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Abstract: Since many oncogenes, including BCR-ABL, may promote the acquisition and maintenance
of the glycolytic phenotype, we tested whether treatment of BCR-ABL-driven human leukemia cells
with imatinib, a selective BCR-ABL inhibitor, can modulate the expression of key glycolytic enzymes
and mitochondrial complex subunits thus causing alterations of glucose metabolism. BCR-ABL-driven
K562 and KCL-22 cells were incubated with increasing concentrations of imatinib to preliminarily
test drug sensitivity. Then untreated and treated cells were analyzed for levels of BCR-ABL signaling
mediators and key proteins of glycolytic cascade and oxidative phosphorylation. Effective inhibition
of BCR-ABL caused a concomitant reduction of p-ERK1/2, p-AKT, phosphorylated form of STAT3 (at
Tyr705 and Ser727), c-Myc and cyclin D1 along with an increase of cleaved PARP and caspase 3 at
48 h after treatment. Furthermore, a strong reduction of the hexokinase II (HKII), phosphorylated
form of PKM2 (at Tyr105 and Ser37) and lactate dehydrogenase A (LDH-A) was observed in response
to imatinib along with a strong upregulation of mitochondrial complexes (OXPHOS). According to
these findings, a significant reduction of glucose consumption and lactate secretion along with an
increase of intracellular ATP levels was observed in response to imatinib. Our findings indicate that
imatinib treatment of BCR-ABL-driven human leukemia cells reactivates mitochondrial oxidative
phosphorylation thus allowing potential co-targeting of BCR-ABL and OXPHOS.
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1. Introduction

Chronic myelogenous leukemia (CML) is a myeloproliferative disorder consistently associated with
a t(9;22)(q34;q11) translocation which gives rise to the Philadelphia chromosome [1,2]. This translocation
generates the BCR-ABL fusion gene that encodes for the chimeric BCR-ABL protein and drives
neoplastic transformation of hematopoietic stem cells [2,3]. When fused with BCR, ABL tyrosine
kinase is constitutively activated and retained within the cytoplasm where it can interact with several
adaptor molecules creating multiprotein signaling complexes. BCR-ABL is reported to interact
with Ras-mitogen-activated protein kinase (MAPK) pathway leading to increased proliferation, the
Janus-activated kinase (JAK/STAT) pathway leading to impaired transcriptional activity, and the
phosphoinositide 3-kinase (PI3K/AKT) pathway resulting in enhanced survival [4].

Imatinib mesylate is a small-molecule inhibitor of BCR-ABL tyrosine kinase activity that, by
competing with ATP for the binding to the kinase domain of ABL, prevents chimeric protein
autophosphorylation and downstream signaling leading to growth arrest and apoptosis [5]. Imatinib

Int. J. Mol. Sci. 2019, 20, 3134; doi:10.3390/ijms20133134 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-0430-5608
https://orcid.org/0000-0002-5466-1213
https://orcid.org/0000-0002-5132-3593
http://www.mdpi.com/1422-0067/20/13/3134?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20133134
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 3134 2 of 7

was approved for treatment of patients with chronic-phase CML and rapidly became the standard
first-line therapy for those patients [6,7]. Although the mechanism of action of imatinib and its clinical
efficacy have been well established, little is known about mechanisms underlying changes in energy
metabolism of BCR-ABL driven CML cells in response to imatinib. Previous studies, using magnetic
resonance spectroscopy, showed that imatinib treatment of BCR-ABL positive cells causes a decrease
of glucose uptake and lactate production whereas it increases the production of intermediates of the
Krebs cycle [8,9].

The aim of the present study was to test whether inhibition of BCR-ABL signaling by imatinib can
modulate the expression of key glycolytic enzymes and mitochondrial complex subunits thus causing
alterations of glucose metabolism.

