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Abstract: Mycobacterium tuberculosis, the pathogen responsible for tuberculosis (TB), is the leading
cause of death from infectious disease worldwide. The class A serine β-lactamase BlaC confers
Mycobacterium tuberculosis resistance to conventional β-lactam antibiotics. As the primary mechanism
of bacterial resistance to β-lactam antibiotics, the expression of a β-lactamase by Mycobacterium
tuberculosis results in hydrolysis of the β-lactam ring and deactivation of these antibiotics. In this
study, we conducted protein X-ray crystallographic analysis of the inactivation of BlaC, upon exposure
to the inhibitor bis(benzoyl) phosphate. Crystal structure data confirms that serine β-lactamase is
phosphorylated at the catalytic serine residue (Ser-70) by this phosphate-based inactivator. This
new crystallographic evidence suggests a mechanism for phosphorylation of BlaC inhibition by
bis(benzoyl) phosphate over acylation. Additionally, we confirmed that bis(benzoyl) phosphate
inactivated BlaC in a time-dependent manner.

Keywords: Mycobacterium tuberculosis; β-lactam antibiotic resistance; β-lactamase; phosphorylation;
crystal structure

1. Introduction

According to the 2017 World Health Organization’s (WHO) report, Mycobacterium tuberculosis,
the pathogen responsible for tuberculosis (TB), is the leading cause of death from infectious disease
worldwide [1]. In 2016 alone, there were more than 1.6 million deaths linked to TB infection.
High incidences of new infections are reported annually, with 6.1 million new cases in 2015 and 6.3
million reported in 2016. In addition, there are growing threats of emerging multidrug-resistant
(MDR-TB) and extensively drug resistant (XDR-TB) strains of Mycobacterium tuberculosis that are
resistant to the current first-line, second-line, and third-line drugs used to treat TB [1,2]. The WHO
estimates 4.1% of new TB infections and 19% of those previously treated were caused by MDR-TB
strains in 2016 [1].

With the emergence of MDR-TB and XDR-TB, novel research efforts are being focused on
identifying new drug targets, such as enzymes of the nucleotide biosynthesis pathways and the TCA
cycle [3]. Multiple novel antitubercular drugs are currently in the discovery phase and under clinical
development [4]. One possible course of action to treat TB is to include β-lactam antibiotics to the
list of agents used to treat TB infections [2,5]. Despite the successful use of β-lactam antibiotics to
treat gram-negative and gram-positive bacterial infections over the last century, β-lactam antibiotics

Int. J. Mol. Sci. 2019, 20, 3247; doi:10.3390/ijms20133247 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-0693-7860
http://www.mdpi.com/1422-0067/20/13/3247?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20133247
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 3247 2 of 11

have not been commonly used to treat TB due to the expression of BlaC, a β-lactamase capable of
hydrolyzing their β-lactam ring [2,6].

β-lactamases are categorized into four classes based on molecular characteristics, including
sequence and structural similarities [6]. These four classes are A, B, C, and D, which can be classified
into two main mechanistic groups. Class B β-lactamases are zinc metalloenzymes, while class A, C, and
Dβ-lactamases are serineβ-lactamases [6,7]. BlaC is a class Aβ-lactamase and due to its broad substrate
specificity towards β-lactams, β-lactam antibiotics alone are not an efficacious treatment course for TB
infections [8]. However, Mtb has demonstrated increased susceptibility to β-lactam antibiotics upon
the inactivation of BlaC, thus making BlaC an important target for therapeutic agents [9,10].

With the emergence of pathogenic bacteria strains exhibiting broad-spectrum antibiotic resistance,
it has been suggested that using a β-lactamase inhibitor in conjunction with a β-lactam antibiotic,
could increase the likelihood of positive treatment outcomes [8,11]. To this point, β-lactam antibiotics
have been used in conjunction with β-lactamase inhibitors as part of a multi-drug treatment regime for
TB infections [2,11]. A number of studies have been undertaken to understand the evolution, enzyme
structures, and catalytic mechanisms of various β-lactamases including BlaC [2,7,8,12,13]. Li and
Pratt showed that acyl phosphonate scaffolds could be used to inhibit serine β-lactamases [14,15].
Herein, we provide crystal structure evidence to demonstrate that the serine β-lactamase BlaC can be
phosphorylated at its nucleophilic serine by the novel β-lactamase inhibitors based on a bis(benzoyl)
phosphate scaffold. These bis(benzoyl) phosphates are hypothesized to behave like traditional
organophosphorylating agents that target serine hydrolases similar to acetylcholinesterase.

