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Abstract: The term diabetic cardiomyopathy (DCM) labels an abnormal cardiac structure and
performance due to intrinsic heart muscle malfunction, independently of other vascular co-morbidity.
DCM, accounting for 50%—-80% of deaths in diabetic patients, represents a worldwide problem for
human health and related economics. Optimal glycemic control is not sufficient to prevent DCM,
which derives from heart remodeling and geometrical changes, with both consequences of critical
events initially occurring at the cardiomyocyte level. Cardiac cells, under hyperglycemia, very early
undergo metabolic abnormalities and contribute to T helper (Th)-driven inflammatory perturbation,
behaving as immunoactive units capable of releasing critical biomediators, such as cytokines and
chemokines. This paper aims to focus onto the role of cardiomyocytes, no longer considered as
“passive” targets but as “active” units participating in the inflammatory dialogue between local
and systemic counterparts underlying DCM development and maintenance. Some of the main
biomolecular/metabolic/inflammatory processes triggered within cardiac cells by high glucose are
overviewed; particular attention is addressed to early inflammatory cytokines and chemokines,
representing potential therapeutic targets for a prompt early intervention when no signs or symptoms
of DCM are manifesting yet. DCM clinical management still represents a challenge and further
translational investigations, including studies at female/male cell level, are warranted.
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1. Introduction

Diabetic cardiomyopathy (DCM) ending in left ventricular (LV) dysfunction is reported to be
the leading cause of death in type 2 diabetes (T2D) [1]. Patients suffering from T2D retain a 2- to
5-fold higher risk of developing cardiovascular disease vs. a non-diabetic matched population, as a
consequence of diabetes-associated coronary atherosclerosis and vascular abnormalities [2]. However,
regardless of the common co-morbidities present in T2D patients, it has been observed that DCM
occurs independently of vascular diseases, as coronary artery disease or hypertension [3-5]. The
term DCM was first coined in 1972 by Rubler and collaborators, who observed congestive heart
failure without any alteration of coronary arteries or valves in a very restricted number of patients [6].
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Nowadays, albeit some debate still exists whether or not DCM alone can frame a clinical discernible
picture [2], it is accepted that diabetes per se is able to trigger a wide range of biomolecular changes
that remodel cardiac tissue and cells, with a unique pattern characterizing DCM vs. other types of
cardiomyopathies [7,8]. Hyperglycemia, dyslipidemia and hyperinsulinemia related to the diabetic
insult represent critical events influencing cardiac (worse) outcome. Although the aetiology is different,
DCM can occur also in type 1 diabetes (T1D); high glucose-dependent metabolic alterations, oxidative
stress and inflammation constitute the common features at the initial phases of the disease, suggesting
a possible unifying hypothesis [9].

Indeed, the toxicity associated with disturbances in circulating levels of glucose and insulin
(I) or fatty acids (FA) leads to alterations of cardiac structure, cardiomyocyte signaling and
metabolism [10]—tissue fibrosis, myocyte cell death, contractile dysfunction and oxidative stress,
to mention some. Since hyperglycemia is the major factor in DCM etiology, an optimal glycemic
regulation is undeniably the first step to limit glucose-induced toxicity. However, beyond glycemic
status, the evidence that some drugs currently used to control glycemia exert some important beneficial
effects directly onto myocardium suggests the importance of local biomolecular factors at tissue/cell
level [11,12]. Furthermore, the glycemic status, albeit eliciting critical effects onto cardiac cell function,
seems not to be predictive of early heart function decline [13]. The hypothesis that the failure of
heart function in T2D could occur following early alterations within the cardiac cell has been put
forward [14].

The challenge for clinicians and researchers is to clarify the early events occurring at cardiomyocyte
level preceding heart remodeling and geometrical changes in tissue architecture, which represent the
final consequence of a series of detrimental events related to chronic hyperglycemia [15]. Cardiac cell
death is hypothesized to be the basic event initiating cardiac remodeling within a T helper 1 (Th1)-type
inflammatory microenvironment. In this scenario, some biomolecules with high immune-activity, like
Thl-type cytokines and chemokines, play pivotal roles in the mechanisms underlying DCM onset and
progression. Thus, despite the undeniable role of vascular bed-related changes, cardiac cells are not
considered only final “passive” targets of detrimental events.

This paper aims to focus on the cardiomyocyte, which, under chronic hyperglycemia, behaves
as an active unit, critically participating in and contributing to the immune/inflammatory dialogue
between local and systemic counterparts underlying DCM onset, development and maintenance. Some
of the main biomolecular mediators and mechanisms at cellular and intracellular level in cardiac cells
will be overviewed and discussed also as potential new pharmacologic targets.