2. Results

The sensitivity of K562 and KCL-22 cells to increasing concentrations of imatinib was tested by
MTS assay and the results are shown in Figure 1A. Viability of K562 and KCL-22 cells decreased in a
dose-dependent manner showing an EC50 of approximately 0.7 and 0.3 µM, respectively, indicating
sensitivity to imatinib. Furthermore, exposure of K562 cells to imatinib for 48 h caused a dose-dependent
decrease of p-BCR-ABL, p-AKT, p-ERK1/2, p-STAT3Tyr705, p-STAT3Ser727 and c-Myc levels (Figure 1B)
that lead to a decrease of cyclin D1 and a concomitant enhancement of cleaved PARP and cleaved
caspase 3 levels (Figure 1C) indicating a drug-induced growth arrest and apoptosis. Similarly,
a dose-dependent decrease of p-BCR-ABL and cyclin D1 was also observed in KCL-22 cells (Figure S1).
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Figure 1. Modulation of BCR-ABL signalling by imatinib in chronic myelogenous leukemia (CML) cells.
(A) Cell toxicity assays performed after 72 h of treatment with increasing concentration of imatinib
showing an EC50 of 0.7 and 0.3 µM in K562 and KCL-22 cells respectively. Three independent assays
were performed and data are expressed as mean ± SD. (B,C) Representative western blot analyses
of whole-cell lysates obtained from K562 cells exposed to 0.5 and 1 µM imatinib or vehicle for 48 h.
Actin served to ensure equal loading. At least three independent assays were performed.
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Then levels of key glycolytic enzymes were determined in untreated and treated K562 and KCL-22
cells. A dose-dependent decrease of HKII and LDH-A expression (Figure 2A,B) was observed after
24 and 48 h treatment in K562 cells and confirmed in KCL-22 cells. Similarly, both cell lines treated
for 48 h showed a dose-dependent decrease of p-PKM2Tyr105 and p-PKM2Ser37 levels (Figure 2C).
In addition, 48 h imatinib treatment of K562 and KCL-22 cells caused a strong up-regulation of
mitochondrial complex subunits (OXPHOS) indicating a concomitant reactivation of mitochondrial
oxidative phosphorylation (Figure 2D). In contrast to OXPHOS increase, no significant changes of
mitochondrial markers were found in response to imatinib as shown in Figure S2.
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Figure 2. Protein levels of glycolytic enzymes and OXPHOS in CML cells. (A,B) Protein levels of
HKII and LDH-A were assessed by western blot analysis of whole cell lysates from K562 (A) and
KCL-22 (B) cells exposed to 0.1, 0.5, 1 µM imatinib or vehicle for 24 or 48 h. (C) Levels of p-PKM2Tyr105,
p-PKM2Ser37 along with total form of PKM2 and PKM1 after 48 h treatment with imatinib assessed by
western blotting. (D) Levels of OXPHOS in K562 and KCL-22 cells exposed to 0.1, 0.5 or 1 µM imatinib
at 48 h. Actin served to ensure equal loading. At least three independent assays were performed.

Then we evaluated glucose consumption, lactate secretion and ATP production in untreated and
imatinib-treated K562 cells. A significant increase of glucose concentration was observed after 24 h
in conditioned media of treated cells as compared to untreated controls (p < 0.05) indicating a lower
glucose consumption (Figure 3A). A parallel significant decrease (p < 0.05) of lactate levels was found
at 24 h in treated cells (Figure 3B) whereas intracellular ATP levels were significantly increased after
48 h of treatment with 1 µM imatinib (p < 0.01) (Figure 3C). In agreement with western blot analysis,
functional assays indicate that imatinib treatment causes an early reduction of glucose consumption
and lactate production through glycolysis followed by an increase of ATP indicating reactivation of
oxidative phosphorylation. To confirm the results of functional assays, oxygen consumption rate
(OCR) and extracellular acidification rate (ECAR) were measured in K562 cells exposed to 0.5 µM
imatinib or vehicle for 48 h. An enhancement of both basal and maximal respiration rate was observed
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in treated K562 cells as compared to untreated controls (Figure 3D). Conversely, a reduction of ECAR
was observed in treated cells as compared to untreated controls following the addition of glucose
indicating a downregulation of glycolysis (Figure 3E).
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Figure 3. Functional assays, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR)
measurements in K562 cells exposed to imatinib. K562 cells were treated for 24 or 48 h with imatinib at
the indicated concentrations. (A) Residual glucose levels were measured in conditioned media from
untreated and treated cells. Data are expressed as µg of glucose normalized to 106 cells. (B) Lactate
levels were measured in conditioned media of untreated and treated cells and expressed as nmol
of secreted lactate normalized to 106 cells. (C) Intracellular ATP levels were determined in lysates
of untreated and treated cells and expressed as nmol of ATP normalized to 106 cells. The symbol
* indicates significant differences versus untreated control with * p < 0.05 and ** p < 0.01. At least three
independent assays were performed. (D,E) Simultaneous measurements of OCR (D) and ECAR (E)
were performed in quintuplicate samples of untreated (grey line) and treated (orange line) K562 cells.
All data are expressed as mean ± SE.