2. Results

2.1. Crystal Structures of Phosphoserine BlaC and Inactivation by Bis(Benzoyl) Phosphate

As noted above, Pratt and coworkers demonstrated that acyl phosphonantes and phosphates
were inhibitors of β-lactamases. We postulated that this may be due to a time-dependent process
involving either acylation or phosphorylation of the active-site Ser-70 reside. To explore the interaction
of bis(benzoyl) phosphate with BlaC in more depth, we first confirmed that bis(benzoyl) phosphate
inactivated BlaC in a time-dependent manner (Figures 1 and 2). In order to definitively determine this
mechanism of inactivation, we sought to compare the crystal structure of BlaC inactivated with the
bis(benzoyl) phosphate and the apo form of the enzyme, free of inhibitor.
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Figure 1. Dose-dependent curve for bis(benzoyl) phosphate after pre-incubation with BlaC. 33 Figure 1. Dose-dependent curve for bis(benzoyl) phosphate after pre-incubation with BlaC.
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The crystal structures for both non-phosphoserine BlaC and phosphoserine BlaC were solved
using molecular replacement using PDB 2GDN as the search model [6]. The non-phosphoserine BlaC
is represented in Figure 2 and Table 1. The phosphoserine structure resolved to 1.52 Å (Table 1). The
R-work and R-free for the phosphoserine structure were 0.16 and 0.17, respectively.

Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  3 of 12 

 

The crystal structures for both non-phosphoserine BlaC and phosphoserine BlaC were solved 1 
using molecular replacement using PDB 2GDN as the search model [6]. The non-phosphoserine BlaC 2 
is represented in Figure 2 and Table 1. The phosphoserine structure resolved to 1.52 Å (Table 1). The 3 
R-work and R-free for the phosphoserine structure were 0.16 and 0.17, respectively. 4 

 5 

Figure 2. Time-dependent inhibition of BlaC by bis(benzoyl) phosphate (black circles) and BlaC without 6 
inhibitor (open circles). Inset figure: replot of the time-dependent residual enzyme activity to determine 7 
the bimolecular rate constant ki (2.85 mM-1·min-1) for the inhibition of BlaC by bis(benzoyl) phosphate. 8 

Table 1. Crystal data table, parentheses refer to highest resolution shell. 9 

Data collection BlaC - phosphoserine 
PDB ID 6N14 

Space group P212121 
Cell dimensions  

(a, b, c) (Å) 49.84, 68.04, 75.45 
Molecules per asymetric unit 1 

Resolution (Å) 28.10−1.52 
Wavelength (Å) 1.00 

Rsym 0.099 (0.816) 
I/σ 17.6 (1.92) 

CC1/2 0.992 (0.623) 
Completeness 99.75 (97.88) 
Redundancy 6.8 (4.7) 
Refinement  

Resolution (Å) 28.10−1.52 
Unique reflections 39,978 (3,879) 

Rwork/Rfree 0.155/0.169 
RMSD  

RMSD bonds (Å) 0.003 
RMSD angles (Å) 0.745 

Ramachandrans (%)  

Figure 2. Time-dependent inhibition of BlaC by bis(benzoyl) phosphate (black circles) and BlaC without
inhibitor (open circles). Inset figure: replot of the time-dependent residual enzyme activity to determine
the bimolecular rate constant ki (2.85 mM-1

·min-1) for the inhibition of BlaC by bis(benzoyl) phosphate.

Table 1. Crystal data table, parentheses refer to highest resolution shell.