2. DCM Etiology: The Pivotal Role of the Cardiomyocyte at Disease Onset

The major etiological factor in DCM development is hyperglycemia, which is responsible for
disease stepwise progression [16]. Four possible stages have been reported: from the asymptomatic
initial phase, clinically marked by LV hypertrophy with preserved ejection fraction (EF); followed
by reduced EF and dilatation at stage 2; by systolic and diastolic dysfunction, micro-angiopathy,
hypertension and myocarditis at stage 3; culminating in end-stage or refractory heart failure with
ischemia, infraction and remodeling in stage 4 [5]. The overall chronic exposure to hyperglycemic
milieu is tightly associated with extended organ and tissue injury, including micro- and macrovascular
damages, nephropathy and neuropathy, due to either vascular-mediated action or direct effects of
hyperglycemia on tissues. However, a full description of clinical stages and hyperglycemia-dependent
damage on organs would be very extensive and it is beyond the aim of this review. The following
paragraphs summarize how early metabolic abnormalities and inflammatory perturbation within
cardiomyocytes eventually leads to heart dysfunction in DCM.
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3. Cardiomyocyte Metabolism in Normal and Diabetic Condition

3.1. Metabolic Substrate Flexibility

The cardiomyocyte with its continuous contraction retains the highest demand for energy and
shows a unique substrate promiscuity, which allows the cell to utilize multiple substrates, such as
FA, carbohydrates, aminoacids, lactates and ketons [17,18], for ATP and energy production. The
ability to utilize such substrate variety under normal conditions is reported as “metabolic substrate
flexibility” [12], which is lost when heart is under hyperglycemic/hyperinsulinemic milieu. Normally,
FA and glucose are the main utilized substrates by cardiac cells. FA exogenous supply, deriving from
the lipolysis of circulating complex lipids or released by adipose tissue, occurs through a number of
transporters (CD36 or FA translocase, FA binding protein or FABPpy, FA transporter proteins or FATP);
an endogenous FA source is from cardiac triglycerides storage. FA enter oxidative cycle by conversion
in acyl coenzyme A (acyl-CoA), which, once within the mitochondria, undergoes (3-oxidation, leading
to ATP. Glucose uptake is mainly an I-dependent event mediated first by GLUT4 translocation through
I receptor substrate (IRS)1/2, and downstream by PI3K/protein kinase B (Akt) [18] and AMP-activated
protein kinase (AMPK). The process ends in glycogen storage or ATP production through glycolitic and
oxidative processes, via pyruvate production in the cytoplasm (controlled by phosphofructokinase) and
ATP formation from pyruvate oxidation (controlled by pyruvate dehydrogenase) within mitochondria.
Part of FA or glucose can also enter into biosynthetic paths [19,20]. During normal aerobic perfusion
and workloads, FA oxidation accounts for about 70% of energy generation; periods of ischemia or
overload works switch substrate utilization to glycolysis and pyruvate oxidation [21].

It has been known for a while that hyperglycemia and insulin resistance (IR) significantly reduce
GLUT4 recruitment and deplete glucose uptake [22]. Accordingly, a significant reduction of GLUT4
expression and PI3K/Akt signaling has been described in LV cardiac biopsies from T2D patients [23].
Simultaneously with reduction of glucose utilization, an increase in FA supply, -oxidation and
internalization/deposition of FA intermediates within cardiomyocytes, occurs [24]. Cardiomyocytes are
not properly equipped for lipid storage; hence, FA oxidation-dependent lipotoxicity occurs and further
impairs glucose oxidation (limiting glucose and pyruvate utilization by pyruvate dehydrogenase
inhibition), triggers cell apoptosis (through peroxisome proliferator-activated receptor/PPAR) [21]
and inhibits autophagy [25-27]. In this condition, heart metabolic flexibility is lost together with an
efficient ratio between ATP production and substrate utilization [25]. The overall unbalance between
increased oxygen mitochondrial consumption and reduced cardiac bioenergetic efficiency [28,29] ends
in perturbation of contraction/relaxation coupling [30]; meanwhile, defective excitation/contraction
coupling goes together with molecular changes in sarcoplasmic reticulum, which is responsible for
the impairment in cardiomyocyte calcium handling, as observed in cardiac diastolic dysfunction at
DCM onset [15]. So far, the hyperglycemia-induced shift towards an increased metabolic dependence
on FA oxidation in mitochondria is seen as the primary injury within cardiomyocytes in DCM
pathogenesis [30], which is independent of the hyperlipidemia effect on coronary endothelium [21].

