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Abstract: Atomic force microscopy (AFM) combined with fluorescence microscopy has been used to
quantify cytomechanical modifications induced by resveratrol (at a fixed concentration of 50 µM) in
a breast cancer cell line (MCF-7) upon temporal variation. Cell indentation methodology has been
utilized to determine simultaneous variations of Young’s modulus, the maximum adhesion force,
and tether formation, thereby determining cell motility and adhesiveness. Effects of treatment were
measured at several time-points (0–6 h, 24 h, and 48 h); longer exposures resulted in cell death. Our
results demonstrated that AFM can be efficiently used as a diagnostic tool to monitor irreversible
morpho/nano-mechanical changes in cancer cells during the early steps of drug treatment.

Keywords: resveratrol; MCF-7; cytomechanics; atomic force microscopy; force spectroscopy;
fluorescence microscopy

1. Introduction

Cancer is one of the main causes of death worldwide and is currently responsible for about
25% of all deaths [1]. The estimated global incidence of new cancer cases was 18.1 million in 2018,
with a mortality of 9.6 million cases [2]. In particular, breast cancer is the most commonly diagnosed
cancer in women, one in every eight women develops breast cancer at some stage of their lives, and
causes about 15% of cancer deaths [1,2]. As optical techniques have been important for the biological
decoding of cellular processes, the study of mechanical properties has required the development of new
techniques. Among these, atomic force microscopy (AFM) has been one of the most important [3–6].
AFM allows nondestructive measurements, together with good lateral resolution, in the natural setting
of biological samples. Hence, it is known that cancer can induce mechanical property changes in
cells, which may potentially serve as a potential biomarker in the early detection of cancer [7] and
for anticancer drug efficacy tests [8]. Various techniques have been developed and described to
measure the mechanical properties of eukaryotic cells. Most often, cells are stimulated actively with
a mechanical cue by particles (e.g., using optical or magnetic tweezers [9,10]). For these techniques,
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the particles are brought into contact with a cell either using light or magnetic fields to control
particle position. An important technique to study membrane dynamics, whole cell mechanics,
and adhesion is micropipette aspiration [11], where whole cells are sucked in by a pipette with a
micrometer-sized diameter. Finally, insights have been gained in cell mechanics by applying a shear
flow onto cells. The most important technique for passive measurement of cell mechanics is the usage
of mechano-responsive gels that deform due to mechanical forces exerted by the cells onto the substrate,
either in 2D or 3D [12,13]. This group of techniques is used to study cell adhesion, proliferation, and,
most importantly, movement. Furthermore, by studying the mechanical properties of cancer cells, this
may help to better understand the physical mechanisms responsible for cancer invasion, proliferation,
and metastasis [14]. This can drive the development of new strategies for cancer prevention and
diagnosis. Also, mechanical models have been developed to study the mechanical properties of living
cells [15]. In vitro studies by different techniques showed that some tumor cells are softer than their
“normal” (healthy) counterparts [16–20]. AFM has been established as a versatile tool for imaging
and measuring the elastic properties of living cells [21,22] and has also been applied to investigate
the mechanical properties of ex vivo cancer cells obtained from patients [23]. As it is well-known,
eukaryotic cells show complex viscoelastic mechanical behavior because they are made of a complex,
intricate meshwork of different macromolecules with different mechanical properties themselves [15,24].
When performing cell mechanical testing, this has to be taken into account (e.g., loading-rate-dependent
stiffness following a weak power law, time-dependent properties, material history, etc . . . ). In addition,
the mechanical behavior depends on the location and depth of the indentation [25]. Recently, there
have been many efforts to measure time- and location-dependent viscoelastic properties of cells with
AFM [26,27] and other techniques [28]. In addition, various approaches have been done to perform
mapping of such properties with increasing spatial resolution [29–33].

