are able to interact with the nucleus, communicating metabolic,
oxidative and respiratory stressful conditions [56–58]. These retrograde signals activate diverse
nuclear responses, promoting multiple pathways that regulate energy homeostasis, oxidative stress,
mitophagy, among other functions in other to prime cellular-adaptation strategies. The mitochondria
to nucleus crosstalk influences many cellular and cancer phenotypes, including alterations in survival
rate, metastasis, metabolism and drug resistance; indeed, it could be a likely mechanism by which
altered mitochondrial function modulates adaptive changes in nuclear gene expression and thus in
metabolism. The retrograde signaling, besides inducing adaptation in metabolism, can also provide
a positive selection for specific mitochondrial DNA mutations inducing a phenotype resistant to
chemotherapy [59]. In fact, the signals from damaged mitochondria are considered a homeostatic
stress response against intrinsic or extrinsic (for instance chemicals, and toxins) stimuli.

So far, little is known about the identification of the molecules that can induce a retrograde
signaling; since now, several studies have demonstrated how NAD+/NADH ratio, acetyl-CoA, ATP,
oncometabolites, ROS and Ca2+ could be involved in this crosstalk with the nuclear genome [60].
Khurshed et al. (2018) demonstrated that treatment with cisplatin induces a significant mitonuclear
protein imbalance in IDH1MUT HCT116 cells which is not obtained by treatment with carboplatin.
The mitonuclear protein imbalance was accompanied by a decrease in cellular respiration of cells,
indicative of impaired mitochondrial activity [61]. A study by Wang et al. (2016) provided evidence to
suggest that the ROS-activated GCN2-Eif2α-ATF4-Xct pathway is retrograde signaling that contributes
to mitochondrial dysfunction, enhancing cisplatin resistance in different human gastric cancer cell
lines [62]. The involvement of mitochondrial signals to the nucleus in resistance phenomena has not
been deeply explored yet. The recent findings in the field indicate that the signals from damaged
mitochondria to the nucleus lead to altered expression of nuclear-encoded genes, and thus to a possible
reprogram of the metabolism allowing cell adaptation. Further studies will improve the scientific
knowledge about this fine-regulated mechanism possibly opening up new perspective in chemotherapy
and drug resistance.

5. Intercellular Mitochondrial Transfer

Studies of the recent years have revealed that, besides to be maternally inherited, mitochondria
can be horizontally transferred between cells. The transfer permits the incorporation of
mitochondria/fragment of them, and mitochondrial DNA in recipient cells, allowing changes in
functional properties, bioenergetic profile, and mitochondrial functionality. Spees at al. in 2006 were
the first to demonstrate the transfer of functional mitochondria from human stem cells to recipient
mitochondria-deprived cells, which led to a recovery in mitochondrial respiration [63].

The transfer does not occur by passive uptake, but it is an active process that involves formation
of vesicles, exosomes or tunneling nanotubules (TNTs) between cells. Several studied already
demonstrated the transfer of mitochondria in different cells models using stem cells or immortalized
cells as mitochondria donor. Moreover, the incorporation of exogenous mitochondria into cells has
been shown to contribute to alterations in bioenergetic profile not only in vitro but also in vivo [64–69].
Evidence supports the idea that the transfer of mitochondria or their components may be involved,
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besides in the rescue of mitochondrial defects, also in initiation of stem cells differentiation, activation
of inflammatory pathways and also in efficient metabolic adaptation of tumor cells to a challenging
microenvironment [70]. Therefore, in support of these observations, the possible role of this process
in chemoresistance phenomena has been studied. Pasquier et al. have shown that a mitochondrial
transfer via TNTs from endothelial cancer cells enhances their chemoresistance to doxorubicin;
moreover, they demonstrated that human endothelial and MSCs cells performed a transfer of
mitochondria to MDA-MB-231 triple-negative human breast carcinoma cells, and SKOV3 and OVCAR3
ovarian carcinoma cell lines [71]. Interestingly, mitochondria-acceptor cells presented resistance
to chemotherapy, underlining a functional aspect of mitochondrial acquisition beyond respiration
recovery. Moschoi et al. (2016) firstly demonstrated that in vitro exposure to chemotherapy selects
a subpopulation of leukemic cells engaged in physical contact with stromal cells. The contact
allows the uptake of up to 16 intact mitochondria by leukemic cells, representing 14% of their
total mitochondrial mass. They observed that recipient cells can maintain their mitochondrial
transmembrane potential under chemotherapy and are more resistant to the treatment. Moreover, they
also demonstrated an in vivo transfer from bone marrow mesenchymal cells to myelogenous leukemia
cells which confers chemoresistance to immunodeficient NSG mice [72]. Recently, Boukelmoune et
al. (2018) have demonstrated a transfer of mitochondria from mesenchymal stem cells (MSCs) to
cisplatin-damaged-neuronal stem cells (NSCs). Their data showed that MSCs can transfer mitochondria
to damaged NSCs via formation of tubular structures, thus favoring the latter one survival after
cisplatin treatment. The inhibition of actin polymerization in MSCs blocks the transfer of mitochondria
eliminating the beneficial effect of MSCs on survival of NSCs. On the contrary, the enhancement of
mitochondrial transfer by overexpression of Miro1 protein, a mitochondrial motor protein, further
increases the survival of NSCs after cisplatin treatment [73].

