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Abstract: Exposure to ionizing radiation induces a complex cascade of systemic and tissue-specific
responses that lead to functional impairment over time in the surviving population. However, due to
the lack of predictive biomarkers of tissue injury, current methods for the management of survivors
of radiation exposure episodes involve monitoring of individuals over time for the development of
adverse clinical symptoms and death. Herein, we report on changes in metabolomic and lipidomic
profiles in multiple tissues of nonhuman primates (NHPs) that were exposed to a single dose of 7.2 Gy
whole-body 60Co γ-radiation that either survived or succumbed to radiation toxicities over a 60-day
period. This study involved the delineation of the radiation effects in the liver, kidney, jejunum, heart,
lung, and spleen. We found robust metabolic changes in the kidney and liver and modest changes in
other tissue types at the 60-day time point in a cohort of NHPs. Remarkably, we found significant
elevation of long-chain acylcarnitines in animals that were exposed to radiation across multiple tissue
types underscoring the role of this class of metabolites as a generic indicator of radiation-induced
normal tissue injury. These studies underscore the utility of a metabolomics approach for delineating
anticipatory biomarkers of exposure to ionizing radiation.

Keywords: acute radiation syndrome; biomarker; gamma-radiation; lipidomes; metabolites; nonhuman
primates; tissue

1. Introduction

Nuclear accidents, such as Chernobyl and Fukushima–Daiichi, and deliberate radiological events
by terrorists have been at the forefront of emergency response planning [1–3]. The threat of terrorism
or military action has escalated the possible use of radiological or nuclear weapons. Further, the atomic
bombings of Hiroshima and Nagasaki have demonstrated the power of nuclear weapons to cause harm
to humans through morbidity, mortality, and long-term effects arising from radiation exposure. The
detonation of an improvised nuclear device (IND) or a radiological dispersal device (RDD) requires an
immediate assessment of exposed victims for the absorbed radiation dose. While an RDD will expose
individuals to relatively low levels of radiation, an IND can lead to significant exposure and death to
thousands of people [4]. Protection of citizens from national health security threats continues to be a
high priority for the government.
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Significant efforts have been made to develop sensitive methods for radiation exposure dose
assessment and medical countermeasure efficacy. Complete blood count (CBC), dicentric measurements,
premature chromosome condensation (PCC), gene expression, γ-H2AX, micronucleus assay, protein
biomarkers, metabolic biomarkers, and electron paramagnetic resonance (EPR) or optically stimulated
luminescence (OSL) of teeth have been used as some of the methods for identifying and validating
biomarkers [5–7]. However, some of these assays require a long time and highly trained manpower to
perform the assays and interpret the results. Radiation biomarkers should be able to accurately classify
individuals as having >2 Gy of exposure. A dose of >2 Gy would lead to acute radiation syndrome
(ARS) that can lead to death without appropriate medical intervention. A dose of <2 Gy, specifically
0.75–1 Gy, can also require treatment, although attention for those individuals may be less of a priority.

For first responders and military personnel, personal dosimetry may provide an accurate estimation
of the external exposure and banked biological samples may serve as a reference for biodosimetry,
which is not applicable to the general population. Though classical cytogenetic techniques are the gold
standard for radiation dose assessment, as stated above, these assays are time-consuming, laborious,
and require well-trained staff. One promising approach for biomarker identification is metabolomics,
which allows rapid, qualitative, and quantitative assessment of small molecules of <1 kDa in tissues
and biofluids. In addition, lipidomics, a comprehensive assessment of relative changes in endogenous
levels of lipids, is considered a component of metabolomics analyses. Global molecular phenotyping
approaches allow for the full scanning of the metabolome and pattern identification according to
pathway interactions, whereas targeted approaches can be more quantitative and concentrate on
specific metabolites or perturbations along a metabolic pathway. Metabolomics of high-dose radiation
exposure has provided a highly revealing glimpse of metabolic dysregulation [8–10]. Biomarkers in
both tissue and biofluid samples from mouse, rat, minipig, nonhuman primate (NHP), and humans
have offered the basis for the determination of a radiation signature to assess the need for medical
intervention [11]. Biomarkers of tissue-specific injury will be informative for treatment and for the
future risk of delayed effects of radiation exposure. To date, only citrulline has been well identified
through metabolomics as a reliable tissue-specific biomarker [12].