3. Discussion

The present study shows that imatinib treatment causes an early downregulation of the expression
of glycolytic enzymes and an upregulation of mitochondrial complex subunits in BCR-ABL driven CML
cells leading to a reduction of glucose consumption and an increase of intracellular ATP production.
In particular, the decrease of HKII reduces the first step of glycolysis and glucose flux through the
glycolytic cascade while the reduction of LDH-A caused a decrease of lactate secretion. Pyruvate
kinase is a glycolytic enzyme that converts phosphoenolpyruvate to pyruvate [10,11]. Two isoforms of
this enzyme, PKM1 and PKM2, are derived from alternative splicing of the primary RNA transcript
of the PKM gene. PKM2 was found to be overexpressed in cancer cells and exists in a dimeric and
tetrameric form associated with a low and high catalytic activity, respectively [12,13]. The reduction
of p-PKM2Tyr105 levels in response to imatinib promotes tetramer formation and a high enzymatic
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catalytic activity leading to an increase of pyruvate that can be directed toward mitochondrial oxidative
phosphorylation [14]. The enhanced pyruvate flux through Krebs cycle and the upregulation of
OXPHOS may allow the increase of intracellular ATP levels.

Phosphorylation of PKM2 at Ser37 was reported to induce its translocation into the nucleus where
PKM2 serves as a transcriptional factor of several genes including c-Myc [15,16]. Imatinib causing a
reduction of p-PKM2Ser37 may modulate the expression of a pool of c-Myc-dependent genes.

In our previous study, we showed the reversal of glycolytic phenotype in EGFR-driven non-small
cell lung cancer cells and xenografts in response to EGFR inhibitors [17]. Here we demonstrated that
similar results can be obtained by inhibiting BCR-ABL suggesting that different oncogene drivers can
share common mechanisms to modulate energy metabolism.

The upregulation of OXPHOS, the increase of intracellular ATP levels and the enhanced OCR in
response to imatinib reflect the restoration of mitochondrial function. However, in these BCR-ABL
driven cells, imatinib caused also an induction of apoptosis that leads to mitochondrial disruption.
It is conceivable that in this context where glycolysis is downregulated and mitochondria are the only
source of energy, the addition of OXPHOS inhibitors to imatinib would have a lethal effect on BCR-ABL
driven cells. In this respect, the mitochondrial ATP-synthase inhibitor oligomycin A was reported to
greatly sensitized leukaemia cells to imatinib predicting a potential benefit for patients treated with a
combination of imatinib and OXPHOS inhibitors [18].

In conclusion, our study provided insights into the mechanisms underlying the changes of glucose
metabolism in BCR-ABL driven cells treated with imatinib identifying OXPHOS as a potential target
for therapy in combination with TKIs.

4. Materials and Methods

4.1. Cell Line and Treatment

The CML cell line, K562, was purchased from American Type Culture Collection whereas KCL-22
cells were kindly provided by Prof. B. Izzo and Dr. F. Quarantelli. K562 and KCL-22 cells were grown
in IMDM and RPMI 1640 (Gibco, Thermo Fisher, Waltham, MA, USA) culture media, respectively,
containing 10% fetal bovine serum (FBS), 100 IU/mL penicillin and 50 µg/mL streptomycin in a
humidified incubator with 5% CO2 at 37 ◦C. Drug-induced toxicity was assessed by MTS assay
(Promega, Madison, WI, USA) as previously described [19]. Briefly, cells were plated at a density of
5000/well in 96-well plates and then treated with increasing concentration (0.1–10 µM) of imatinib
(Biaffin GmbH & Co KG, Germany) or vehicle for 72 h. The optical density (OD) was measured at
490 nm using microplate spectrophotometer, after 2 h incubation with MTS at 37 ◦C. At least three
independent assays were performed and data are expressed as percentage of viable cells, considering
the untreated control cells as 100%. EC50 values were calculated using GraphPad.

