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Abstract: Klebsiella pneumoniae 2N3 is a strain of gram-negative bacteria that can degrade
chlorimuron-ethyl and grow with chlorimuron-ethyl as the sole nitrogen source. The complete
genome of Klebsiella pneumoniae 2N3 was sequenced using third generation high-throughput DNA
sequencing technology. The genomic size of strain 2N3 was 5.32 Mb with a GC content of 57.33%
and a total of 5156 coding genes and 112 non-coding RNAs predicted. Two hydrolases expressed
by open reading frames (ORFs) 0934 and 0492 were predicted and experimentally confirmed by
gene knockout to be involved in the degradation of chlorimuron-ethyl. Strains of ∆ORF 0934, ∆ORF
0492, and wild type (WT) reached their highest growth rates after 8–10 hours in incubation. The
degradation rates of chlorimuron-ethyl by both ∆ORF 0934 and ∆ORF 0492 decreased in comparison
to the WT during the first 8 hours in culture by 25.60% and 24.74%, respectively, while strains ∆ORF
0934, ∆ORF 0492, and the WT reached the highest degradation rates of chlorimuron-ethyl in 36 hours
of 74.56%, 90.53%, and 95.06%, respectively. This study provides scientific evidence to support the
application of Klebsiella pneumoniae 2N3 in bioremediation to control environmental pollution.

Keywords: Klebsiella pneumoniae 2N3; chlorimuron-ethyl degrading bacteria; genome; third generation
of high-throughput DNA sequencing

1. Introduction

Chlorimuron-ethyl, also known as chlorsulfuron-ethyl, is a type of selective pre- and
post-emergence herbicide, which is widely used for the control of broad-leaved weeds in soybean
fields [1]. Although chlorimuron-methyl is a herbicide with high efficiency and low toxicity, it has a
long-lasting effect and is phytotoxic to many types of sensitive crops such as corn, sorghum, rape, melon,
potato, and beet, thus limiting the use of this herbicide [1]. The degradation of chlorimuron-ethyl in
the natural environment is accomplished mainly by chemical hydrolysis and microbial degradation.
Compared with chemical hydrolysis, microbial degradations of environmental pollutants have been
widely studied because of their high efficiency and safety. Bacteria in the genus Klebsiella are
widespread in nature with several strains shown to be suitable for carrying out bioremediation due
to their fast growth, a thick capsule on the surface of the cell wall, and resistance to pollutants [2,3].
For example, Klebsiella sp. CPK degrades the insecticide chlorpyrifos [4], Klebsiella oxytoca degrades
cypermethrin [5], Klebsiella sp. NIII2 is able to produce glycoprotein flocculant [6], and Klebsiella
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pneumoniae J1 displays specific adsorption of Sulfamethoxazole [7–9]. Furthermore, K. pneumoniae 2N3,
a gram-negative bacterium in the family of Enterobacteriaceae, can degrade not only chlorimuron
but also other sulfonylurea herbicides such as metsulfuron-methyl, tribenuron-methyl, rimsulfuron,
ethametsulfuron, and nicosulfuron [10]. A recent study has proposed the pathway for the degradation
of chlorimuron-ethyl by another species in the Enterobateriaceae family, Enterobacter ludwigii sp.
CE-1 [11]. Specifically, the sulfonylurea bridge in chlorimuron-ethyl is first cleaved, and then the
intermediate products are converted to saccharin by hydrolysis and amidation. This biodegradation
process is similar to those revealed in many other microorganisms that degrade chlorimuron-ethyl [12].

Microbial degradation of pesticide residues is mainly dependent on the production of the
corresponding degradation enzymes. To date, many studies on the biodegradation mechanisms of
sulfonylurea herbicides have focused on the degradation products and the metabolic pathways of
compounds in pesticides [13,14]. However, there are only a few reports on the degradation enzymes
produced by microorganisms. It has been demonstrated that two cytochrome P450 monooxygenases
(P-450SU1 and P-450SU2) from Streptomyces griseolus are involved in the oxidation of sulfonylureas [15,16].
The nicosulfuron-degrading protein flavin monooxygenase (FMO) from Talaromyces flavus LZM1 was
isolated and found to mainly degrade nicosulfuron by breaking the urea bridge [17]. Esterase SulE
was obtained from Hansschlegelia zhihuaiae S113 and was reported to generate deesterification to
degrade the sulfonylurea herbicides by rupturing the ester bond in the herbicides [18]. The sulE
gene was further cloned and was successfully expressed in Saccharomyces cerevisiae [18]. Recently,
Sulfometuron-degrading enzyme E3, a type of hydrolase that degrades nicosulfuron by breaking
the urea bridge, was obtained from a strain of Oceanisphaera psychrotolerans, which was expressed in
Escherichia coli [19].