Data collection BlaC - phosphoserine

PDB ID 6N14
Space group P212121

Cell dimensions

(a, b, c) (Å) 49.84, 68.04, 75.45
Molecules per asymetric unit 1

Resolution (Å) 28.10−1.52
Wavelength (Å) 1.00

Rsym 0.099 (0.816)
I/σ 17.6 (1.92)

CC1/2 0.992 (0.623)
Completeness 99.75 (97.88)
Redundancy 6.8 (4.7)

Refinement

Resolution (Å) 28.10−1.52
Unique reflections 39,978 (3,879)

Rwork/Rfree 0.155/0.169

RMSD

RMSD bonds (Å) 0.003
RMSD angles (Å) 0.745

Ramachandrans (%)

Favored 98
Outliers 0

Number of atoms 2,322
Protein and ligand 1,999

Water 323
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The phosphoserine crystal was in the P212121 space group. In the case of the phosphoserine
crystal, Ser-70 showed clear density for a phosphoserine having been phosphorylated by the inhibitor
bis(benzoyl) phosphate (Figure 3A). Additionally, the phosphoserine BlaC structure contained
phosphate molecules near the active site adjacent to the nucleophilic Ser-70 (Figure 3B). In the
phosphoserine structure, the distance between the oxygen atom of the phosphorylated Ser-70 and the
phosphorus atom of the closest phosphate molecule was 4.5 Å (phosphate pictured above Ser-70 in
Figure 3B). The second phosphate molecule pictured at the bottom of Figure 4 was located 9.1 Å from
the oxygen atom of the phosphorylated Ser-70. The presence of phosphate molecules adjacent to the
active site has previously been reported for BlaC structures as crystallization artifacts, including one
in which BlaC was not crystallized with phosphate as the principal component of the crystallization
condition and was instead thought to have been a byproduct of purification [16,17]. In addition, even
though the previously published BlaC structures contain phosphate molecules near the active site, they
do not have a phosphorylated Ser-70. Hereto, the phosphoserine-BlaC (Figure 3) newly demonstrates
phosphorylation of the Ser-70 of BlaC.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 12 
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Figure 3. (A) Ribbon diagram of the phosphoserine BlaC structure, zoomed in to display electron
density about the nucleophilic Ser-70. (B) Ribbon diagram of the phosphoserine BlaC structure, with
additional phosphate molecules and water molecules with electron density about the active site.
The ribbon diagrams have electron density displayed within 3 Å of Ser-70, phosphate molecules and
water molecules as a blue mesh at a 1.5 σ contour level for the 2mFo-DFc maps, and the mFo-DFc maps
contoured at ±3 σ (green mesh/red mesh). The displayed mFo-Fc map was generated prior to modeling
the phosphorylated Ser-70. The figure was generated with UCSF Chimera v1.12.

2.2. Overall Structure and Active Site

As previously reported for BlaC and other class A serine β-lactamases such as TEM-1, SHV-1,
and the CTXMs, the global fold consists of two domains, the α-domain and the α/β-domain
(Figure 4) [8,18–20]. Located in the α-domain, adjacent to the α/β-domain, are the catalytic residues
Ser-70, Lys-73 and Glu-166 (numbered according to Ambler notation [21]). Structural sequence
alignment showed that the primary sequence and the global fold of the α-domain and the α/β-domain
were highly conserved throughout class A serine β-lactamases (Figure 5). In the case of BlaC, the
α-domain was made up of helices 2 through 11, and the α/β-domain consisted of helices 1, 12, 13, and
14. In addition, the active site exhibits a high degree of conservation for the catalytic residues Ser-70,
Lys-73 and Glu-166.
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UCSF Chimera v1.12.
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3. Discussion

BlaC, a hydrolase (EC 3.5.2.6), cleaves lactam carbon–nitrogen amide bonds rapidly,
effectively deactivating β-lactam antibiotics [22,23]. This β-lactam hydrolysis proceeds through an
acylation–deacylation reaction. During acylation, Lys-73 acts as a general-base catalyzing the nucleophilic
Ser-70 attack of the lactam carbonyl carbon and formation of a tetrahedral intermediate [22–24]. The collapse
of the tetrahedral intermediate proceeds to the oxyanion-hole stabilized acyl-enzyme adduct. Deacylation
proceeds as Glu-166 acts as a general-base and catalyzes a hydrolytic water attack on the carbonyl carbon
of the adduct, resulting in the release of the inactive hydrolyzed β-lactam and return of BlaC to its resting
state. Due to the efficiency of BlaC, as the main β-lactamase of tuberculosis (TB), to hydrolyze β-lactam
antibiotics, the β-lactam class of antibiotics proved ineffective in treating (TB) [2,5,6].