3.2. Advanced Glycated End Products (AGE), Renin-Angiotensin-Aldosterone System (RAAS),
Damage-Associated Molecular Pattern (DAMP) and Cardiomyocyte Damage

To provide alternative energy sources, which coincide with GLUT4 and glucose uptake
downregulation, the expression of I-insensitive transporters for galactose and fructose has been
shown to increase [31,32] and trigger fructose intracellular accumulation, likely through sorbitol path
overactivation [33-35]. In turn, sorbitol accumulation is accompanied by reactive oxygen species
(ROS) generation/ROS scavenger reduction on one side, and by DNA fragmentation and cell shrinkage
dependent on hyperosmolarity on the other side. Other sources of ROS production have been described
within the heart [4,36]; the overall excess in ROS amount is associated with cardiac oxidative stress
development, ending, i.e., in protein, lipid and DNA extended damage, autophagy dysregulation and
nitric oxide (NO) reduced bioavailability (necessary for an optimal function [18,37]), which is a hallmark
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of DCM [6,38]. Impaired NO production, besides important effects onto coronary vasculature—i.e.,
impaired vessel relaxation and capillary recruitment—promotes cardiac stiffness by enhancing collagen
crosslinking enzymes [6,39,40]. Moreover, high glucose level-induced formation of AGE, deriving
from non-enzymatic binding between sugars and protein/lipid amine residues, cross-link and slow
collagen molecule turnover [41], further contribute to fibrotic processes. In fact, fibrosis of a diabetic
heart is accompanied by extracellular matrix (ECM) abnormalities in protein structure and turnover,
and in collagen deposition. AGE/RAGE (receptor for AGE) interaction also promotes oxidative stress
and pro-fibrotic mediators through some intracellular path activation, such as Janus kinase (JAK),
mitogen -activated protein kinase (MAPK) or transforming growth factor 31/SMAD [15].

Another factor contributing to hyperglycemia-induced heart damage is the abnormal activation of
local RAAS that induces functional abnormalities within ventricular myocytes, culminating in fibrosis
and necrosis [42—-45]. The release and activation of proinflammatory mediators, particularly ROS or
AGE, and the DAMP represents potent triggers of inflammatory processes, critically contributing to the
so-called cardiac maladaptive proinflammatory response. In this scenario, we point out how not only
does the cardiomyocyte behave as cellular target of biomolecules released by immune cells, but it also
acts as an immune-active unit participating in the detrimental process of DCM onset and maintenance.

4. Cardiomyocyte Inflammation

There are growing lines of evidence indicating myocardial inflammation as a key process in
DCM development [7,46—48]. While myocardial inflammation per se represents an “adaptive” early
response to restore homeostasis against short-term stress and abnormal conditions [46—49], it turns
into a “maladaptive” proinflammatory response under persistent stressful challenge, like diabetes.
Indeed, chronic low-grade inflammation, also named para-inflammation/meta-inflammation [47], is a
subclinical condition recognized to be the pathogenic event within cardiomyocytes exposed to lipid
and sugar excess, as depicted in Figure 1.
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Figure 1. Glycotoxicity/lipotoxicity-induced events at cardiomyocyte level. A “maladaptive”

proinflammatory response occurs in cardiomyocytes under persistent stressful challenge, like diabetes.
Each box depicts intracellular processes leading to diabetic cardiomyopathy. FA: fatty acids; AGE:
advanced glycated end products; NO: nitric oxide; ROS: reactive oxygen species.