Therefore, even if little is known about the physiological relevance of this phenomenon and its
possible link with chemoresistance, further studies will in the future shed some light on the possible
role of mitochondria in transferring chemoresistant-phenotypes to tumor cells.

6. Mitochondrial DNA as a Target for Cisplatin

In addition to regulating bioenergetics metabolism, mitochondria represent a central component
which integrates epigenetics, stemness, differentiation, initiation, and execution of apoptosis.

Although mitochondria possess their own genome, they are semi-autonomous because most
of their proteins are encoded by the nuclear genome. The mtDNA is a 16.5kpb double-stranded,
circular-shaped DNA molecule which encodes for 13 proteins of the mitochondrial respiratory chain,
22tRNAs and 2rRNAs required for mitochondrial protein synthesis. mtDNA transcription is dependent
on three factors encoded by nuclear genes: mitochondrial RNA polymerase (POLRMT), mitochondrial
transcription factor B2 (TFB2M) and mitochondrial transcription factor A (TFAM). Less than 10% of
the entire mtDNA is represented by the non-coding displacement (D)-loop which overall integrates
nuclear-encoded events into the transcription and replication of the mtDNA. In the same cell, some
mitochondria can contain mtDNA mutation, a characteristic called heteroplasmy, while some others
may contain a uniformly wt- or mutated mtDNA. Unlike nuclear DNA, mtDNA lacks histones,
therefore it is more susceptible to free radicals and its repair capacity is lower compared to nuclear
DNA [74]. So far, several genetic alterations both in mtDNA and nuclear genome have been identified
in tumor cells. As described by Singh et al., different studies have already highlighted that alterations
in mtDNA can result in chemotherapy resistance [75].

However, some studies also suggested how mtDNA variations can be induced by
chemotherapy [76–78]. Nonetheless, limited studies have examined cisplatin activity on mtDNA of
cancer cells, and the molecular mechanisms involved in mtDNA-mediated drug resistance is not
well understood.

In support of the role for mitochondria dysfunction in drug resistance, several studies with cells
chemically depleted of their mtDNA (rho0 cells) have been performed.
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Rho0 cells generated from normal intestinal epithelial cell lines (IEC-6) showed a significantly
increased resistance to CDDP treatment compared to their parental counterparts [79].

Park et al. have shown that hepatocarcinoma cells depleted from mtDNA were less sensitive to
ROS-inducing agents including doxorubicin, sorafenib, and CDDP [80]. This evidence is also associated
with an activation of the nuclear factor erythroid2(NF-E2)-related factor2(NRF-2) signaling pathway
and upregulation of Multidrug Resistance-associated Protein1(MRP1) and 2 (MRP2) [81]. Montopoli
et al. (2011) also have demonstrated that in rho0 clones derived from ovarian cancer cells 2008 (wt)
and C13 (the correspondent CDDP-resistant clone), the potency of CDDP was significantly reduced in
2008-rho0 but not in C13-rho0 when compared to their parental line [82]. This suggests that mtDNA is
a target of CDDP and also that mitochondria are pivotal in the apoptotic process [82].

Recent studies underline how also alterations on mtDNA copy number are implicated in resistance
phenomena. Mei et al. (2015) showed that lowering the copy number of mtDNA sensitizes cells to
cisplatin. Their studies suggest that mtDNA copy number variation might be a novel therapeutic target
for clinical treatment of tumors; in fact, their results showed that the increase of mtDNA copy number
is a self-protective mechanism of tumor cells to prevent apoptosis. The reduction of mtDNA copy
number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide significantly
increases ROS levels and the sensitivity to cisplatin and doxorubicin [83].