It had been proposed by Pratt and colleagues that phosphate-based compounds could serve as
effective inhibitors of β-lactamases [25–28]. They first demonstrated that a phosphonate monoester
inhibited the activity of the class C β-lactamase P99 towards benzylpenicillin [25]. However, upon
incubation of the same phosphonate monoester with class A and class D β-lactamases, little inhibition
effect was observed. Later work by Rahil and Pratt showed that modifications to the leaving group could
expand the inhibitory potency of phosphonates to include class A β-lactamases [26]. They proposed
that the mechanism of action for these phosphonates on β-lactamase inhibition directly resulted from
nucleophilic Ser-70 phosphorylation. A subsequent crystal structure 1BLH showed a phosphonate
inhibitor covalently bound to the Ser-70 of a β-lactamase from Staphylococcus aureus as an acyl-enzyme
intermediate complex [29]. Building on the promising data by Pratt et al., we proposed using the
bis(benzoyl) phosphate to inhibit the activity of the class A β-lactamase BlaC. Upon pre-incubation of
the bis(benzoyl) phosphate with BlaC, there was a noted reduction in enzymatic activity as compared
to the uninhibited BlaC and time zero preincubation time (Figure 3).

We surmised that the inactivation of BlaC with bis(benzoyl) phosphate could follow either an
acylation or phosphorylation type of mechanism, the latter being consistent with the inactivation of
other serine hydrolases with organophosphates [30–32]. Even though these compounds contain an
acylation site that could lead to an acylated inhibition mechanism, in proposing the phosphorylation
mechanism over the acylation mechanism by the bis(benzoyl) phosphate, two equivalents of benzoate
would have been released (Figure 6). Consistent with the proposed phosphorylation mechanism, we
did not observe an intact inhibitor, nor released benzoates in the active site after the phosphorylation
step occurred. Indeed, we hypothesized that a phosphorylation mechanism could be responsible for
the mode of inactivation of BlaC with bis(benzoyl) phosphate based on the crystal structure of BlaC, in
which Ser-70 is shown to be phosphorylated (Figure 3). Now it should be noted that other groups have
demonstrated that the presence of inorganic phosphate in the active site has been shown to reestablish
BlaC activity after inactivation by clavulanic acid [17].

It is known that esterase enzymes can be phosphorylated at their nucleophilic serine residues
upon exposure to organophosphates through a mechanism of inactivation followed by aging [31–34].
However, there was no precedence in the literature for the phosphorylation of the active site serine
of BlaC, thus it was unknown whether the Ser-70 of BlaC could be irreversibly modified by a
phosphorus ligand. We confirmed that when BlaC is incubated with a β-lactamase phosphorylating
agent, bis(benzoyl) phosphate, nucleophilic serine phosphorylation occurs based on crystallographic
data. In addition, even though the bis(benzoyl) phosphate can theoretically inactivate through an
acylation mechanism, the scaffold proceeds through phosphorylation. We propose this occurs via an
irreversible time-dependent mechanism based on preliminary inhibitory potency studies (Figures 2
and 3). In theory, the inhibition mechanism involves the Ser-70, Lys-73, Glu-166 and a catalytic water
molecule (Figure 6). First, the sidechain amine of Lys-73 deprotonates the hydroxymethyl group of
Ser-70. The deprotonated oxyanion of Ser-70 then attacks the phosphorus atom of the bis(benzoyl)
phosphate inhibitor and a benzoate group leaves, forming a benzoyl phosphoserine intermediate.
Lastly, hydrolysis by a water molecule, deprotonated by the carboxyl sidechain of Glu-166, results
in the loss of the second benzoate group, resulting in the aged BlaC being phosphorylated at the
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nucleophilic Ser-70, not unlike the aged forms of cholinesterase and chymotrypsin inactivated by
organophosphorus agents [32,35,36]. However, further studies will need to be conducted to further
elucidate the specific amino acid interactions. Due to the novelty of the inactivation of BlaC by the
bis(benzoyl) phosphate compound, there is still a vast amount to be investigated.