The third generation of high-throughput DNA sequencing technology has enabled direct
sequencing of the gDNA of K. pneumoniae 2N3 with significant savings and increased accuracy [20–22].
Currently, the third generation sequencing platforms mainly include the true single molecular
sequencing (tSMS) of the Helicos biosciences, the PacBio of Pacific Biosciences, and the nanopore
single-molecule technology of Oxford Nanopore Technologies [20–22]. In this study, the whole genome
of K. pneumoniae 2N3 was sequenced and assembled using the PacBio high-throughput sequencing
technology. The basic characteristics of the 2N3 genome were further analyzed, and the functional genes
were annotated by using databases of the non-redundant (NR) protein, Gene Ontology (GO), Clusters
of Orthologous Groups (COGs) proteins, and the Kyoto Encyclopedia of Genes and Genomes (KEGG).
The functional genes related to the degradation of chlorimuron-ethyl were (1) preliminarily predicted
by using sequence information and functional annotation of genes and (2) further experimentally
confirmed by gene knockout technology. These results provide a solid foundation for further exploring
the degradation mechanisms of chlorimuron-ethyl by K. pneumoniae 2N3.

2. Results and Discussion

2.1. Genome Sequencing Characteristics

A total of 26,930 reads (183,081,518 bp) corresponding to 348.9 fold genome coverage were
obtained. The shortest and the longest sequences were 35 bp and 34,393 bp, respectively, with an
average sequence length of 6798 bp. One single contig was obtained by the assembly, and the results
showed that the total length of the circular 2N3 genome was 5,319,547 bp with a GC content of
57.33% without undetermined nucleotide bases. The circle map of the 2N3 genome was drawn using
Circos (Figure 1). The genome sequence of strain 2N3 was deposited in GenBank with an accession
number CP025541 (Bioproject accession: PRJNA427082) under the name of K. pneumoniae, previously
recognized as K. jilinsis [10].
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Figure 1. Genome map of K. pneumoniae 2N3. The five layers in order from the outmost to the 
innermost represent: (1) genome indicated by lengths of DNA sequences in kb, (2) and (3) coding 
sequences (CDS) on the positive strand and negative strand, respectively, with color bars representing 
clusters of orthologous group (COG) classifications, (4) locations of rRNA and tRNA genes, (5) GC 
contents with red bars and blue bars proportionally indicating areas with GC contents higher and 
lower than the average GC content of the entire genome, respectively, and (6) values of GC-skew as 
calculated using the algorithm of G – C/G + C. 

2.2. Molecular Characteristics of the 2N3 Genome 

A total of 5156 coding gene open reading frames (ORFs), ranging from 114 to 6342 bp in length 
with an average of 906 bp, were predicted in the 2N3 genome with a total length of 4,669,044 bp and 
a GC content of 58.54% (Table 1). We noted that the number of genes predicted in this genome was 
similar to those reported in many of the genomes of Klebsiella at NCBI 
(https://www.ncbi.nlm.nih.gov/). A total of 112 non-coding RNAs were also predicted in the 2N3 
genome. Furthermore, these 5156 coding genes in the 2N3 genome were annotated by the NR 
database, while the gene ontology (GO) annotated a total of 287 out of the 5156 ORFs into 3995 GO 
terms (Figure 2). The highest number of functional genes (2378) were predicted in the group of 
metabolic process in the domain of biological process, followed by the catalytic activity (2327) in the 
domain of molecular function, while less than 50 genes were predicted in many GO terms (Figure 2). 

Table 1. Molecular characteristics of the genome of K. pneumoniae 2N3. 