In the light of these results, it seems to be some clear evidence that mtDNA alterations could
concur to resistance to chemotherapy and that some drugs, cisplatin included, directly interact with
mtDNA. Targeting mtDNA could lead to novel therapies for aggressive cancers; however, it is essential
to underline that the fundamental step to attack mtDNA by cisplatin requires an optimal delivery
system able to reach the mitochondrial matrix where the mtDNA is located [84].

7. Mitochondrial Dynamics

The focus of interest of this review is the involvement of mitochondria in cisplatin resistance and
mitochondrial dynamics has been shown to assume an important role also in resistance of tumor cells
to chemotherapeutic drugs such as cisplatin.

To survive to internal and external stressors, cells need to maintain a balance of the key intracellular
parameters to restore homeostasis. One of the main actors in this process is the mitochondrion. In
fact, mitochondrial responses to stress are central to cell maintenance and fate. The mechanisms
of mitochondrial adaptation to various stressors, including chemotherapeutic drugs, involve a
reshape provided by mitochondrial motility, mitochondria fusion and fission processes and other
homotypic/heterotypic interactions (such as tethering with the endoplasmic reticulum) [85,86].

Investigating the interplay between mitochondrial dynamic responses and stressors is essential
to understand the shift from health to disease, as well as from sensitive to drug-resistant phenotype.
Mitochondrial functions and their kind of stress response are strictly linked with their structure. These
organelles have drastically different morphologies and shapes depending on the cell type and, even in
the same cell, can present different morphologies [85,86].

In the 1980s live cell microscopy studies showed that mitochondria are organized in a fluidly
interconnected, dynamic network, and their morphology and locations are not fixed but can vary
depending on cell type, physiological content, degree of development, etc. [87]. The dynamic behavior
of the network is essential for distribution, remodeling, and coordination of cell death programs.
Moreover, it allows the remodeling necessary to respond to different stressors [88–90]. The multitudes
of different functions of mitochondria are reflected in their structure: they present an outer and an
inner mitochondrial membrane (OMM and IMM, respectively), which border the intermembrane space
(IMS) and the matrix. The IMM and the OMM associate at contact points forming inward folding
named cristae which accommodate respiratory chain complexes [91].

In recent years, research on “mitochondrial dynamics”, a term which includes mitochondrial
fusion and fission processes, gained much attention; in fact, the balance between these two opposite
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processes regulates mitochondrial abundance, size, and distribution within the cytoplasm, and allows
compensatory changes when cells are challenged [92–96].

Mitochondria fusion is the union of two mitochondria resulting in one mitochondrion; the
organelle movements along cellular tracks permit the encounter between two different mitochondria
facilitating the fusion process. Fusion helps cells to mitigate stress by sharing multiple elements which
sustain mitochondrial biology as a form of complementation [97]. The fusion process is regulated by
large guanosine triphosphatases (GTPases) of the dynamin family. The fusion of the outer membrane
is mediated by membrane-anchored dynamin family members named MFN1 and MFN2 in mammals,
whereas fusion between inner membranes is mediated by single dynamin family member called
OPA-1 (Optic Atrophy type 1) in mammals [98–101]. On the opposite side, mitochondrial fission
is characterized by the division of one mitochondrion in two daughters; this process is required
for segregation of damaged mitochondria for mitophagy, for mtDNA replication and mitochondria
redistribution and motility during cell division [101–103]. The main proteins involved in the process of
mitochondrial fission are the dynamin-related protein 1 or DRP1 and fission protein homolog 1 or FIS1
which, during the fission process, localize at the level of the OMM [104].

The role of imbalance of mitochondrial dynamic in several types of cancer is established and well
documented in multiple works. These studies demonstrated that increased fission activity and/or
decreased fusion which lead to a fragmented mitochondrial network, occur in cancer cells [29,104–109].

A comparison between the percentage of cells with tubular mitochondria in gynecological and
breast cancer cells sensitive and resistant to chemotherapy, showed a higher level of mitochondrial
fusion processes in resistant cells compared to the sensitive ones [110]. This suggests that the
mitochondria fusion can promote cell survival, due to a better mitochondrial activity, through an
efficient production of ATP and its transport.

Conversely, Catanzaro et al. (2015) showed that resistant ovarian cancer cells C13 present a more
fragmented mitochondrial network compared with the sensitive clone 2008 [111].