Presently, the bis(benzoyl) phosphate represents the only phosphorus-containing scaffold that
we tested, which inactivated BlaC. Other phosphorus-containing compounds that were tested for
inhibition properties included phosphonates and phosphothioesters. A plausible reason why the
bis(benzoyl) phosphate scaffold worked over other organophosphate scaffolds might involve the
electrophilic nature of the phosphorus center and the pKa of the leaving groups’ conjugate acids
(e.g., benzoic acids vs. alcohols and thiols) [30–32,37]. This new crystal-structure evidence suggests the
inactivation mechanism of BlaC involves the unsubstituted bis(benzoyl) phosphate via nucleophilic
Ser-70 phosphorylation, and is expected to aid in the design of future novel β-lactamase inactivators
utilizing a phosphorylating scaffold. In the future, these phosphorylating agents can potentially
be used concurrently with a β-lactam antibiotic for the treatment of β-lactam antibiotic-resistant
bacterial infections.
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Figure 6. Proposed inactivation mechanism of BlaC. The nucleophilic Ser-70 is deprotonated by Lys-73,
which then attacks the phosphorus atom of bis(benzoyl) phosphate, and benzoate leaves. Glu-166 then
deprotonates a catalytic water molecule, which attacks the phosphorus to displace the second benzoate,
leading to the phosphorylation of Ser-70 and resulting in an aged form of the enzyme.

4. Materials and Methods

4.1. Expression and Purification

Escherichia coli strain BL21 (DE3) transformed with a pET28 plasmid containing the Mycobacterium
tuberculosis gene blaC kindly provided by Dr. Blanchard was used for expression of a truncated
version of the β-lactamase protein. The gene was isolated from Mycobacterium tuberculosis strain
ATCC 25618/H37Rv. The coding region for the first 40 amino acids was removed from the blaC gene
to aid expression. To express β-lactamase, Luria–Bertani broth was inoculated with transformed E.
coli cells and incubated at 37 ◦C until a 0.5 to 0.6 optical density at 600 nm was reached. Cells were
then cooled and incubated at 20 ◦C in a shaker set at 200 rpm for 20 h. After incubation, cells were
collected and centrifuged at 3,000 g for 15 min. Pelleted cells were then collected and frozen at −20 ◦ C
until purification.

For purification, frozen cell pellets were suspended in lysis/wash buffer containing 20 mM
Tris, 300 mM NaCl, and 20 mM imidazole at pH 8.5. The resuspended cells were sonicated with a
Branson SonifierTM 450 (Branseon Ultrasonics, Danbury, CT, U.S.A.) to release soluble protein and
then centrifuged at 15,000 g for 30 min. The supernatant was added to a Ni-NTA column (Bio-Rad, CA,
U.S.A.). The Ni-NTA was then washed with 10 column volumes of the lysis/wash buffer. β-lactamase
was eluted from the Ni-NTA column with a buffer containing 20 mM Tris, 300 mM NaCl, and 250 mM
imidazole at pH 8.5. Next, the eluted β-lactamase was buffer exchanged into buffer A (20 mM Tris pH
8.5, 2 mM DTT, 5% glycerol) for purification on a GE ÄKTA pure FPLC system (GE Healthcare, PA,
U.S.A.) connected to a ResourceTM Q (GE Healthcare, PA, U.S.A.) column. β-lactamase BlaC was eluted
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from the ResourceTM Q column by running a gradient of buffer A to buffer B (20 mM Tris pH 8.5, 2M
NaCl, 5% glycerol). Purified β-lactamase fractions were collected for future use based on SDS-PAGE.

4.2. Synthesis of the Bis(Benzoyl) Phosphate

Pyridine (2 mL) was added to a 20 mL scintillation vial containing 20−25 glass beads (5 mm)
and 1 g (7.04 mmol) sodium phosphate (dibasic, anhydrous). The slurry was vortexed for 2−5 min
before the addition of the acyl chloride derivative (15.49 mmol, 2.2 equivalences). After the addition,
the reaction vial was continuously vortexed for 1 hr. Afterwards, a solution of 10% HCl(aq): ethyl
acetate (1:1, v/v) was added to the crude reaction mixture then transferred into a separatory funnel.
The aqueous layer was extracted 3×with ethyl acetate and the organic layers were pooled together
then washed 3×with saturated sodium chloride solution. The precipitant which formed during each
brine wash was collected and placed on a vacuum to remove residual water. The crude solid was
further purified by reverse-phase (RP) C18 column chromatography (Flash Biotage, Sweden) using
a gradient mobile phase 50%−70% acetonitrile: water (v/v). White solid in >99% isolated yield. 1H
NMR (400 MHz, DMSO-d6) δ: 7.97 (t, J = 1.6 Hz, 2H), 7.67 (d, J = 7.4 Hz, 1H), 7.54 (t, J = 7.9 Hz, 2H).
13C NMR (101 MHz, DMSO-d6) δ 162.30, 162.21, 133.66, 130.38, 130.31, 129.78, 128.82. 31P NMR (122
MHz, DMSO-d6) δ -6.00 (triphenyl phosphine std, s), -17.33(s). HRMS (MALDI) m/z calculated for
C14H11O6P [M + Na] 329.0191; found [M + Na] 329.0186 (± 1.6 ppm).