4.1. The Inflammasome Platform

Glicotoxicity and lipotoxicity exert deleterious effects at subcellular level by upregulating the
expression of a multiprotein signaling complex regulator of inflammatory processes and cellular death,
which is the nucleotide-binding oligomerization domain like receptor pyrin domain containing 3
(NLRP3) inflammasome. In T2D, consequent to the aforementioned metabolic substrate flexibility
shift towards lipid utilization, there is ROS overproduction associated with DAMP [50], which,
among other events, promotes NLRP3 expression (first priming) and structural modulation for
inflammasome platform assembly (second step activation). In particular, high glucose-induced ROS
engage nuclear factor-kB (NF-kB) and thioredoxin interacting/inhibiting protein (TXNIP), respectively,
mediate the first signal for inflammasome induction and the second signal for inflammasome complex
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oligomerization [50-54]. Albeit clear evidence of direct activation of intracellular NLRP3 by lipotoxicity
is still lacking, intracellular lipid accumulation has been documented within T2D cardiomyocytes.
In turn, inflammasome activation is associated with interleukin (IL)-1 and IL-18 production, which
both induce cardiomyocyte apoptosis, the first step initiating DCM structural remodeling [55,56].
Indeed, IL-1p and IL-18 are substrates of caspase-1 that, following NLRP3 platform assembling, cleaves
the cytokines to their mature/bioactive form and triggers pyroptosis, a process causing cell membrane
pore formation/rupture and cell death [57,58]. In line with this observation, tissue biopsies from
DCM hearts show 85-fold more apoptosis than non-diabetic hearts [59]. Although the underlying
mechanisms are not yet fully clarified, discovering NLRP3 biomolecular function gives a mechanistic
explanation for cytokine-mediated initiation and the progression of DCM [60,61].

4.2. Leukocyte Infiltration in the Damaged Cardiomyocyte

So far, understanding the early mediators of low-grade inflammation at cellular and subcellular
levels within the heart, when morphological or clinical signs of DCM have not yet manifested, captured
the attention of researchers. As addressed, in DCM several hyperglycemia-induced processes cause
tissue/cell damage, thus driving the infiltration and accumulation of leukocytes, i.e., T lymphocytes,
neutrophils and activated macrophages, to the lesion sites. Upon infiltration, immune cells contribute
in promoting local inflammation through the activation of specific biomolecular processes and
mediators, as briefly summarized herein. Neutrophils, which normally represent the first-line of
defense involved in tissue repair by polarizing macrophages towards a reparative phenotype (M2) [62],
seem to contribute to DMC development through DNA and granule protein release that prime other
immune cells and amplify inflammation. Those processes involve neutrophil extracellular traps (NETs)
formation and release, which, indeed, is enhanced in diabetic patients [63,64]. Albeit the fine-tuning
mechanisms are still to be described, NET release or NETosis participates in cell death regulation via the
formation/activation of some biomolecules and paths, such ROS and NF-kB, and, when dysregulated,
provides strong proinflammatory stimuli [64,65].

Activated macrophages usually reduce inflammation during tissue injury by efferocytosis,
a phenomenon based on apoptotic cell whelm and cellular debris phagocytosis [66]. Phagocytic,
lysosomial and chemotactic activity [67,68] of macrophages are impaired by hyperglycemia in diabetic
patients and correlate with blood glucose level [69]. The classical subdivision of macrophages in
phenotype M1 promoting chronic tissue inflammation and IR [70] and pro-reparative M2 phenotype
seems, nowadays, overcome by the hypothesis of multiple macrophage phenotypes [71]—still to be
elucidated. However, even if macrophage impact on DCM development remains largely unknown,
M1 type cells are predominate in diabetes and are upregulated in the myocardium before cardiac
dysfunction [72].

The role of T cells is clearly documented in cardiac injury; i.e., tissue fibrosis and LV function are
protected by T cell depletion [73-76]. Th and T regulatory (Treg) subsets significantly participate in
inflammation, IR and vascular alteration in T2D. In particular, the contribution of Th1, Th17 and Th22
pro-inflammatory subtypes to coronary artery disease onset has been reported in DCM patients—after
adjusting for age, sex and disease duration—along with a simultaneous decrease of the pro-regulatory
anti-inflammatory Th2 subtype [77]; Treg cells with a suppressor function on Th1 are decreased as
well. Consequently, the alteration of the Treg/Th17 and Treg/Th1 ratios in favor of pro-inflammatory
subsets occurs in T2D patients [78]. Treg cells, indeed, can control inflammation and tissue impairment
by suppression of Th proinflammatory phenotypes, i.e., Th1l and Th17, through several biomolecular
mechanisms, especially involving cytokine release or suppression [79,80]. Although further explorations
are mandatory to elucidate role(s) and mechanism(s) of action of lymphocyte subsets, it is undeniable
that they critically participate in DCM context through cytokines.
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5. The Cytokine Hypothesis