4.2. Immunoblotting Analysis

Whole cell lysates were prepared as previously described [20] after treatment with imatinib at
0.1, 0.5 or 1 µM for 24 or 48 h. Then untreated and treated cells were lysed with RIPA buffer (Sigma
Aldrich, St. Louis, MO, USA), homogenized and centrifuged at 13,000× g at 4 ◦C for 20 min. Western
blot analysis was performed using a standard procedure.

Antibodies used for western blotting included mouse monoclonal antibodies recognizing BCR-ABL
(1 µg/µl, Thermo scientific), STAT3 (1:1000), p42/44 MAP kinase (ERK1/2) (0.1 mg/mL) (Cell Signaling),
HSP70 (2 µg/mL) (Santa Cruz Biotechnology), cytochrome C (1 µg/mL, BD Pharmingen, San Jose, CA,
USA), α-tubulin (1 µg/mL), actin (1 µg/mL) (Sigma), PARP (1:1000, BD Pharmingen), the OXPHOS
cocktail of 5 mAbs (Mitoscience, Eugene, OR; 1:1000) recognizes the following proteins: 20-kD subunit
of Complex I (20 kD), COX II of Complex IV (22 kD), 30-kD Ip subunit of Complex II (30 kD), core 2 of
Complex III (~50 kD), and F1α (ATP synthase) of Complex V (~60 kD); rabbit monoclonal antibodies
against p-c-AblTyr412 (1:1000), Hexokinase II (1:1000), PKM2 (1:1000), LDH-A (1:1000), p-STAT3Tyr705
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(1:1000) (Cell Signaling); rabbit polyclonal antibodies against PKM1 (1:1000, Abgent), p-AKTSer473

(1:1000), PGC-1α (1:1000) (Santa Cruz Biotechnology), p-PKM2Ser37 (1:1000) (Signalway Antibody),
p-PKM2Tyr105 (1:1000), phospho-p42/44 MAP kinase (ERK1/2) (1:1000), AKT (1:1000), cyclin D1 (1:1000),
cleaved Caspase-3 (1:1000), c-Myc (1:1000), p-STAT3Ser727 (1:1000), (Cell Signaling). A commercially
available ECL kit (GE Healthcare, UK) was used to reveal the reaction. At least three independent
assays were performed.

4.3. Glucose Consumption, Lactate Secretion and Intracellular ATP

Cells were seeded in six-well flat-bottomed plates at a density of 3 × 105 cells per well and then
treated with imatinib at the indicated concentration for 24 or 48 h. Untreated and treated cells were
analyzed for glucose and lactate levels in the conditioned media and for intracellular ATP levels. Briefly,
after treatment, conditioned media were removed, centrifuged at 13,000× g at 4 ◦C for 10 min and then
assayed for glucose and lactate concentrations using the Glucose Assay Kit (Sigma-Aldrich) and the
Lactate Assay Kit (Sigma-Aldrich) following manufacturers’ instructions. Cells were simultaneously
subjected to intracellular ATP determination using the ATPlite Luminescence Assay (Perkin Elmer;
Waltham, MA, USA) following manufacturer’s instructions. Briefly, cells were lysed, incubated with
the ATP reaction mixture for 5 min and then subjected to luminescence measurements. Absolute
glucose, lactate and ATP levels were calculated from the corresponding standard curve and normalized
to 106 cells. At least three independent assays were performed.

4.4. Oxygen Consumption and Extracellular Acidification Rates

The oxygen consumption rate (OCR) and the extracellular acidification rate (ECAR) were
determined using the Seahorse Extracellular Flux Analyzer (XF-96, Seahorse Bioscience, North Billerica,
MA, USA). Briefly, K562 cells were plated at a density of 5 × 106 cells in 10 cm petri dishes and
then treated with 0.5 µM imatinib for 48 h. Then cells were plated on XF 96-well microplates and
allowed to equilibrate. OCR was measured in basal conditions and after the subsequent addition
of 5 µM oligomycin, 1.5 µM carbonylcyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP) and
1 µM rotenone/antimycin A. ECAR was simultaneously measured in basal conditions and after the
subsequent addition of 10 mM glucose, 5 µM oligomycin and 100 mM 2-deoxyglucose.

4.5. Statistical Analysis

Statistical analysis was performed using the software MedCalc for Windows, version 12.7.0.0,
(MedCalc Software, Mariakerke, Belgium). Unpaired Student’s t-test was used to compare means.
Differences between means were considered statistically significant for p < 0.05.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/13/3134/s1.
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