Additionally, the inhibition of the fragmentation process has been shown to reduce the release of
cytochrome c delaying cell death. Fang et al. (2012) reported that lung adenocarcinoma cells with an
overexpression of OPA-1 are more resistant to cisplatin treatment [112]. OPA-1 downregulation has
been shown to increase the mitochondrial cristae deformation with possible correlation to an increased
release of cytochrome c, inducing apoptosis [113]. Accordingly, silencing the expression of OPA-1 may
decrease the cisplatin resistance. OPA-1 -mediated mitochondrial fusion is potentially responsible for
cisplatin acquired resistance in neuroblastoma B50 rat cells as demonstrated by Santin et al. (2013) [114].
Moreover, the inhibition of mitochondrial fusion by silencing of MFN1 increases cisplatin sensitivity in
human neuroblastoma cells [115]. Han et al. (2017) have demonstrated that in L1210 cells subjected to
cisplatin stress, MFN1 and MFN2 were upregulated, suggesting that the upregulation of mitofusins
might be a cause which concurs in the development of cisplatin resistance [116].

Different studies have reported a relationship between DRP-1 regulation of fission and
chemoresistance in gynecological cancer. A study of Farrand et al. (2013) demonstrated that
piceatannol enhances cisplatin sensitivity in OVCA inducing the dephosphorylation of serine 637 of
the DRP1, thus promoting mitochondrial fission and apoptosis [117]. Nevertheless, a different study
underlined how a downregulation of DRP1 leads to drug sensitivity in ovarian cancer cells [118].

An overexpression of DRP-1 has been shown to lead to cisplatin resistance in lung cancer [48].
Therefore, DRP1 can play a pivotal role in conferring sensitivity or resistance to cisplatin.

8. Mitophagy and Chemoresistance

Autophagy is an evolutionary conserved cellular process, that plays a central role in the
maintenance of cellular balance and physiology. Through the autophagic machinery damaged organelles
and dysfunctional proteins are degraded allowing cells to maintain their homeostasis [119].The role of
autophagy in cancer is controversial and depends on cancer type, genetic context, stage of disease,
etc. [120]; nevertheless, it is well documented that the onset of autophagy allows cancer cells to elude



Int. J. Mol. Sci. 2019, 20, 3384 8 of 17

cell death by apoptosis induced by chemotherapeutic agents but controversial results were obtained
regarding chemoendocrine therapy and inhibitors of autophagy [121–123].

Cisplatin-resistant ovarian cancer cells have been shown to present elevated autophagic flux [124,
125] and different studies have shown how different autophagy inhibitors can increase the sensitivity
of hepatocarcinoma cells to cisplatin [126,127]. It was previously reported that cisplatin decreases
mitochondrial membrane potential inducing a reduction in ATP content and an increase in ROS species.
Timely removal of damaged mitochondria is thus critical for cellular homeostasis. [128]

Mitophagy (mitochondria-specific autophagy) is an essential process which contributes to
mitochondrial quality control and maintenance of normal cellular physiology [129–131]. As a selective
form of autophagy, mitophagy exploits the same core machinery of autophagy for the formation of
autophagosomes and autolysosomes. However, this process needs a different priming process to
label the designed mitochondria and different mitophagy effectors have been identified (including
the PINK1/Parkin pathway and the mitophagy receptors NIX, BNIP3, and FUDNC1) [132,133]. The
crosstalk between autophagy/mitophagy, apoptosis and mitochondrial dynamics seems to be critical
for cell response to cell death induction, thus having high relevance in therapy [134]. In fact, as
mitophagy represents a pro-survival mechanism in cell metabolism, its suppression in cancer cells
can facilitate the elimination of malignant cells. Several evidences have shown that mitochondrial
fission is a pre-requisite for mitochondrial-specific autophagy in mammalian cells. The fission process,
triggered by DRP1, was found to be necessary for the segregation of damaged organelles for elimination
via mitophagy.

Suppression of DRP1 by siRNA has been shown to block cisplatin-induced mitochondrial fission,
mitochondrial dysfunction, and mitophagy. A study of Zaho et al. (2017) showed that inhibition of
DRP1 can ameliorate cisplatin nephrotoxicity. They demonstrated that cisplatin treatment induces
mitophagy which was enhanced by autophagy activators and suppressed by autophagy inhibitors [135].
Moreover, liensinine, an inhibitor of mitophagy, sensitized breast cancer cells to chemotherapy [136];
Chen et al. (2017) have demonstrated that galectin-1 overexpression, triggering autophagy, can lead to
chemoresistance to cisplatin in epithelial ovarian cancer [137]. Similar results have been observed in
hepatoma cells, where galectin-1-triggered autophagy seems to help cells to resist to chemotherapy
drugs by eliminating dysfunctional mitochondria [138]. In fact, galectin-1 treatment is able to induce
an upregulation of BNIP3 and a down regulation of m-TOR in hepatoma cells.