The hypothesis that proinflammatory cytokines play a pivotal role in the general heart failure
setting, in addition to hemodynamic disorders and neurohormones, has been proposed by Seta et al.
since 1996 [81]. The so-called “cytokine hypothesis” assumes that cardiac disease progression and heart
failure, regardless of the etiology, is due to a deleterious cytokine cascade established in heart cells and
peripheral circulation. Cytokines, indeed, represent a portfolio of immunoactive molecules mediating
inflammatory processes converged on cardiac cells to reestablish the balance when homeostasis is
altered, regardless of the cause. When this kind of “switch-on response” fails to restore cardiac
homeostasis and persists—i.e., under chronic hyperglycemia—it would end in sustained inflammation
and cytokine overproduction, the latter mirroring the maladaptive response of cardiac cells. Whether
cytokines really represent the inability of cardiomyocytes to restore homeostasis remains speculative;
however, the presence of proinflammatory cytokines in a failing heart has been documented for
a while [82]. Indeed, a plethora of these molecules are expressed in LV dysfunction when still
asymptomatic and intervene in heart wall stiffening and decreased contractility [83-85], i.e., TNF,
TGF-$3, IL-6, IL-13 and interferon (IFN)y [86-88], which are released by macrophages and lymphocytes
at inflammation onset, seeming to initiate or worsen cardiac injury. IL-1f3 and IL-18 promote fibroblast
phenotype and apoptosis [55,56], the TNF superfamily mediates collagen degradation and progressive
LV dilation [89], IL-6 is involved in tissue injury and heart failure [84] and soluble ST2 (sST2), the
receptor for IL-33, is the first inflammatory prognostic biomarker approved by the Food and Drug
Administration (FDA) for heart failure [47].

Pro-inflammatory cytokines are expressed by nucleated cell types residing/infiltrating the
myocardium [82]. Those cytokines released locally, in turn, would exacerbate tissue injury by
promoting vascular permeability and further leukocyte invasion through autocrine or paracrine
mechanisms [90-92]. Higher blood levels of inflammatory cytokines, i.e., TNF«x or IL-6, correlate with
cardiac disease severity and worse prognosis [82,93,94], with stronger impact on subjects affected by
diabetes or metabolic syndrome [95].

To date, among the different cell types within the heart, which contain the endothelial cells,
vascular smooth muscle cells, fibroblasts, myocytes and immune cells, all contribute to functional
maintenance or disease development, and emerging attention has been addressed towards the complex
dialogue between cardiomyocytes and inflammatory cells.

While there is evidence that the failing heart releases pro-inflammatory “cardiokines,” the specific
contribution of cardiomyocytes still remains to be elucidated [96,97]. Nevertheless, among the several
biomediators released by cardiac cells upon inflammatory challenge, chemokines emerged to play
critical roles.

6. The Chemokines

The chemokines, or chemoattractive cytokines, are small molecules (about 70 aminoacidic
residues) originating from one ancestral gene (about 650 million years ago) [98] with powerful
chemoattractant activity.

Briefly, chemokines are classified in four main subtypes, CC, CXC, C and CX3C chemokines,
depending on the space separating their first two cysteine residues (indicated as “C”) [99]. This
superfamily represents an important class of biomediators in the cross-talk among immune,
cardiovascular and autonomic nervous systems in health and disease, attracting attention as biomarkers
with the ablity to predict cardiovascular events even in healthy subjects. The whole chemokine family
is constantly growing, as new components are discovered; now it consists of fifty-four members,
nineteen of which are shown to be relevant in different cardiac diseases. Whereas a full description of
chemokine structure/classification/function is beyond the aim of this paper and extensively treated
elsewhere [100], herein it is relevant to highlight their ability to act in a “working-network” instead
of “one chemokine-one function” mode, in response to cardiac injury, regardless of the cause. This
modality, indeed, likely reflects the typical redundancy observed in inflammatory processes and it is
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quite clear that it potentially represents a significant opportunity for novel therapeutic approaches to
control inflammation underlying cardiac diseases.

CXCL10 and CXCL8 Potential Therapeutic Targets of PDE5i in DCM

We have reported on two chemokines as potential therapeutic targets in DCM, the interferon
v-induced 10 kD protein IP-10, or CXCL10, and IL-8, or CXCLS8 [101,102]. They both belong to the
CXC family, sub-grouped as chemokines ERL—, as in CXCL10, or ERL+, as in CXCLS, according
to the absence/presence of Glut-Leu-Arg motif, which confers angiostatic or angiogenic properties,
respectively [103]. An additional classification in two main functional categories is reported: the
inflammatory/inducible chemokines, participating to effector leukocyte recruitment at injured sites,
and the homeostatic/constitutive chemokines, dedicated to immune surveillance, lymphocyte and
DC trafficking. A further third group referred to as “dual function” chemokines, impossible to be
unambiguously assigned to the previous categories, is engaged in immune defense functions and
targets also non-effector leukocytes, such as CXCL10 [104,105].