Here, we have performed a systemic study to delineate the metabolic profiles in heart, lung,
spleen, jejunum, liver, and kidney of NHPs exposed to 7.2 Gy whole-body 60Co γ-radiation. Our
results, for the first time, demonstrate that major metabolic organs such as liver and kidney show
changes in glycerophospholipid metabolism, amino acid, and sugar metabolism, as well as fatty acid
metabolism. Additionally, for the first time, we report on the elevation of long-chain acylcarnitines in
the irradiated cohort with a high correlation in the heart of the survivor, as well as with the decedent
cohort of NHPs. These findings show that exposure to ionizing radiation causes long-term changes in
metabolism that can be used to monitor tissue damage.

2. Results

2.1. Untargeted Metabolomics Analysis Identifies Changes in the Tissue Metabolome of the NHPs Exposed
to Radiation

In order to study changes in tissue profiles of NHPs exposed to a lethal dose of radiation, we
followed the survival patterns of an NHP for 60 days subsequent to whole-body irradiation. As shown
in Figure 1, the survival pattern of individual NHPs receiving a single dose of radiation compared
with healthy animals showed significant mortality (these animals are referred to as non-survivors
hereafter). We harvested tissue from healthy, as well as the irradiated NHPs for metabolomic and
lipidomic analyses of six tissue types including liver, kidney, heart, jejunum, spleen, and lung. We
asked if there were differences in the molecular profiles of the irradiated cohort as compared to the
healthy animals, as well as the effect of irradiation in decedents as compared to the surviving cohort.

Pre-processing of the raw LC-MS data through XCMS software identified a total of 3128 features
in electrospray ionization (ESI) positive mode and 2725 in ESI negative mode. Initially, each NHP was
labeled at ‘healthy’ or ‘irradiated’. The irradiated group was further split into two groups based on
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if they survived to the 60-day time point after radiation as ‘survivor’ and if they died at any point
prior as ‘non-survivor’ that were used for statistical analysis. ANOVA comparison across all the
three groups was performed followed by the following binary t-test: healthy vs. survivor, healthy vs.
non-survivor, and survivor vs. non-survivor. The significant m/z values were then subjected to an
accurate mass-based database search using CEU-Mass Mediator, the Human Metabolome Database
(HMDB), and the Metlin for identification. After identification, biological endogenous metabolites
were separated and verified using tandem mass spectrometry. ANOVA analyses yielded a maximum
number of altered metabolites (as shown within the parenthesis) which were observed from kidney
(115 features) and liver (71) tissue types, while jejunum (24), spleen (10), lung (5), and heart (1) tissues
showed only moderate changes in the metabolite levels, and binary comparisons showed robust
changes in all tissue types. A set of discriminating metabolites separating the healthy and irradiated
groups were identified and tabulated (Supplementary Table S1).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 3 of 12 
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Figure 1. Percent survival for the nonhuman primate (NHP) study cohort over the course of 60 days of
the follow-up period.

2.2. Metabolite Alterations in the Kidney and Liver Profiles as Indicators of Radiation-Induced Tissue Damage

Liver and kidney tissue samples from 40 NHPs were subjected to untargeted metabolomics
analysis using Waters QToF. A total of 3128 and 2725 features were detected in positive and negative
electrospray ionization modes, respectively. The identity of significantly altered metabolites was
confirmed by tandem mass spectrometry.