Today, epidemiological and genetic evidence indicates that several types of cancer can be prevented
through lifestyle and an appropriate diet modifications [34,35]. More than 25,000 different bioactive
components are thought to occur in foods, and several of these are phytochemicals [36]. Phenolic
compounds include one of the largest groups of metabolites produced from plants to protect themselves
against several stresses comprising reactive species and herbivores [37]. Phenolic compounds have
been of great interest in scientists working on cancer because of their health benefits, including
the ability to interfere with different steps of the neoplastic tumorigenesis [38,39]. Resveratrol
(trans-3,5,4′-trihydroxystilbene), a stilbene abundant in red grapes and wine [40], is a molecule with
potential clinical use, either for the prevention of cancer or for its treatment. Actually, extensive
research during past years has readily demonstrated the ability of resveratrol to induce cancer cell
death, alone and/or in combination with phytochemicals or other therapeutic drugs, as well as to
prevent growth-factor-induced cancer progression [41–43].

Resveratrol has been shown to be a strong antineoplastic drug against different types of cancers
such as lung [44] or breast cancer [43,45]. Moreover, AFM has been recently employed to investigate
nanomechanical properties of the MCF-7 breast cancer cell line [46,47], which represents a well-known
model system used in many biomedical research laboratories for the study of breast cancer [48,49].
In situ experiments by AFM were also exploited to investigate the anticancer activity of resveratrol [50].
The inhibition effect of resveratrol on epidermal growth factor receptor (EGFR) expression levels
on MCF-7 cells was probed by epidermal growth factor (EGF)-functionalized tips for the first time.
Changes in morphology and stiffness of single cells stimulated by resveratrol at different concentrations
were detected by AFM [50]. Nevertheless, a systematic study of the effect of resveratrol on the
morphology and nanomechanics of MCF-7 at early stages of its therapeutic action is still missing.
Therefore, the aim of this work was to quantify cytomechanical changes induced by resveratrol (at a
fixed concentration of 50 µM) upon temporal variation. The cell indentation methodology has allowed
us to determine simultaneous variations of Young’s modulus, the maximum adhesion force, and tether
formation, thereby correlating cell motility and adhesiveness with morpho-mechanical alterations
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induced by resveratrol. We expect that our results will stimulate more sophisticated studies useful for
screening novel therapeutic agents and targets for natural and synthetic drugs.

2. Results

2.1. Cell Area Variation Calculation

The first approach to evaluate the influence of 50 µM resveratrol on MCF-7 cells focused on
analyzing the individual cell area variation over the incubation time (see also Figure S2). According to
this parameter, the smaller the value calculated the lower the spreading of MCF-7 cells on the glass
substrate that took place, meaning there was certain internal rearrangement. Then, sufficiently low
values could mean total incapability to attach because of such changes or even be indicative of cell
death. Figure 1 illustrates the fluorescence micrographs collected at four different resveratrol treatment
times (1, 6, 24, and 48 h) together with the calculation of their respective cell area values. Cell bodies
appear in yellow and nuclei in red/orange.
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resveratrol (see complete Figure in Figure S1), and then the low values were maintained unaltered 
over a period of a few hours. The delay in response might be explained by the combined influence of 
drug diffusion together with membrane anchoring and internalization processes. Surprisingly, after 
the first observed reaction and the subsequent achievement of an apparent steady state, keeping the 
MCF-7 cells for another 18 h in the presence of 50 µM resveratrol (t24, 24 h) induced a partial recovery 
of the cell area values (up to almost 75%). However, longer exposures (t48, 48 h) caused a final 
nonreversible drop in size to around 50% of the starting value, which most likely resulted from 
potentially damaged cells. In order to establish a proper connection between such cellular responses 

Figure 1. (a) Time-dependent fluorescence microscopy imaging of MCF-7 cells exposed to 50 µM
resveratrol. Cell bodies (Calcein-AM) appear in yellow, and nuclei (Hoechst 33342) appear in red/orange.
Scale bars correspond to 50 µm. (b) Corresponding cell area evolution resulting from N = 30. The crosses
(x) indicate achievement of either the 1% or 99% of the total population, the square (�) in the box
plot represents the mean value, the box-splitting horizontal line gives the median, and the upper and
lower value of the box express the achievement of either the 95% or 5% of the population, respectively.
Significance of the variations in the p < 0.001 level is indicated accordingly by (***) symbol.