Briefly, CXCL10 regulates and controls different biological responses in physiologic and pathologic
conditions [99]. It is secreted by leukocytes and some type of tissue cells under inflammatory stimuli,
including human endothelial cells, vascular smooth muscle cells, fibroblasts, keratinocytes, skeletal
muscle cells and cardiomyocytes [106-109]. Upon binding with its receptor CXCR3, mainly expressed
by T cells, natural killer (NK) and monocytes—and, at low level, by endothelial and vascular smooth
muscle cells [110]—acts as a potent chemoattractant, responsible for leukocyte trafficking from the
bloodstream to the site of tissue injury or inflammation. Of note, this chemokine is not linked to generic
inflammatory status and is the first one triggering early inflammatory response in several processes [99].
Since the pioneering studies in heart transplantation [111], CXCL10 has been identified as the only
chemokine induced by isogenic tissue transplantation and the first ligand detected after allograft
transplantation [112]. Its neutralization resulted in a prolonged graft surviving and decreased rejection
in cardiac and multiorgan transplant models [99], suggesting the pivotal role of the CXCL10-CXCR3
axis in early Thl-driven response. Then, multifaceted functions of CXCL10 in several cardiovascular
diseases [110], such as atherosclerosis and plaque formation, aneurysm, infarction, myocarditis and
cardiopulmonary bypass have emerged [113-116].

CXCLS also participates in the early inflammatory stages targeting neutrophils, which, through
granule enzyme release, are responsible for tissue re-arrangements and degradation [117]. Differently
from many proinflammatory mediators cleared within hours after synthesis and release, CXCL38
continues to be active for long time [118] and contributes to vascular dysfunctions, like atherosclerosis,
aortic aneurysm formation and hypertension [119]. Interestingly, it takes part in cardiac diseases
(primary or dysmetabolism-associated [120]) and correlates with baseline cardiovascular risk [121].
CXCLS8 high blood level in T2D patients seems associated with worse inflammatory and cardiometabolic
profile [122]. Higher baseline levels of CXCL10 and CXCLS8 as detected in patients with different
cardiac diseases vs. healthy subjects likely mirror early inflammation underlying cardiac damage,
potentially reflecting different levels of disease stage and severity.

Usually standard biomarkers used to determine myocardial injury, i.e., pro-brain natriuretic
peptide or troponin I, are detectable after tissue injury, thus reflecting already established damage(s).
Thus far, many clinical studies attempt to define an early assessment of cardiac risk related to chemokine
circulating levels. Although there are some controversial data, CXCL10 seems a good independent
and stable predictor of coronary heart disease (CHD) [123], heart rejection [99,124-126] or other
cardiovascular events or death [127-130].

Furthermore, some studies in animal models also report that fractalkine or CX3CL1, a (C-X3-C
motif) chemokine, is expressed at early stages of diabetes in both cardiomyocytes and cardiac fibroblasts
(in addition to MCP-1).
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Notably, soluble fractalkine, besides acting as a potent chemo-attractant, can directly affect
cardiomyocytes contractile machinery by binding its receptor on heart cells, leading to a decreased speed
of contraction and relaxation both under basal conditions and beta-adrenergic stimulation [131,132].

However, instead of single chemokine approach, multiple chemokine assessment is strongly
recommended in relevant biomarker analysis finalized for prognostic/diagnostic purposes. In line
with literature, we also analyzed and observed high blood levels of CXCL10 and CXCL8 in DCM
patients and we investigated them as potential pharmacological targets at systemic and local level,
rather than disease predictors. As from our research in 46 diabetic subjects, enrolled in a trial [102]
(Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00692237) at
the initial stage of DCM, blood level of CXCL10 and CXCL8 was significantly reduced after three
month treatment with the phosphodiesterase inhibitor 5 (PDED5i) sildenafil (100 mg/day), vs. placebo;
at the same time, whereas drug intake modified metabolic parameters (hemoglobin Alc, post-prandial
glycemia and lipidemic profile [133]), it failed to change cardiac standard markers (ejection fraction,
mass and volume index or blood pressure). This effect was not so surprising considering that all
patients were at DCM onset and showed preserved LV function and no signs of ischemia. In this
light, we hypothesize that PDED5i likely acts on and declines early inflammatory biomediators like
CXCL10 and CXCLS8 before clinical signs manifest, offering a precious opportunity to intervene on
disease development in the initial temporal frame. Remarkably, in human isolated cardiomyocytes,
both chemokines, virtually absent in basal conditions, significantly increased after Th1 stimuli. While
CXCL10 secretion significantly declined after sildenafil, the PDED5i failed to decrease CXCL8, which
decreased with mycophenolate and cyclosporine A [101].