The score plots for liver tissue data (Figure 2, Panel A) revealed significant differences in metabolite
profiles between healthy and non-survivors. Cross-validation of the PLS-DA (partial least square
discriminant analysis) model yielded R2 = 0.9751 and Q2 = 0.4908 in the liver samples in positive mode,
suggesting good separation of healthy NHPs (N = 8) from those who succumbed to radiation-induced
tissue injury (N = 14) within 60 days. The liver metabolite profile of NHPs that survived radiation,
was seen to overlap among the healthy and non-survivors. These results suggest that NHPs exposed
to whole-body radiation induced significant changes in the liver metabolome. Next, we performed
ANOVA analyses to find metabolites that significantly changed after exposure to radiation. Multiple
metabolites were significantly altered in the liver of NHPs that were exposed to radiation compared
to the healthy cohort. Of particular interest, were the differences in the levels of xanthurenic acid,
choline, carnitine, C18:1, decosopentanoylcarnitine, choline sulfate, O-arachidonoyl glycidol, and
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eicosapentaenoic acid (Figure 2, Panel B). Interestingly, alterations in the levels of these metabolites
followed a pattern wherein they were either incrementally decreased or increased from healthy to
survivors to non-survivors suggesting a correlation with survival time post-irradiation. Additionally,
hierarchical clustering revealed an alteration in the levels of lipids in the healthy NHP liver compared
to NHPs exposed to radiation (Figure 2, panel C). Next, we asked if there was a correlation between
the metabolite abundance pattern and survival in the NHP cohort. For this purpose, we performed
Spearman correlation analysis that was visualized as a circus plot (Figure 3, Panel A) and found
PC(18:3/0:0) PC(16:0/0:0) to be highly correlated with survival (p-value cut-off ≤ 1 × 10−30). The ROC
(receiver operator characteristic) analysis using 10-fold cross-validation augmented the selection of a
four-metabolite panel predictive of post-irradiation survival in NHPs with 89% accuracy (Figure 3, Panel
B). The metabolite comprising this panel included xanthurenic acid, C18:1, Carnitine, and PC (18:3/0:0).
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Figure 2. Exposure to ionizing radiation leads to robust changes in liver metabolomic and lipidomic
profiles. Panel (A): Three dimensional PLS-DA plot showing separation of healthy NHPs (N = 8)
from those who either survived (N = 18) or succumbed to radiation-induced (N = 14) tissue injury
within 60 days. The prediction accuracy for 100 permutations yielded a p-value of 0.04. Panels
(B and C): Relative abundance of significantly dysregulated metabolites and lipids in the three study
groups, respectively.

In addition to the liver, profiling of the kidney showed a maximum number of altered metabolites
between healthy and irradiated groups. As seen in Figure 4, panels A and B, hierarchical clustering
and three dimensional PLS-DA plot showed separation of healthy NHPs (N = 8) from those who
either survived (N = 18) or succumbed to radiation-induced (N = 14) tissue injury within 60 days
(R2 = 0.9660 and Q2 = 0.4698). Of the 44 metabolites that were significantly altered due to radiation
exposure, xanthine, phenylpuruvic acid, phenylalanine, N-lactoyl phenylalanine, sphinganine, 3-oxo
nonadecanoic acid, 3-hydroxy 5-phenylpentanoic acid, FAHFA (fatty acid hydroxyl fatty acid), lyso
PAF-C18, and 12,13 EpOME were significantly altered between the kidney from the healthy NHPs
versus irradiated NHPs (Figure 4, panel B). In addition, we found significant dyslipidemia that was
progressive between healthy, survivor, and the non-survivor NHPs (Figure 4, panel C). These included
alterations in glycerophospholipids, glycerophosphoethanolamines, and sphingomyelins. A Spearman
correlation analysis showed that PC(18:1/22:4), PC(18:0/20:3), PC(17:1/19:0), and PC(16:0/20:3) in kidney
were the most correlated metabolites with irradiated surviving NHPs (Figure 5, Panel A). Finally, a
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six-metabolite panel that included PE 16:0/18:1, SM (16:1/17:0), xanthine, N-lactoyl-phenylalanine,
Sphinganine, PE (16:0/20:4) was able to discriminate healthy and surviving NHPs by >90% predictive
accuracy (Figure 5, Panel B).Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 12 
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Spearman correlation values between 18 top cut-off point p-value < 1 × 10−30. Panel B. The ROC curve
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algorithm showed sensitivity = 0.833, specificity= 0.875, AUC: 0.869, and a predictive accuracy of 0.846.
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Figure 4. Metabolomic and Lipidomic profiles of kidney in NHPs pre and post-irradiation. Panel A:
Three dimensional PLS-DA plot showing separation of healthy NHPs (N = 8) from those who either
survived (N = 18) or succumbed to radiation-induced (N = 14) tissue injury within 60 days.Prediction
accuracy for 100 permutations yielded a p-value of 0.07. Panels B and C: the relative abundance of
significantly dysregulated metabolites and lipids in the threes study groups, respectively.
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Figure 5. Metabolite correlates of radiation response in NHP kidney. Panel (A) Circos plot of Spearman
correlation values between 18 top cut-off point p-value < 1 × 10−30. Panel (B) the ROC curve with a
six-metabolite panel predictive of post-irradiation survival in NHP kidney. The classification algorithm
showed sensitivity = 0.833, specificity = 0.875, AUC: 0.924 and a predictive accuracy of 0.849.