4.3. Time-Dependent Inhibition of BlaC

To determine the bimolecular rate constant for the time-dependent inhibition of BlaC by
bis(benzoyl) phosphate, BlaC was incubated with bis(benzoyl) phosphate in the absence of the
substrate (nitrocefin) for increasing periods of time (0–8 min). Progress curves for the hydrolysis of
nitrocefin to provide the residual enzyme activity At were acquired using A Fluostar Omega Microplate
Reader running Omega software version 1.02 and Mars Data Analysis Software Program version 1.10
(BMG Labtech. For each pre-incubation time point, 75 µL of 10 nM BlaC was added to replicate wells
with 100 µM of bis(benzoyl) phosphate in 100 mM PIPES Buffer pH = 7.4 at 37 ◦C. After pre-incubation
for each specified time point, the residual enzymatic activity was determined by the addition of 75 µL
of 100 µM nitrocefin. The rate of product formation was determined by measuring the absorbance at
482 nm (ε = 17, 400 M-1

·cm-1) over the course of 8.7 min to generate an enzyme activity At for each
time point of preincubation (µmol/min/nmol enzyme).

4.4. Protein Crystallization and Structure Determination

β-lactamase crystals were grown using the hanging-drop vapor diffusion method at 4 ◦C.
A modified crystallization solution of 0.1 M HEPES pH 7.4, 2.25 M ammonium phosphate monobasic
was used [8]. Non-phosphoserine crystals were grown by making drops containing 1 part purified
β-lactamase at 15 mg/mL in 20 mM Tris pH 8.5, 150 mM NaCl with 1-part crystallization solution and
equilibrating against the same reservoir. For the β-lactamase Ser-70 phosphorylated crystals, drops
contained 1 part purified β-lactamase at 15 mg/mL (0.46 mM) and the inhibitor at 1 mM bis(benzoyl)
phosphate in 20 mM Tris pH 8.5, 150 mM NaCl. After the inhibitor and β-lactamase were gently
mixed, the mixed protein and inhibitor solution was directly mixed without preincubation with 1-part
crystallization solution and equilibrated against the reservoir solution. Crystals typically formed
within two weeks. Prior to data collection, crystals were flash frozen using liquid nitrogen and the
cryoprotectant 0.1 M HEPES pH 7.4, 2.25 M ammonium phosphate monobasic, and 20% glycerol.
Crystal data were collected at Advanced Light Source (ALS) beamlines 5.0.1 and 8.2.1. Diffraction
data processing was done with the HKL2000 software package [38]. Molecular replacement was done
using PHENIX Phaser and a previously solved β-lactamase (BlaC) with the same sequence (PDB:
2GDN) [8,39]. PHENIX and Coot were used for refinement and modeling [39,40].
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4.5. Sequence Alignment

Structural comparison and sequence alignment of serine β-lactamases were conducted using
UCSF Chimera software and the TM-align server to calculate c-alpha RMSD and TM-score [41,42].
Sequence identity and similarity were calculated using the LALIGN tool with alignment set for global
without gap open penalty, available on the SIB ExPASy Bioformatics Resources Portal website. Serine
β-lactamases with deposited crystal structures were found using the Beta-Lactamase Data Base and
the corresponding models were downloaded from the PDB [43,44]. The MatchMaker tool in Chimera
was used to generate the structural sequence alignment and crystal structure superposition [41].
The sequence alignment figure was generated with BioEdit and manually annotated [45].
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