Characteristics K. pneumoniae 2N3 
Length (bp) 5,319,547 
GC content 57.33% 

Ns (%) 0 
No. of plasmid 0 

No. of coding genes 5156 
Total bases (bp) 4,669,044 

Length variation (range in bp) 114–6342 
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Figure 1. Genome map of K. pneumoniae 2N3. The five layers in order from the outmost to the innermost
represent: (1) genome indicated by lengths of DNA sequences in kb, (2) and (3) coding sequences
(CDS) on the positive strand and negative strand, respectively, with color bars representing clusters of
orthologous group (COG) classifications, (4) locations of rRNA and tRNA genes, (5) GC contents with
red bars and blue bars proportionally indicating areas with GC contents higher and lower than the
average GC content of the entire genome, respectively, and (6) values of GC-skew as calculated using
the algorithm of G − C/G + C.

2.2. Molecular Characteristics of the 2N3 Genome

A total of 5156 coding gene open reading frames (ORFs), ranging from 114 to 6342 bp in length
with an average of 906 bp, were predicted in the 2N3 genome with a total length of 4,669,044 bp and
a GC content of 58.54% (Table 1). We noted that the number of genes predicted in this genome was
similar to those reported in many of the genomes of Klebsiella at NCBI (https://www.ncbi.nlm.nih.gov/).
A total of 112 non-coding RNAs were also predicted in the 2N3 genome. Furthermore, these 5156
coding genes in the 2N3 genome were annotated by the NR database, while the gene ontology (GO)
annotated a total of 287 out of the 5156 ORFs into 3995 GO terms (Figure 2). The highest number of
functional genes (2378) were predicted in the group of metabolic process in the domain of biological
process, followed by the catalytic activity (2327) in the domain of molecular function, while less than
50 genes were predicted in many GO terms (Figure 2).

A total of 4648 out of the 5156 ORFs were annotated into 22 categories in the COG database
(Figure 3). The COG annotations identified a large amount of genes (1237) with unknown functions,
while a total of six groups, each with over 200 genes, were annotated in energy production and
conversion (280), amino acid transport and metabolism (437), carbohydrate transport and metabolism
(479), transcription (413), cell wall/membrane/envelope biogenesis (243), and inorganic ion transport
and metabolism (367) (Figure 3). The least number of genes were annotated in the categories of RNA
processing and modification (1) and cell motility (19).

https://www.ncbi.nlm.nih.gov/
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Table 1. Molecular characteristics of the genome of K. pneumoniae 2N3.

Characteristics K. pneumoniae 2N3

Length (bp) 5,319,547
GC content 57.33%

Ns (%) 0
No. of plasmid 0

No. of coding genes 5156
Total bases (bp) 4,669,044

Length variation (range in bp) 114–6342
Average length (bp) 906

Ns (%) 0
No. of non-coding RNA 112
No. of ribosomal RNA 25
No. of transfer RNA 87
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Furthermore, a total of 2960 out of the 5156 ORFs were annotated into a total of 40 biological
pathways in the KEGG database (Figure 4). The largest number of genes were annotated into the
pathways of carbohydrate metabolism (405) and membrane transport (385). Among the six groups of
pathways in the KEGG, the organismal systems contained the least number of genes (37). In the KEGG
database (Figure 4). A total of 16, 7, and 451 genes were annotated to have the functions of P450, flavin
monooxygenase (FMO), and hydrolase, respectively.
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Encyclopedia of Genes and Genomes (KEGG) database.

None of the 16 cytochrome P450 coding genes predicted in the 2N3 genome showed the same
conserved domain (i.e., CypX belonging to the P-450 family) as compared with the two cytochrome
P450 enzymes P450SU1 and P450SU2 present in Streptomyces griseolus [14,15], which are responsible
for the degradation of sulfonylurea herbicides. Furthermore, the local BLAST (Basic Local Alignment
Search Tool) analysis did not identify any matching sequences. Two of the six encoding genes of flavin
monooxygenase (ORFs 2804 and 4234) were highly homologous to the nicosulfuron-degrading enzyme
FMO. Multiple alignment of DNA sequences using MEGA6 [23] indicated high homology between
ORF 4234 and FMO. Three ORFs (4234, 3547, and 2804) and FMO each contain the Pyr_redox_2
superfamily domain (i.e., pyridine nucleotide-disulfide oxidoreductase superfamily). Both ORFs 0934
and 0492 contain the Esterase_713_like domain, which is involved in breaking the ester bond on the
halogenated ring by esterase SulE.