Thus far, human resident cardiomyocytes under inflammatory environment behave as
immunoactive cells and likely contribute to chemokine blood rise, perpetuating the vicious detrimental
loop through enhancement of immune cell infiltration. Some of the detrimental processes are
summarized in Figure 2.
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Figure 2. Detrimental event cascade leading to cardiac tissue injury. Chronic hyperglycemia triggers
oxidative stress mediators and inflammasome assembly, leading to cell apoptosis and the release of
cytokines and chemokines, which perpetuate inflammation. ROS: reactive oxygen species; DAMP:
damage-associated molecular pattern; NLRP3: nucleotide-binding oligomerization domain like receptor
pyrin domain containing 3. IL: interleukin.

And, importantly, as immuneactive units, human Thl-inflammation activated cardiomyocytes are
able to respond to PDES5i and to some immunomodulating drugs [101,134,135].
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7. An Overview of the Anti-Inflammatory Approach in DCM Treatment

It is well accepted that PDE5i as sildenafil are vasoactive drugs commonly used to treat
erectile dysfunction (ED), showing interesting “extra-erectile” effects based on their intrinsic
anti-Th1l inflammatory action, exerted through cGMP/cAMP stabilization [136-138]. Accordingly,
PDES5i-induced protective effects are described in several cardiac diseases, from heart failure to
ischemia/reperfusion injuries, infarct, ventricular arrhythmias and cardiopulmonary bypass [139-143].
Of note, PDES5i use strongly associates with reduced mortality rate and hospitalization in a cohort
of T2D patients at high cardiovascular risk [144], likely enhancing antioxidant enzyme system [145].
In light of this evidence, it has been hypothesized that PDEbi-elicited cardioprotective effects depends
on their anti-Th1 inflammatory activity, besides their vasoactive action. In line with this hypothesis,
with progress in understanding the role of inflammation during DCM development, early Th1l-driven
processes/paths/mediators have been considered therapeutic targets for early interventions aimed to
prevent or delay DCM onset and progression.

As previously addressed, the effectiveness of glucose lowering agents in reducing cardiac events
in T2D is still to be demonstrated, as from the results of two randomized intervention trials (Action in
Diabetes and Vascular Disease: Preterax and Diamicron MR Controlled Evaluation (ADVANCE) and
Action to Control Cardiovascular Risk in Diabetes Study (ACCORD)), which reported an increased
mortality [146,147] when considering the number of variables to be included—i.e., level of co-morbidity,
age, disease duration and baseline glycated hemoglobin. Thus, the cardiovascular outcome became
a requirement in trials on anti-hyperglycemic molecules. Among anti-diabetes drugs, empaglifozin,
belonging to the kidney-targeted sodium glucose cotransporter 2 inhibitors (SGLT2i) class, exhibited
a significant improvement in cardiovascular outcome, reducing cardiovascular events (14%), heart
failure-related hospitalization (35%), cardiovascular mortality (38%) and all-cause death (32%) in
T2D patients at high cardiovascular risk ((Empagliflozin) Cardiovascular Outcome Event Trial in
Type 2 Diabetes Mellitus Patients (EMPA-REG OUTCOME)) [148,149]. Similar encouraging results
were obtained in other trials on the SGLT2i canaglifozin (CANagliflozin cardioVascular Assessment
Study (CANVAS)) [150]. SGLT2i-induced beneficial effects seem to rely on reduction of inflammation,
oxidative stress, endothelial damage and heart remodeling, independently of glucose control [151].
Accordingly, glycated hemoglobin, body weight, circulating I and blood pressure modestly decreased
after SGLT2i in comparison to the standard glucose-lowering therapies metformin, I and sulfonylureas.
Further investigations on canagliflozin, empagliflozin and dapagliflozin (Comparative Effectiveness
of Cardiovascular Outcomes in New Users of SGLT-2 Inhibitors (CVD-REAL)) strengthened the
hypothesis that cardiac benefits are linked to a class effect rather than to a specific molecule [152].
Despite the lack of myocardial SGLT-2 expression in the human heart and the lack of clarity in SGLT-2i
mechanism(s) of action [12], this class of drugs improves myocardial metabolism [153], increases
ATP level, enhances cardiomyocyte viability and suppresses inflammation, i.e., targeting NLRP3
inflammasome, lowering Na* and activating AMPK, as extensively described elsewhere [151,152].
Activation of AMPK, in particular, seems to prevent DCM progression, representing, therefore,
a promising therapeutic target [15].