2.3. Generic Markers of Ionizing Radiation Exposure Across Multiple Tissue Types

Although kidney and liver tissues types showed a maximum number of altered metabolites,
exposure to radiation generated a modest metabolic response in other organs like heart, jejunum, lung,
and spleen. Broadly, the altered metabolites across tissue type could be classified as fatty acid amides,
long chain acylcarnitines, and oxidized fatty acids. A trend plot analysis showed a progressive pattern
of abundance between the different study groups. For example, the endogenous levels of fatty acid
amides were considerably decreased in the survivors and non-survivors (Figure 6). On the other
hand, levels of most of the acylcarnitines were found to be increased in the non-survivors compared to
healthy NHPs, though the levels slightly decreased in the survivors. The levels of oxo-fatty acids also
showed a relative decrease in the radiation-exposed NHPs as compared to the healthy groups. Overall,
radiation caused alterations in the levels of metabolites of other soft tissues like heart, jejunum, lung,
and spleen with the maximum effect observed in the kidney and liver at 60 days’ post-irradiation.
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3. Discussion

Accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential
detonation of an IND or a RDD in a metropolitan city have led to an increased need for the rapid
assessment of exposure to different radiation qualities and dose. The qualitative and quantitative
assessment of small molecules in a given biological specimen, metabolomics, has emerged as a
promising technology to allow for rapid determination of an individual’s exposure level and metabolic
phenotype. Advancements in mass spectrometry techniques have led to targeted and untargeted
methods identifying biomarkers of radiation exposure much earlier than the appearance of gross
clinical symptoms. Moreover, unlike ARS, which occurs rapidly after irradiation, there is an adequate
latent window for predicting delayed effects of acute radiation exposure (DEARE), increasing the
feasibility of using biomarkers. Thus far, no biodosimetry approach has been cleared by the U.S.
Food and Drug Administration (FDA) for use in triage or as a diagnostic tool. Moreover, most of the
research efforts have focused on the delineation of circulating biomarkers detectable in the first 48 h
after radiation exposure [13,14]; as such, there is a paucity of studies focused on circulating biomarkers
that indicate or predict the development of delayed radiation injury in organs such as the kidney, heart,
and brain, after exposure to both high- and low-LET (linear energy of transfer) radiation [15,16].