2.3. Protein Sequence and Phylogenetic Analyses of E3

Nicosulfuron-degrading hydrolase E3 contains the MhpC (pimeloyl-ACP methyl esterase) and
Abhydrolase 1 family domains, the basic sequence (i.e., Gly-X-Ser-X-Gly) of hydrolases, and the
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catalytic triad structure Ser-Glu-His (Figure 5), functioning to break the carbonyl group in the ester
bond [24]. In the 2N3 genome, three ORFs (0934, 0492, and 0166) of the seven hydrolases having
relatively high homology with E3 contain both MhpC and Abhydrolase 1 domains. Six ORFs (2732,
2227, 0934, 0846, 0492, and 0311) contain the conserved pentapeptide motif Gly-X-Ser-X-Gly (Figure 5).
Despite the presence of the conserved pentapeptide motif, the six ORFs generally have little overall
sequence identity to E3 protein. The overall amino acid similarities between these six ORFs and the
E3 protein are 10.42%, 12.40%, 18.73%, 8.67%, 16.90%, and 8.27%, respectively. The phylogenetic tree
using the neighbor-joining method derived from these six ORFs and E3 using MEGA6 is presented
in Figure 6. Four of these six ORFs (2732, 0934, 0492, and 0311) contain the catalytic triad structure
Ser-Glu-His. Furthermore, the amino acid sequences of ORFs 2096 (a non-heme chloroperoxidase) and
0492 (a 2-hydroxy-6-oxonona-2,4-dienedioate hydrolase) also contain similar domains as SulE. The
phylogenetic tree shows that ORFs 0934 and 0492 are closely related to E3. Therefore, it is speculated
that ORFs 0934 and 0492 may be involved in the degradation of chlorimuron-ethyl as well. Furthermore,
the wide distribution of these six ORFs in other common species of Klebsiella, such as K. aerogenes, K.
michiganensis, K. oxytoca, K. pneumoniae, K. quasipneumoniae, and K. variicola, indicates high conservation
and potential functions within these bacteria. Currently, it is not known whether these enzymes present
in other rare species of Klebisella.
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7). All three strains (wild type (WT), ΔORF 0934, and ΔORF 0492) grew rapidly on the basal medium 

Figure 5. The conserved pentapeptide sequences (as highlighted in the red box) of E3 and six open
reading frames (ORFs) from K. pneumoniae 2N3 (ORFs 2732, 2227, 0934, 0846, 0492, and 0311). The
numbers at both ends of the amino acid sequences indicate the positions of the amino acids in the
sequences, and the numbers in brackets indicate the number of amino acids omitted in the alignments.
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Figure 6. A phylogenetic tree using the neighbor-joining method based on the complete amino acid
sequences of E3 (indicated with the symbol of a black triangle) and six ORFs from Klebsiella pneumoniae
2N3 (ORFs 2732, 2227, 0934, 0846, 0492, and 0311). Bootstrap values (given as 1–100%) derived from
1000 replicates are given next to the branches. The scale bar refers to the number of amino acid
substitutions per site.