At a first glimpse, it can be observed how cells suffered a significant decrease in their body area
after the initial 6 h of incubation. In fact, such a drop took place only after 3 h of exposure to resveratrol
(see complete Figure in Figure S1), and then the low values were maintained unaltered over a period
of a few hours. The delay in response might be explained by the combined influence of drug diffusion
together with membrane anchoring and internalization processes. Surprisingly, after the first observed
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reaction and the subsequent achievement of an apparent steady state, keeping the MCF-7 cells for
another 18 h in the presence of 50 µM resveratrol (t24, 24 h) induced a partial recovery of the cell area
values (up to almost 75%). However, longer exposures (t48, 48 h) caused a final nonreversible drop
in size to around 50% of the starting value, which most likely resulted from potentially damaged
cells. In order to establish a proper connection between such cellular responses and internal processes
taking place, the observations from fluorescence micrographs demand the application of additional
measurements, as will be described below.

2.2. Mechanical Properties of MCF-7 Cells

Complementarily, force spectroscopy measurements were employed to determine the mechanical
response of cells to indentation under resveratrol (50 µM) exposures of different durations. The outcome
of such experiments, the so-called force–distance plots, can be split into different segments
(approach, pause at maximum setpoint, and retract) [51], which allow characterizing diverse
cytomechanical parameters, such as the elastic modulus and the adhesion strength, or to evaluate
the membrane–cytoskeleton connection via the formation of tethers. The following subsections will
provide a more descriptive analysis of these factors and their variation upon resveratrol incubation.

2.2.1. Elastic Modulus

The instantaneous elastic deformation of MCF-7 cells under an applied load (considering their
viscoelastic nature) for an indentation of 350 nm was calculated from the approach segment of the force
vs distance plots, and the resulting values are depicted in Figure 2. Overall, the variation of Young’s
modulus (E) over the sustained exposure to resveratrol is quite noticeable and became more critical for
the longest times attempted.

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 4 of 13 

 

and internal processes taking place, the observations from fluorescence micrographs demand the 
application of additional measurements, as will be described below. 

2.2. Mechanical Properties of MCF-7 Cells 

Complementarily, force spectroscopy measurements were employed to determine the 
mechanical response of cells to indentation under resveratrol (50 µM) exposures of different 
durations. The outcome of such experiments, the so-called force–distance plots, can be split into 
different segments (approach, pause at maximum setpoint, and retract) [51], which allow 
characterizing diverse cytomechanical parameters, such as the elastic modulus and the adhesion 
strength, or to evaluate the membrane–cytoskeleton connection via the formation of tethers. The 
following subsections will provide a more descriptive analysis of these factors and their variation 
upon resveratrol incubation. 

2.2.1. Elastic Modulus 

The instantaneous elastic deformation of MCF-7 cells under an applied load (considering their 
viscoelastic nature) for an indentation of 350 nm was calculated from the approach segment of the 
force vs distance plots, and the resulting values are depicted in Figure 2. Overall, the variation of 
Young’s modulus (E) over the sustained exposure to resveratrol is quite noticeable and became more 
critical for the longest times attempted. 

 
Figure 2. (a) Statistical calculation of Young’s moduli from MCF-7 cells (N > 100) exposed to 50 µM 
resveratrol during 1 (grey), 6 (pink), 24 (yellow), and 48 h (orange). The crosses (x) indicate 
achievement of either the 1% or 99% of the total population, short lines (-) reflect both the maximum 
and minimum values obtained, the square (□) in the box plot represents the mean value, and the box-
splitting horizontal line gives the median. (b) Variation of the mean values over the entire range 
measured, where the deviation is the standard error of the mean. Significance of the variations in the 
p < 0.001 level is indicated accordingly by (***) symbol. 