Given the importance of inflammation, cytokine antagonism/suppression have been proposed as a
novel approach for DCM treatment since it reduces intramyocardial inflammation and cardiac fibrosis
in animal models [154]. Trials on TNF or IL-1 neutralization with monoclonal antibodies or receptor
antagonists, respectively, resulted in controversial data or even in worse outcomes—i.e., etanercept,
a TNF soluble receptor to block TNFe, which, in some cases, acts as an agonist [155,156]. Therapeutic
intervention based on anti-inflammatory, immunesuppressants (methotrexate) or immunomodulators
(Immune Modulation Therapy, IMT), the latter especially downregulating IL-8 and IL-1f3, gave
disappointing results or some important side-effects, like a compromised host defense or secondary
compensatory inflammatory processes [47].

In this scenario, while the question arose on the use of “straight” immunomodulating drugs
to control Thl processes in DCM, the recommendation of relatively “safe” drugs like PDE5i with
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a very good tolerance profile, exerting beneficial effects onto metabolic and inflammatory status,
might be foreseeable. In addition, sildenafil left intact cardiac cell viability, at variance with other
immunosuppressants like mycophenolic acid [134].

8. A Window Opening on Sex-Dependent Molecular Mechanisms in the Cardiomyocyte
Developing DCM

It is a fact that DCM and cardiovascular risk are higher in females, even though T2D incidence
is about the same for men (6.6%) and women (5.9%) [157]. Whereas higher estrogen levels play a
protective role on the cardiovascular system of females, as estrogens drop off in menopause and
post-menopause or in presence of T2D, the female advantage is lost [158]. Indeed, premenopausal
non-diabetic women show cardiovascular events about ten years later than men, but remarkably, the
female advantage is lost in presence of T2D [158]. From the Framingham Heart Study, a number of
epidemiological and associative studies highlighted the role of estrogens indicating DCM as a sex- and
age-dependent event [159], however the research on estrogen-dependent intracellular signaling within
the female myocardium is still in its infancy. Nevertheless, from in vitro and animal investigations,
there is mounting evidence on some remarkable sex differences at the biomolecular level between
female and male cardiomyocytes progressing from health to DCM condition. As examples, data
from experimental rat models show in female hearts higher expression of some microRNA (miRNA)
associated with T2D and heart dysfunction (i.e., miR-208a) and downregulated by estrogens [160-162].
Differently from females, during DCM development, male cardiomyocytes show an increase in collagen,
fibrosis, fatty acid uptake and some cytokine decrease (IL-2, IL-10 and IFNYy) [163].

Thus far, promising data on sex-dependent mechanisms emerge at cardiomyocyte level as well,
albeit we cannot ignore that preclinical experimental data in animal models and cells present important
limitations when compared to studies in humans and cannot be straightforwardly translated due to
specie-specific bias [163]. To date, topics on miRNA and heart failure and preserved ejection fraction
in women have been recently reviewed [164].

9. Conclusions

Nowadays, it is accepted that DCM, the leading cause of mortality among diabetes-associated
macrovascular complications, develops from Th1 type driven biomolecular and functional modifications
within the cardiomyocyte. Maladaptive proinflammatory processes represent the response of cells
challenged by high glucose; unfortunately, even an optimal glycemic control seems not enough
to counteract DCM. Instead, recognizing the early Thl type processes and biomediators, such as
inflammasome platform or chemokines within cardiomyocytes following glycemic excursion, might
result in novel strategies for early interventions aimed to prevent or delay DCM progression.

Furthermore, in line with data from clinical studies, there is emerging evidence documenting
sex-dependent differences between female and male cardiomyocytes, in health and DCM.

Albeit the progress achieved in basic research, DCM remains largely unknown for several
limitations, i.e., the use of animal models often cannot warrant the leap into human trials; dealing with
human cardiomyocytes for in vitro experiments is not always possible since these are post-mitotic
cells with a limited lifespan or biological limits when cultured or immortalized with viral vectors.
Sex-related differences observed not only in women/men outcomes but, remarkably, at female/male
cell level, might not be limited to sex hormone milieu. Further studies with multifaceted translational
approaches are mandatory to identify the timeframe for early fine-tuned interventions in men and
women aimed to prevent/manage DCM.
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