2.4. Gene Knockout and Degradation of Chlorimuron-ethyl

The construction of the gene knockouts of ORF 0934 and 0492 were confirmed by PCR (Figure 7).
All three strains (wild type (WT), ∆ORF 0934, and ∆ORF 0492) grew rapidly on the basal medium
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containing chlorimuron-ethyl (5 mg/L) in the first 8–10 h in culture. They maintained a similar growth
rate for the next 24 h and reached their highest concentrations with ∆ORF 0934 being the lowest
(OD600 = 1.06) and ∆ORF 0492 the highest (OD600 = 1.14) (Figure 8). These results revealed similar
growth patterns between the WT and the two knockouts (∆ORF 0934 and ∆ORF 0492) during the entire
course of the experiment. These three strains degraded the chlorimuron-ethyl rapidly in 8 h in culture
and reached their highest degradation rates at 36 h, with ∆ORF 0934 being the lowest at 74.56% and WT
the highest at 95.06%, respectively (Figure 9). The degradation rates of chlorimuron-ethyl by ∆ORF 0934
were slower than those by the WT, and almost no degradation was detected when the concentration of
chlorimuron-ethyl reached 1 mg/L (Figure 9). The degradation rates of chlorimuron-ethyl by ∆ORF
0492 were similar to those by ∆ORF 0934 for the first 8 h but faster after 8 h and comparable to those by
the WT. These results indicated that both ∆ORF 0934 and ∆ORF 0492 showed decreased degradation
rates of chlorimuron-ethyl in the first 8 h in culture compared to the WT by 25.60% and 24.74%,
respectively, indicating that ORFs 0934 and 0492 are involved in the degradation of chlorimuron-ethyl.
The strain ∆ORF 0934 showed consistently lower degradation rates on chlorimuron-ethyl than the WT
after 8 h, further indicating that strain 2N3 probably produces multiple types of chlorimuron-ethyl
degrading enzymes. Possible functional redundancies are speculated since all strains removed about
75% of the chemicals in the time course of the experiment, indicating that these genes are not essential
for the degrading process under these laboratory conditions. At present, we cannot rule out the
possibility that these two genes are not essential for the degrading process under laboratory conditions.
It is possible that even though we knocked out these two genes, some other genes may still have
been functioning to encode proteins that were functional along the degradation pathway to cause the
decrease of the chemicals. It is also possible that there were multiple enzymes with the same or similar
functions of degrading the chemicals.
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Figure 7. ORFs 0934 and 0492 gene knockout construction examined by PCR. Lane M represents the
molecular markers, Lane 1 indicates the amplification of the sequence of the kanamycin resistance gene
in ∆ORF 0934, Lane 2 the ORF 0934 fragment in ∆ORF 0934 (no band), Lane 3 the sequence of the
kanamycin resistance gene in ∆ORF 0934 + upstream homologous arm, Lane 4 the sequence of the
kanamycin resistance gene in ∆ORF 0934 + downstream homologous arm, Lane 5 the full length of the
kanamycin resistance gene cassette of ∆ORF 0934, Lane 6 the control of the kanamycin resistance gene
(with the pKD4 plasmid as the template), Lane 7 the ORF 0934 fragment in the wild type (WT), Lane 8
the amplification of the sequence of the kanamycin resistance gene in ∆ORF 0492, Lane 9 the ORF 0492
fragment in ∆ORF 0492 (no band), Lane 10 the sequence of the kanamycin resistance gene in ∆ORF
0492 + upstream homologous arm, Lane 11 the sequence of the kanamycin resistance gene in ∆ORF
0492 + downstream homologous arm, Lane 12 the full length of the kanamycin resistance gene cassette
of ∆ORF 0492, Lane 13 the control of the kanamycin resistance gene (with the pKD4 plasmid as the
template), and Lane 14 the ORF 0492 fragment in the wild type (WT).

The degradation of chlorimuron-ethyl by 2N3 is also comparable to the results obtained by other
studies. For example, when cultured in a liquid medium at 30–35 ◦C with a pH value of 6–7, strain
2N3 was able to degrade 83.5% and 92.5% of the chlorimuron-ethyl with the initial concentrations
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of 20 mg/L and 100 mg/L, respectively [10]. Furthermore, the degradation of chlorimuron-ethyl by
Stenotrophomonas maltophilia D310-3 [25], Hansschlegelia sp. strain CHL1 [26], and Enterobacter ludwigii
sp. CE-1 [11] reached the highest rates of 89.9%, 95%, and 90% cultured under optimal conditions in 6,
4, and 7 days, respectively.
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3. Materials and Methods

3.1. Bacterial Strain

Klebsiella pneumoniae 2N3 was isolated by enrichment culturing from the sludge taken from an
industrial wastewater treatment tank (Shenyang Chemical Industry Research Institute, Shenyang,
China) and was stored at the China Center for Type Culture Collection (accession number CCTCC
NO: M 209248). Bacteria of strain 2N3 cultured at −80 ◦C and preserved in glycerol were incubated on
Luria-Bertani (LB) plates at 30 ◦C overnight. Single colonies were picked the next day and cultured in a
liquid LB medium at 30 ◦C and 200 rpm to the logarithmic phase. The bacterial cells were collected by
centrifugation to extract genomic DNA using the Tiangen blood/tissue/cell genomic DNA extraction
kit (Tiangen Biotech, Beijing, China).
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3.2. Genome Sequencing, Assembly, and Annotation