After 3 h of incubation, a significant drop from 5.1 to 4.2 kPa was measured for E values (see 
Table 1). Such a decrease was observed to gradually recover during the following hours until a 
plateau-like trend was reached. Longer exposures to resveratrol appeared to induce a rather 
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Figure 2. (a) Statistical calculation of Young’s moduli from MCF-7 cells (N > 100) exposed to 50 µM
resveratrol during 1 (grey), 6 (pink), 24 (yellow), and 48 h (orange). The crosses (x) indicate achievement
of either the 1% or 99% of the total population, short lines (-) reflect both the maximum and minimum
values obtained, the square (�) in the box plot represents the mean value, and the box-splitting
horizontal line gives the median. (b) Variation of the mean values over the entire range measured,
where the deviation is the standard error of the mean. Significance of the variations in the p < 0.001
level is indicated accordingly by (***) symbol.

After 3 h of incubation, a significant drop from 5.1 to 4.2 kPa was measured for E values (see
Table 1). Such a decrease was observed to gradually recover during the following hours until a
plateau-like trend was reached. Longer exposures to resveratrol appeared to induce a rather significant
cell stiffening as observed for both 24 and 48 h treatments (see Table S1). The latter, however, was
around 15% lower than the maximum value, and is indicative of a certain softening that might correlate
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to the loss of body area shown in Section 2.1. Also, the histogram distribution of Young’s moduli
deserves a brief mention since MCF-7 cells exposed for 24 and 48 h started to show a subtle splitting
into two well-defined populations around the boundary value of 10 kPa. The appearance of this effect
is very clear although not yet fully understood.

Table 1. Temporal variation of Young’s modulus mean values for MCF-7 cells upon exposure to 50 µM
resveratrol. The blue box highlights extreme values obtained at t = 24 h.

Incubation (h) Mean YM (kPa) ± SE

0 5.08 ± 0.17
3 4.21 ± 0.18
6 5.43 ± 0.20

24 8.95 ± 0.20
48 7.81 ± 0.26

2.2.2. Adhesion-Related Properties

When evaluating the retraction part of the force vs distance plot, quantification of adhesion-derived
phenomena is enabled (see Figure S3). Factors like the maximum adhesion force, the pulling (Z)
distance required to achieve it, as well as the evaluation of the rupture events resulting from a stepwise
recovery of the zero-force value might be valuable when characterizing the influence of a drug on
a particular cell type. These terms reflect the fluidity of the membrane and its connection to the
cytoskeleton, which could be altered because of the treatment applied [52–54].

According to what was explained in previous sections, a synchronized time-dependent reaction
is expected to occur upon exposure to resveratrol; therefore, the study will focus on the same time
points: 0, 3, 6, 24, and 48 h. The variations measured for control (untreated) MCF-7 cells at the same
experimental times are collected in Figure S4 and Table S2.

(a) Maximum Adhesion Force and Z Position

Figure 3 shows the adhesion force measured for the nonspecific interaction between silicon nitride
indenting tips and the above-mentioned systems. This figure also shows the distance covered in Z
by the cantilever in its retraction until such maximum force is recorded. The entire set of values is
presented in Table 2 for better identification of the variations explained.

Again, the transition from untreated MCF-7 cells to those left for 3 h in 50 µM resveratrol brought
a relevant shift in the cell response: the adhesion force dropped around 30%, while the distance to
observe the appearance of the maximum peak went up to 25% farther. Keeping the cells incubated for
another 3 h showed similar behavior, with a certain recovery towards starting (untreated) values. After
24 h the adhesion force reached its maximum (275 pN), accompanied by a substantial reduction of the
pulling distance to cover, and then the trend was inverted again over the next 24 h of incubation. These
results seem somehow contradictory when considering the softening–stiffening–softening cycle that
MCF-7 cells underwent along the same incubation periods, which might suggest an opposite reaction.
Thus, softer cells could be expected to stick better to the tip upon indentation, which explains the
contrary behavior to what measurements indicated. In any case, the contribution of diverse factors (i.e.,
cytoskeletal rearrangement) to this phenomenon cannot be discarded and might require additional
analysis to find an optimal explanation.
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Table 2. Temporal mean maximum adhesion force and the correlated Z displacement for MCF-7 cells
(N > 90) upon exposure to 50 µM resveratrol. The blue box highlights extreme values obtained at
t = 24 h.