We found that the liver and kidney showed most robust changes in metabolic and lipid profiles at
the 60-day time point in survivors. For example, we found changes in arachidonic acid metabolism,
carnitine, and choline metabolism in the liver tissue post-irradiation. Changes in arachidonic acid
metabolism are suggestive of radiation-induced tissue injury pertaining to fibrosis that manifests
as a radiation late effect [17]. Previous studies have shown the release of choline and carnitine due
to significant hepatic damage resulting from exposure to high doses of ionizing radiation [18]. We
also found dyslipidemia in the liver tissue that is consistent with reports from other groups for
circulating biomarkers of radiation exposure [19,20]. Remarkably, dyslipidemia was more severe in the
non-survivors as compared to the survivors and the healthy NHPs indicating a strong correlation with
overall survival following exposure to radiation. Radiation-induced dyslipidemia could potentially be
a consequence of increased lipid peroxidation. Lipid peroxidation, specifically the peroxidation of
polyunsaturated fatty acids after exposure to radiation, is well documented by several studies that have
identified cellular damage at various levels including DNA, proteins, and membrane lipids [21,22].
FAs (fatty acids) are vital endogenous molecules for cellular energy metabolism, and the decrease in
their levels following irradiation is most likely a protective mechanism of these cells to meet their
energy demands under this hypoxic condition. In addition, we found a significant increase in Lyso
PAF C-16, which has been reported to accumulate as a result of ionizing radiation-mediated oxidation
of phospholipids leading to tissue damage and inflammation [23]. Not surprisingly, phospholipids
were also the most correlated lipid classes with liver and kidney injury. Finally, the changes in
metabolite and lipid abundance could be leveraged as a predictor of radiation injury with high
accuracy. Another striking observation of this study was the accumulation of long-chain acylcarnitines
(LCACs), including sterearoylcarnitine (C18:0) and linoleycarnitine (C18:2) across different tissue
types (heart, lung, jejunum, spleen, liver, and kidney) in the surviving and non-surviving NHPs.
Accumulation of this class of metabolites has been reported to cause hypoxia which is especially
relevant in vital organs like the heart which derives 50–70% of its energy demands from the oxidation
of fatty acids [24]. Mitochondrial oxidation of fatty acids requires these molecules to be esterified with
carnitine to form acylcarnitines that is able to cross the mitochondrial membrane, which is otherwise
impermeable to long-chain fatty acids [25]. It is well known that dysregulation in acylcarnitines
and free fatty acids can cause disrupted mitochondrial function leading to radiation-induced tissue
damage [26]. Additionally, given the pro-inflammatory properties of LCACs [27], it is reasonable
to posit that radiation-induced tissue necrosis may mobilize elevated levels of LCACs in response
to the cellular stress from radiation. We also observed a decrease in fatty acid amides including
palmitoleamide, oleamide, stearamide, and 13-docasenamide across all five tissue types in the survivors
and non-survivors. These metabolites are structurally analogous to endocannabinoids and have been
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reported to exert strong anti-inflammatory effects in the heart and brain and the endogenous levels
are regulated by the enzyme fatty acid amine hydrolase (FAAH), which in turn has been shown to be
a key regulator of endocannabinoid-induced myocardial tissue injury [28,29]. It is noteworthy that
FAAH is predominantly present in the mitochondria and compromised functioning of this enzyme
will significantly alter the lipid pools within the tissue [30]. Although preliminary, our results are
indicative of radiation-induced dysregulated mitochondrial energetics, and it would be worthwhile to
test this hypothesis in future studies.

Currently, there is a dearth of understanding about tissue-specific injury caused by exposure
to ionizing radiation. Hence, the focus of this study was to examine tissue-specific changes in the
survivor and non-survivor population. Taken together, these findings show that while radiation has
tissue-specific metabolic alterations, there are also some underlying patterns of metabolite abundance
that may help define a common pattern of radiation-induced tissue injury. Future studies will be
needed to determine if these changes can be corroborated in minimally invasive matrices to stratify
individuals at risk of radiation toxicities.