The genome of 2N3 was sequenced using the third-generation DNA sequencing platform PacBio
RSII SMRT [27]. Due to the sequencing principles deployed by the PacBio system (i.e., each DNA
molecule was sequenced multiple times) and the high genomic coverage obtained, a second sequencing
method, i.e., Illumina MiSeq, was applied to verify the DNA base bias. Reads were assembled using the
Hierarchical Genome Assembly Process (HGAP) [28] and canu [29] to obtain the final assembly. The
errors of the PacBio assembly were corrected using the Illumina reads with Pilon [30]. Functional genes
were predicted using Glimmer gene-finding [31], transfer RNAs were detected with tRNAscan-SE [32]
using default parameters, and ribosomal RNA was identified by RNAmmer [33]. The coding genes
were annotated by BLAST analysis using GenBank’s Non-Redundant (NR) protein database at NCBI
(http://www.ncbi.nlm.nih.gov/). The functions of the genes were annotated by the Gene Ontology
(GO) database [34], the metabolic pathways were annotated by the Kyoto Encyclopedia of Genes
and Genomes (KEGG) database [35], and protein-coding genes were annotated by the Clusters of
Orthologous Groups (COG) proteins database [36] using BLAST analysis. Gene coding for enzymes,
including cytochrome P450 (P450SU1 and P450SU2), flavin monooxygenase (FMO), and hydrolases (e.g.,
SulE and E3), which are responsible for the degradation of sulfonylurea herbicides, were predicted by
the local BLAST analyses (BioEdit version 7.0.5.2) using reported protein sequences of the sulfonylurea
degrading enzymes in order to compare them with all of the predicted genomic genes in 2N3. The
genes with high homology (36.1% between E3 and ORF 0934 and 38.8% between E3 and ORF 0492)
identified by the local BLAST analysis were further examined using the Conserved Domain Search
Service (CD Search) tool at NCBI (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) to predict the
conserved structural domains.

3.3. Protein Structural and Phylogenetic Analyses

The conserved pentapeptide motif Gly-X-Ser-X-Gly of nicosulfuron-degrading hydrolase E3
and predicted ORFs from Klebsiella pneumoniae 2N3 (ORFs 2732, 2227, 0934, 0846, 0492, and 0311)
were aligned using the constraint-based multiple alignment tool (COBALT) at NCBI (https://www.
ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?LINK_LOC=BlastHomeLink). MEGA6 was used to construct
phylogenetic trees using the neighbor-joining method to generate bootstrap values on the phylogenetic
trees based on 1000 replicates [23].

3.4. Gene Knockout and Degradation of Chlorimuron-Ethyl

To further provide the experimental evidence to support the annotated functions of ORFs 0934
and 0492, both genes were knocked out using the Lambda–Red system (Shanghai North Connaught
bio technology Co., Ltd., Shanghai, China). The construction of the gene knockouts was confirmed by
PCR. A plasmid pKD4 containing the kanamycin resistance gene was used as the template to amplify
the kanamycin resistance gene and to construct the kanamycin resistance gene cassette (Figure 10).
The 5′ end of the primers contained 60 bp, which were homologous to either ends of the target genes.
(Table 2).
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Table 2. Primers and sequences used in the construction of the kanamycin resistance gene cassettes.
Sequences in lower cases are 60 bp homologous to the portions of the 5′ and 3′ ends of the target genes.

Primers Sequences

FKF0934-F 5′-gcggcctgataccagacgcggtctggtccaggatcggcgaatcaagctagacagggtaag
TGTGTAGGCTGGAGCTG-3′

FKF0934-R 5′-tggcgcccagggcgctggcggaatgccattaacggcactctgcccggcaaagagggcaga
ATCCTCCTTAGTTCCTATTCC-3′

FKF0492-F 5′-gatcgccggattcggctcgctgagcgccaccaccgagatttgattaaccgggagactaac
TGTGTAGGCTGGAGCTG-3′

FKF0492-R 5′-tgttccgcgtcgcgcagctgccgggccagcgcgtcaagagaaaaagtcatcatttactcc
ATCCTCCTTAGTTCCTATTCC-3′