Incubation (h) Mean Adh. Force (pN) ± SE Mean Z pulling (µm) ± SE

0 250.3 ± 11.3 1.71 ± 0.08
3 169.2 ± 10.9 2.13 ± 0.08
6 171.3 ± 8.6 1.44 ± 0.07

24 275.4 ± 16.5 1.11 ± 0.05
48 147.8 ± 6.2 1.23 ± 0.07

(b) Rupture Events (Tethers) Analysis and Quantification

A very characteristic phenomenon featuring cell indentation is the appearance of rupture events
along the retraction path as a result of the formation of membrane tethers (or nanotubes) [54,55]. These
events transform the achievement of zero-force into a stepwise recovery with well-defined plateaus
occurring at constant force and diverse length. Tethers are caused by a membrane reservoir that is
gradually depleted as the tip is retracted. Both the tether length and the obtained rupture force are
then influenced by the status of the cytoskeleton and its connection with the inner membrane. The
calculated strengths of such ruptures as well as their overall distributions are depicted in Figure 4.
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Figure 4. (a) Boxplot distribution of the rupture force values for MCF-7 cells. The square (�) in the box
plot represents the mean value, and the box-splitting horizontal line gives the median. Significance of
the variations in the p < 0.001 level is indicated accordingly by (***) symbol. (b) Overall rupture event
distribution in the shape of rupture force vs pulling (Z) distances.

At a first glimpse, the trend followed by the rupture forces in Figure 4a can be easily identified
to resemble those already shown for other mechanical parameters. Thus, at 3 and 6 h of incubation,
a gradual decrease of the rupture forces occurred, a trend that was abruptly interrupted after 24 h.
At that point, the forces measured almost duplicated their value (from 30 to 50 pN) and then dropped
again downwards when incubation reached 48 h. The observation of higher values usually indicates a
tighter connection between the cytoskeleton and the membrane, which induces a higher resistance
of the membrane towards stretching as it follows the motion of the tip. Even though after 48 h the
resistance decreased quite significantly, the influence of such connective interplay seems to still have a
role in cell behavior.

A better view of the overall impact that 50 µM resveratrol has on the tether formation of MCF-7
cells is brought by plotting the distribution of all the recorded rupture events into a force vs distance
graph, as shown in Figure 4b. According to this plot, along the initial hours of incubation, the number
of events at long pulling distances (>5 µm) increases with the exposure to the drug. This is particularly
noteworthy after 6 h, where the number of events detected at such a longer range reached between
10%–15% of the total. Also at this point, a simultaneous phenomenon was observed since the minimum
distance at which events could be detected tended towards lower values (see Figure 5). This was
obviously influenced by the pulling distance at which the maximum in adhesion force occurred, as
previously shown in Figure 3. After 24 h in 50 µM resveratrol, the shape of the event distribution graph
changed completely, and most of the rupture events appeared very precisely at low retracting distances
of 0 to 2 µm. This agrees with the cell stiffening aforementioned. After 48 h, two main populations
were observed to have developed, following a distribution pattern which seems a perfect combination
of those seen for t6 and t24, with a much larger number of events appearing at the >5 µm range (ca.
30%). The appearance of a second population might be explained by the cell cycle (MCF-7 division).
However, it remains as an open hypothesis.
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Figure 5. Histogram plot showing the distribution of appearing distances for the rupture events under
increasing resveratrol incubation times. The dashed line provides a visual reference for the comparison
with the most probable pulling distance obtained for untreated MCF-7 cells. Black arrows indicate
the sense of the variation registered. The inset for t = 48 h magnifies the pulling range Z = 5−20 µm,
corresponding to the appearance of a second population of cells.