While this study underscores the value of molecular phenotyping technologies for the development
of high-accuracy biomarkers of radiation effects, one of the shortcomings of this study is the lack
of delineation of longitudinal changes in metabolism that would provide insights into how these
changes could be detected earlier and leveraged for early detection and potential mitigation of
radiation-induced tissue/organ damage. Future studies will focus on addressing this gap by identifying
metabolic biomarker profiles at earlier time points that could be used to predict delayed radiation
injury in late responding tissues including kidney, heart, lung, and brain.

4. Materials and Methods

4.1. Animals and Animal Care

Forty naïve rhesus macaques (Macaca mulatta, Chinese substrain, 36 males and 4 females) 3–5 years
of age, weighing 4.15 to 7 kg, were obtained from the National Institutes of Health Animal Center
(NIHAC, Poolesville, MD, USA) and maintained in a facility accredited by the Association for
Assessment and Accreditation of Laboratory Animal Care (AAALAC)-International. Animals were
quarantined for six weeks prior to the initiation of the experiment. Animal housing, health monitoring,
care, and enrichment during the experimental period have been described earlier [31]. Animals were
fed primate diet (Teklad T.2050 diet; Harlan® Laboratories Inc., Madison, WI, USA) twice daily with at
least six hours between feedings (animals were fed four biscuits each at 07:00 AM and 02:00 PM) and
received drinking water ad libitum. Due to study-specific reasons, paired housing was not possible
during the experiment. The animals were housed individually, but they were able to see and touch
conspecifics through the cage divider. This also eliminated the chance of conflict injuries that could
have been caused by pair-housing. Animals that are irradiated are more prone to infection as their
natural immunity is suppressed. All procedures involving animals were approved by the Armed
Forces Radiobiology Research Institute Institutional Animal Care and Use Committee (IACUC) and
Department of Defense Animal Care and Use Review Office (ACURO). This study was carried out in
strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the
National Institutes of Health [32].

4.2. Radiation Exposure

Food was withheld from each animal approximately 12–18 h prior to radiation exposure to
minimize the occurrence of radiation-induced vomiting. To deliver the precise dose, NHPs’ abdominal
widths were measured with digital calipers. Approximately 30–45 min prior to irradiation, NHPs were
administered 10–15 mg/kg of ketamine hydrochloride intramuscularly for sedation, then placed in
custom-made Plexiglas irradiation boxes and secured in a seated position. Two NHPs were placed
on the irradiation platform facing away from each other and an exposure dose of 7.2 Gy (LD70/60
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without supportive care) 60Cocobalt-60 γ-radiation at a dose rate of 0.6 Gy/min from both sides of the
core of the abdomen (bilateral, simultaneous exposure). The radiation field in the area of the NHP
location was uniform within ±1.5%. Animals were observed throughout the irradiation procedure via
in-room cameras. Following irradiation, animals were returned to the transport cart and to their cages
in the housing area and monitored for recovery from the procedure. AFRRI’s dosimetry for photons is
based on the alanine/EPR (electron paramagnetic resonance) dosimetry system. This is one of the most
precise dosimetry techniques at present, which is used, in particular, by national standard laboratories
for the most critical measurements and calibrations. Thus, it is one of the very few methods that are
used in regular worldwide inter-comparisons of the national standards of Gray. All other details on
NHP radiation-exposure are described earlier [31].

4.3. Tissue Sample Collection

The heart, lung, spleen, jejunum, liver, and kidney were collected at various days’ post-irradiation
in liquid nitrogen or dry ice immediately after euthanasia during necropsy. Tissue samples were stored
at −70 ◦C until shipped on dry ice to Georgetown University Medical Center (Washington, DC, USA).