The technique of homologous recombination was used to insert the kanamycin resistance gene
cassette into the location of the target gene (Figure 11). These technical strategies ensure that the
expressions of the flanking genes around the target genes are not affected.
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of the bacterial suspension. The values of OD600 were used to estimate the concentration of bacterial 
population. To put it simply, bacterial growth is positively correlated with the values of OD600, and 
the higher values of OD600 indicate the higher concentrations of the bacterial populations. The 
concentrations of bacterial cells were determined by sampling regularly at 0, 2, 4, 6, 8, 10, 12, 24, and 
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Figure 11. The construction of the two genetic knockouts ∆ORF 0934 and ∆ORF 0492. A and D
show the locations of the target genes (ORFs 0934 and 0492 in blue areas), B and E are the kanamycin
resistance gene cassettes showing the 60 bp regions at each end homologous to the target genes to
be deleted, and C and F show the genetic structure of the knockouts. The green zones indicate the
intergenic regions. Cross symbols between A and B, and D and E indicate the locations of the 60 bp
homologous sequences (Table 2). Kan indicates the kanamycin resistance gene in red zones. Grey areas
indicate the flanking ORFs.

To determine the effects of the gene knockouts on degradation of chlorimuron-ethyl, both the
mutants and the wild type (WT) strains were cultured in the basal medium (containing glucose, 5 g;
KH2PO4, 0.5 g; MgSO4·7H2O, 0.2 g; K2HPO4, 0.5 g; NaCl, 0.2 g; NH4NO3, 1.6 g, and double distilled
water, 1000 mL) with chlorimuron-ethyl added (5 mg/L) at 30 ◦C and 150 rpm. A biophotometer
(Eppendorf, city, state abbreviation if any, country) was used to measure the optical density (OD600) of
the bacterial suspension. The values of OD600 were used to estimate the concentration of bacterial
population. To put it simply, bacterial growth is positively correlated with the values of OD600,
and the higher values of OD600 indicate the higher concentrations of the bacterial populations. The
concentrations of bacterial cells were determined by sampling regularly at 0, 2, 4, 6, 8, 10, 12, 24, and
36 h. No bacteria were added in the controls. The liquid chromatography (HPLC, Shimadzu, LC20A,
city, state abbreviation if any, country) with a column C18 was used to measure the concentrations
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of chlorimuron-ethyl residues at 30 ◦C at 0, 2, 4, 6, 8, 10, 12, 24, and 36 h. The mobile phase contains
methanol, water, and acetic acid (volume of 70, 30, and 0.3, respectively) running at a flow rate of
1 mL/min, with an injection volume of 20 µL and a detection wavelength of 256 nm. The degradation
rate of chlorimuron-ethyl was calculated by the formula ((C0 − Ct)/C0)∗100%, where C0 and Ct are the
concentrations of chlorimuron-ethyl at time 0 and time t, respectively. Control standard purchased from
Sigma-Aldrich (Shanghai, China; Cat # 32874) was used to quantify the chlorimuron-ethyl degradation.
All experiments were repeated thrice. The average of three measurements with a standard deviation
was calculated to plot the graphs (Figures 8 and 9).

4. Conclusions

Klebsiella is generally considered as having great potential in its applications in bioremediation
because species in this genus are widely distributed in nature, showing strong environmental
adaptability and rapid reproductive capacity. The completely sequenced genome of Klebsiella
pneumoniae 2N3 will further provide insight into the degradation of chlorimuron-ethyl and other
sulfonylurea herbicides such as metsulfuron-methyl, tribenuron-methyl, rimsulfuron, ethametsulfuron,
and nicosulfuron, and bioremediation to control environmental pollution [10]. To date, there are few
studies on the enzymes responsible for the degradation of sulfonylurea herbicides. Most of the reported
enzymes are coded by genes having low similarity with the identified genes. Some enzymes (e.g.,
esterase SulE) have shown degradation activity without cofactors and energy, while other enzymes
(e.g., cytochrome P450) require support and regulation by the complex multi-component system in
order to degrade the substrates. Therefore, the whole genome of Klebsiella pneumoniae 2N3 will not
only help us identify more genes for chlorimuron-ethyl degrading enzymes, but also provide scientific
support for further exploration of the metabolic pathways and mechanisms regulating these enzymes.
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