3. Discussion

The impact of resveratrol on the mechanical properties of breast cancer cells (MCF-7), as studied by
means of atomic force microscopy operated in force spectroscopy mode, has brought a surprisingly
synchronized time-dependent evolution of properties. The changes shown here in cell mechanical
properties and adhesion can be partly explained by resveratrol-induced cytoskeletal rearrangement.
Other studies have already shown that incubation with 50µM resveratrol leads to a quick rearrangement
of the actin network. This results in an increased formation and extension of filopodia and
lamellipodia [56,57]. Furthermore, resveratrol seems to regulate the expression of many genes
involved in cell cycle control, cell–cell adhesion, and cellular movement, thus possibly also showing
effects on cell mechanical properties [58]. This is further supported by studies in other cell lines
showing changes in migration-related signaling pathways, thus inhibiting cellular migration and the
endothelial-to-mesenchymal transition [59–61].

According to the results obtained, the existence of three well-differentiated regions is suggested.
First, incubation with 50 µM resveratrol of up to 3 and 6 h led to gradual changes in all determined
factors until apparent system stabilization was achieved. At the microscale, the ongoing cellular
response is reflected by a quite important decrease in the cell body area that is almost sustained over
the rest of the incubation.

Second, MCF-7 cell exposure to resveratrol for 24 h appeared as the most crucial time lapse,
in which cells suffered most significant simultaneous variations in all the parameters tested: an
almost two-fold increase in Young’s modulus, high cell adhesion, and a totally different landscape
in terms of tether formation. The latter confirms an apparent drug-induced rearrangement of the
membrane/cytoskeleton connection, which turns much tighter, as deduced from the massive and
localized appearance of rupture events in pulling positions close to the membrane. In addition, the
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overall increase in rupture forces suggests a higher resistivity upon pulling that only such type of
phenomena could explain.

The third time segment corresponds to incubation of 48 h, where the evidence of
resveratrol-induced nonreversible impingement of cellular activity was observed. Despite an apparent
cell recovery brought by the measured values for elastic modulus, adhesion, and cell area, the close
observation to the tether formation capability showed the clear distinction between two populations
of MCF-7 cells (in a 70:30 ratio) with different membrane behaviors. Such a value is in quite good
agreement with the cell proliferation observed by Wang et al. [44] for MCF-7 cells exposed to resveratrol
(40 µM in their case) during 48 h, meaning that observation of long-range tethers could be indicative of
cells on their way to death.

The observation of a significant number of rupture events at long pulling distances (20–50 µm)
might induce formulating the following doubt: might there also be contributions from the extracellular
glycocalyx? Unfortunately, it is not possible to elucidate the real composition of the appearing tethers
from our measurements above. However, and attending to what is reported in the literature by
some authors [54,62], membrane tethers could still be formed upon pulling even after removal of
glycocalyx elements. Therefore, we propose that the tethers being pulled are membrane nanotubes
mostly composed of lipids. The following reasons could also strengthen the lipidic nature of the
long-range phenomenon observed. When stretching polymers (as it would happen when pulling
part of the glycocalyx), one would expect an increase of the force with the extension (and only in the
entropic region the force seems to be constant with distance). In the force vs distance curves, tethers
show a very defined force–distance pattern instead, where a dependence of the force on the distance is
basically not observed (Figure S3). Furthermore, the single step rupture (and not continuum) indicates
the rupture of a single entity and not multivalent glycocalyx–cantilever interactions.

4. Materials and Methods

4.1. Cell Culture and Sample Preparation

Michigan Cancer Foundation (MCF-7) breast cancer cells were grown in T75 flasks using high
glucose Dulbecco’s modified Eagle medium with stable glutamine, supplemented with 10% fetal
bovine serum and 1% penicillin/streptomycin. Cells were cultured at 37 ◦C with 5% CO2. Prior to
AFM experiments, cells were trypsinized using 2 mL TrypLETM Express, centrifuged, and counted.
Borosilicate circular cover glasses (diameter: 24 mm, thickness: 0.08–0.12 mm, Menzel Gläser, VWR,
Bruchsal, Germany) were rinsed with EtOH, N2 dried, and cleaned with oxygen plasma (GaLa
Instrumente GmbH, Bad Schwalbach, Germany). The glass slides were then incubated for 24 h with
4 × 104 cells suspended in Dulbecco’s modified Eagle medium (DMEM). Evaluation of the impact
of resveratrol (Sigma Aldrich, Vienna, Austria) exposure on cell mechanical properties was done by
incubating MCF-7 cells with either 50 or 100 µM solutions mixed in DMEM for the required time at
37 ◦C and 5% CO2 supply. Prior to measurements, the medium was changed to Leibovitz’s L-15. Data
resulting from exposure to 100 µM resveratrol solutions were discarded because of the high mortality
rate observed and the high diversity in MCF-7 populations.