4.4. Sample Preparation and LC-MS Analyses

All tissue types were prepared uniformly for metabolomic analysis. Metabolite extraction was
performed by adding 150 µL of 40% isopropanol (IPA) + 25% methanol + 35% water containing
internal standards to NHP tissue. Samples were then homogenized on ice and then 150 µL of 100%
acetonitrile (ACN) as added. Samples were vortexed and incubated on ice for 20 min to facilitate
protein precipitation. Vials were centrifuged at 13,000 rpm at 4 ◦C for 20 min. The supernatant was
transferred to fresh vials for UPLC-ESI-Q-TOF-MS analysis. Protein quantitation was carried out on
the remaining tissue pellet using a Bradford assay.

For metabolomic analysis, 2 µL of each sample was injected onto a reverse-phase 50 × 2.1 mm
Acquity 1.7-µm BEH C18 column at a temperature 40 ◦C (Waters Corp, Milford, MA, USA) using an
Acquity UPLC system (Waters) with a gradient mobile phase consisting of 100% water containing 0.1%
formic acid (Solvent A) and 100% ACN containing 0.1% formic acid (Solvent B) and 90% IPA + 10%
ACN containing 0.1% formic acid (Solvent C), and resolved for 13 min at a flow rate of 0.4 mL/min.
The gradient started with 95% A and 5% B for 0.5 min with a ramp of curve 6. At 8 min, the gradient
reached 2% A and 98% B. From 8 to 9 min, the gradient shifted to 0% A and 2% B and 98% C for 1.5 min.
From 10.5 to 11.5 min, the gradient shifted to 50% A and 50% B. From 11.5 to 12.5 min, it shifted to 95%
A and 5% B (initial condition).

The column eluent was introduced directly into the mass spectrometer by electro-spray. Mass
spectrometry was performed on a Q-TOF MS (Xevo G2 QTOF MS, Waters Corporation, Milford, MA,
USA), operating in either negative-ion (ESI−) or positive-ion (ESI+) electrospray ionization mode
with a capillary voltage of 3 kV for positive mode and 1.5 kV for negative mode and a sampling cone
voltage of 30 V in both negative and positive modes. The extraction cone was 3.0. The desolvation
gas flow was set to 1000 L/h and the temperature was set to 500 ◦C. The cone gas flow was 25 L/h,
and the source temperature was 120 ◦C. The accurate mass was maintained by the introduction of the
LockSpray interface of Leucine Enkephalin (556.2771 [M + H]+ or 554.2615 [M −H]−) at a concentration
of 2 ng/µL in 50% aqueous ACN and a rate of 5 µL/min. Data were acquired in centroid mode from
50 to 1200 m/z in MS scanning. Pooled QC (quality control samples) were run throughout the batch to
monitor data reproducibility.

4.5. Statistical Analyses

Centroided and integrated mass spectrometry data from the UPLC-TOFMS were preprocessed
using XCMS software (Scripps Research Institute, La Jolla, CA, USA) to generate a data matrix
containing ion intensities, mass to charge (m/z), and retention time values. The data were normalized
to the intensities of the internal standards and protein quantification. Multivariate statistics were
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performed using R scripts developed in-house [33] with Pareto scaling and log-transformation used
for data normalization. ANOVA and Student’s t-test comparisons were used to identify significantly
dysregulated metabolites (based on m/z values) between comparative groups and further corrected
using the Benjamini–Hochberg (FDR) multiple testing correction method and then were subjected
to a database search for the identification and biological relevance using Metlin [34] CEU Mass
Mediator [35] and HMDB [36]. The identity of these significantly dysregulated metabolites was
confirmed using tandem mass spectrometry (Supplementary Table S2). Additionally, the identity of
lipids was confirmed by using the SIMPLIPID software V6.01 (Premier Biosoft, USA), by fragmentation
pattern matching. Figures were generated using custom R scripts. The ROC curves were calculated
using the pROC package [37], and the survival curve was created using the survival package [38].

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/20/13/3360/
s1, Supplementary Table S1. ANOVA analysis of significantly dysregulated metabolites across tissue types.
Supplementary Table S2. Collision induced dissociation (CID) fragmentation results for significantly dysregulated
metabolites in response to exposure to ionizing radiation.
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