Different studies revealed how genetic inhibition of mitophagy pathways sensitizes cancer cells
to anticancer treatment. Downregulation of mitophagic receptors like PINK1, FUNDC1 or AMBRA1
chemosensitizes cancer cells [139,140].

It has been shown that stimulation of mitophagy suppressed cisplatin-induced apoptosis in
HCT116 (B) and SK-N-BE cells while inhibition of mitophagy stimulates apoptosis and autophagy [141].
In fact, the suppression of mitophagy leads to an overproduction of ROS and the fate of cells was
shown to be dependent on the interplay between ER stress and autophagy.

From these recent studies it turns out that an efficient mitophagy could be a key mechanism which
leads to the failure of activation of the apoptotic pathway inducing an increase in resistance of cells to
chemotherapeutic treatments [142]. A better understanding of the molecular mechanisms involved
in cancer resistance could provide the basis for a new approach to develop autophagy/mitophagy
modulators as targeted therapies.

9. Conclusions

The development of novel pharmacological approaches and new pharmacological targets becomes
a high priority in chemotherapy. The large amount of information generated at the mitochondrial
level is expected to expand the knowledge of cisplatin resistance, and hopefully could lead to the
identification of possible biomarkers for an early prediction of cisplatin therapy response. Once
the specific mechanisms involved in platinum activity/toxicity at mitochondrial molecular level and
cell resistance have been elucidated, inhibitors of those pathways could be developed for a synergic
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combination with cisplatin. The delivery of Pt-based drugs to mitochondrion together with suitable
inhibitors of the antioxidant cellular system—which is enhanced in cisplatin-resistant cancer cells—can
promote alternative pathways for Pt-based drugs activity. This opens the novel perspective of potential
therapeutic strategies aiming at re-establishment of the response to platinum-based chemotherapy. In
literature, there are recent works that support these hypotheses, presenting potential and promising
approaches even if so far only in vitro studies are present. As an example, Wandee et al. (2019) showed
the chemosensitizing activity of metformin in combination with cisplatin in cholangiocarcinoma.
This effect is associated with an increase in oxidative stress related to mitochondrial dysfunction and
initiation of cell death [143]. Additionally, melatonin sensitizes head and neck squamous carcinoma cell
lines to cisplatin by the increase of mitochondrial function and following ROS overproduction [144].

Even if the findings presented in this review highlight the central role of mitochondria in cisplatin
resistance, the specific mechanisms affecting mitochondrial functions still remain to be further elucidated.
Study of the interaction between cisplatin and mitochondria, as well the morphological alteration
that it involves, might open up new perspectives in the identification of novel mitochondrial-selective
targeting strategies able to ameliorate cisplatin efficacy.

With the aim of targeting directly cisplatin to mitochondria, specific drug delivery systems have
been proposed and are still in development. The targeted delivery to mitochondria could limit systemic
toxicity and reduce the onset of resistance phenomena. In this context, nanoparticles hold great
promise in drastically change the face of oncology, thanks to their ability of targeted delivery avoiding
undesirable biodistribution, severe systemic effect, and drug resistance. In this field, Marrache et al.
(2014) developed a mitochondria-targeted Pt(IV)-prodrug of cisplatin delivered in a biocompatible
polymeric nanoparticle (NP); this formulation allows the delivery of platinum inside the mitochondria
of neuroblastoma cells resulting in 17 times more activity than cisplatin [84]. Notably, the exploitation
of delivery strategies to improve the antitumor activity of cisplatin has recently attracted considerable
attention since they can offer significant tools to ameliorate the drug efficacy and reduce toxicity and
side effects as shown in Figure 1 [7,145–147]. Among the delivery strategies that are considered more
promising for the clinical translation, liposomal loaded cisplatin (Lipoplatin) has advanced to Phase III
human clinical trial, showing superiority to cisplatin as a chemotherapy regimen in non-small cell
lung cancer (NSCLC) adenocarcinomas.
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Even though the mitochondrion appears as a tempting target for anti-cancer therapies, the huge
disparity in the reported mitochondrial alterations among tumors could interfere with the efficacy
of the potential mitochondrial-targeted treatments. Another highly significant result emerged from
clinical applications of mitochondrial-targeted drugs in cancer therapies is that they have shown
limited side-effects on normal “healthy” cell populations in vivo [148]. However, it is still too early to
judge the clinical impact that mitochondrial-targeted drugs will make in treating cancer.
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