4.2. Fluorescence Microscopy

Cell fluorescence measurements were performed using an Axio Observer Z1 (Zeiss GmbH, Jena,
Germany) inverse fluorescence microscope with a LH-M100C mercury lamp. A 20× air objective was
used. Staining of the cell body and nuclei was performed by Calcein-AM (dilution, 1:100) and Hoechst
33342 (dilution, 1:1000), respectively. Micrographs were processed with ZEN Imaging Software (Zeiss
GmbH, Jena, Germany).
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4.3. Atomic Force Microscopy

The AFM instrument Nanowizard III (JPK Instruments, Berlin, Germany) with Cell Hesion (piezo
Z range, 100 µm) mounted on an inverted optical microscope (Axio Observer Z1, Zeiss, Jena, Germany)
was operated in force-spectroscopy mode at constant setpoint (1.5 nN). Cantilevers mounted with a
quadratic pyramidal tip (r = 22 nm, half-to-face-angle = 35◦) were calibrated before each experiment
by means of a thermal tune method. The nominal spring constant of the cantilever was 0.06 N/m.
Measurements were performed in L-15 Leibovitz’s medium (Thermo Fisher Scientific, Waltham, MA,
USA) at 37 ◦C by using the JPK’s custom thermo-regulated flow-cell (JPK Instruments, Berlin, Germany).
Cells were approached at a loading rate of 5 µm·s−1 and indented until the maximum load was applied.
Cells were always indented above the nucleus to reduce variability and substrate artifacts. Then, the
cantilever was kept for 5 s at the setpoint Z height (stress relaxation measurement), and the tip was
subsequently retracted at 5 µm·s−1 by recording its motion for 50 µm. In between the indentation of
cells, the substrate was probed to ensure tip cleanliness.

4.4. Data Analysis and Batch-Processing

AFM data were preprocessed by using JPKSPM software (JPK Instr., Berlin, Germany). The R
afmToolkit developed by Benitez et al. was subsequently used for batch-processing purposes to
determine the contact point as well as Young’s modulus (E) and adhesion force values [63,64]. For
calculation of E, the Sneddon extension of the Hertz model for pyramidal indenters was used [65] with
an indentation depth of 350 nm and a Poisson ratio of 0.5.

4.5. Statistical Analysis

Statistical and mathematical analyses were performed using OriginPro 9 (OriginLab Corporation,
Northampton, MA, USA). Normally distributed data sets were evaluated by Gaussian fitting, calculation
of mean value, and the standard error of the mean. Data not normally distributed around the mean
value were fitted using an extreme value function fitting. Paired Student t-tests were performed (and,
if not feasible, paired-sample Wilcoxon signed-rank test) with a p-value < 0.05 deemed significant.
Outliers were identified using the Grubbs test for outliers.

5. Conclusions

The mechanical response of MCF-7 cells to resveratrol (50 µM) over time has been effectively
characterized by force spectroscopy measurements. The cell indentation methodology followed has
allowed determining simultaneous variations in factors such as the Young’s modulus, the maximum
adhesion force, and the stepwise zero-force recovery (tether formation), all of them playing a critical
role in terms of cell motility and stickiness. Furthermore, time dependence has been observed to fit into
three distinct levels (short incubation, 24, and 48 h) according to the impact observed, where overnight
incubation was long enough to detect the maximum variation in mechanical properties before cell
proliferation was compromised. Maintenance of a drug incubation for longer periods (48 h) induces a
gradual loss of properties that concludes in cell death. Overall, these results confirm the validity of the
AFM technique as an optimal tool to detect irreversible transformations at the nanoscale level that
might affect normal cell functioning, or even their malignancy, as in the case of cancerous cells.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/
3275/s1.
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