
 International Journal of 

Molecular Sciences

Review

Molecular Mechanisms and Determinants of
Innovative Correction Approaches in Coagulation
Factor Deficiencies

Dario Balestra * and Alessio Branchini *

Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
* Correspondence: blsdra@unife.it (D.B.); brnlss@unife.it (A.B.);

Tel.: +39-0532-974485 (D.B.); +39-0532-974529 (A.B.)

Received: 6 May 2019; Accepted: 18 June 2019; Published: 21 June 2019
����������
�������

Abstract: Molecular strategies tailored to promote/correct the expression and/or processing of defective
coagulation factors would represent innovative therapeutic approaches beyond standard substitutive
therapy. Here, we focus on the molecular mechanisms and determinants underlying innovative
approaches acting at DNA, mRNA and protein levels in inherited coagulation factor deficiencies, and
in particular on: (i) gene editing approaches, which have permitted intervention at the DNA level
through the specific recognition, cleavage, repair/correction or activation of target sequences, even in
mutated gene contexts; (ii) the rescue of altered pre-mRNA processing through the engineering of
key spliceosome components able to promote correct exon recognition and, in turn, the synthesis and
secretion of functional factors, as well as the effects on the splicing of missense changes affecting exonic
splicing elements; this section includes antisense oligonucleotide- or siRNA-mediated approaches
to down-regulate target genes; (iii) the rescue of protein synthesis/function through the induction
of ribosome readthrough targeting nonsense variants or the correction of folding defects caused by
amino acid substitutions. Overall, these approaches have shown the ability to rescue the expression
and/or function of potentially therapeutic levels of coagulation factors in different disease models,
thus supporting further studies in the future aimed at evaluating the clinical translatability of these
new strategies.

Keywords: coagulation factor deficiencies; gene therapy; TALEs; CRISPR activation; RNA-based
correction approaches; modified U1 snRNA; ribosome readthrough; chaperone-like compounds

1. Blood Coagulation and Hemorrhagic Disorders

Blood coagulation is a finely tuned system involving a series of strictly controlled cellular and
molecular events that ultimately lead to the formation of a stable clot. In the first response to a
vessel damage, the von Willebrand factor (vWF)-mediated adhesion and aggregation of platelets,
which also interact with subendothelial collagen, provide the key negatively charged surfaces acting
as scaffolds for coagulation reactions. Plasma coagulation factors represent the soluble molecular
components involved in the so-called coagulation cascade, in which the central event is the conversion
of prothrombin to thrombin, the central player participating in clot formation as well as in a series
of feedback reactions that potentiate the first pro-coagulant event. Overall, the dynamic and mutual
interaction of these molecular and cellular components, which has been well described through a
cell-based model, ensures proper hemostasis and prevents major blood loss [1].

The series of reactions leading to the sequential activation of coagulation factors, through the
conversion of circulating zymogens to active serine proteases, involves several pro-coagulant enzymes
and cofactors as well as proteins with structural roles. Briefly, after a vessel wall injury, the initiation

Int. J. Mol. Sci. 2019, 20, 3036; doi:10.3390/ijms20123036 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-6675-9429
https://orcid.org/0000-0002-6113-2694
http://www.mdpi.com/1422-0067/20/12/3036?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20123036
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 3036 2 of 37

phase of coagulation is triggered through the interaction of the exposed tissue factor (TF) with activated
factor (F) VII (FVIIa) that converts FIX to FIXa and FX to FXa. The latter is the key protease that,
in complex with cofactor FV in its activated form (FVa), is directly involved in the generation of
thrombin. In these sequential steps, thrombin also boosts its own production through the activation of
platelets and feedback reactions known as the amplification and propagation phases, during which a
crucial feedback loop activates FXI (FXIa) that in turn increases the amount of FIXa. The interaction of
FIXa with the activated form of the key cofactor FVIII (FVIIIa) strongly boosts the production of FXa
that, in association with FVa, further drives the so-called thrombin burst responsible for the large-scale
production of thrombin necessary to produce the final clot. Indeed, the great amount of generated
thrombin converts fibrinogen to insoluble fibrin as well as activates the transglutaminase FXIII (FXIIIa),
which stabilizes the clot by cross-linking the fibrin chains (Figure 1).
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Figure 1. The series of enzymatic reactions in the coagulation cascade. Schematic representation of the
coagulation cascade, showing the several direct (black rows) or feedback (dotted rows) reactions that
can be subdivided into initiation (red), amplification (green) and propagation (blue) phases, ultimately
leading to the fibrin clot. Boxed items indicate the interaction of active enzymes (FVIIa, FXa, FIXa) with
their cofactors (TF, FVa, FVIIIa). F, factor; a, activated form; PT, prothrombin; TF, tissue factor.

In this scenario, a functional defect of one of the pro-coagulant players alters the production of
thrombin, which in turn affects the formation or stability of the clot, thus resulting in bleeding disorders.
Coagulation deficiencies, characterized by a different degree of severity depending on the affected
protein and the corresponding residual levels, show either X-linked (FIX/FVIII deficiency) or autosomal
(fibrinogen, prothrombin, FV, FVII, FX, FXI, FXIII deficiency) inheritance patterns. The genetic and
clinical features, including treatment options, of the above-mentioned coagulation deficiencies are
summarized in Table 1.

The X-linked coagulation deficiencies, namely those of FVIII (hemophilia A) and FIX (hemophilia B),
are characterized by a heterogeneous pattern of mutations as the cause of the corresponding defects.
In particular, together with missense mutations being the most frequent gene alterations, in the
mutational pattern of both deficiencies, a relatively frequent cause is ascribable to nonsense and splice
site mutations, deletions/insertions and promoter mutations. In addition, the inversion of intron 1 or 22
in the F8 gene is responsible for approximately a half of severely affected hemophilia A patients [2–6].
Since the activity of upstream factors is in the normal range, hemophilia is a defect in clot stabilization,
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rather than in coagulation itself, due to the inefficient FIX/FVIII-dependent feedback loop responsible
for the large-scale production of thrombin.

Table 1. Coagulation factor deficiencies: genetics, severe symptoms and treatment options.

Pattern of
Inheritance Deficientfactor OMIM*

Number

Prevalence
in the

Population

Gene
(Chromosome) Severe Clinical Symptoms Treatment

Options**

X-linked
factor VIII§ 306700 1:5,000 F8 (Xq28) Hemarthrosis, Intracranical

hemorrhage

pdFVIII,
rFVIII,

EHL-FVIII

factor IX§ 306900 1:30,000 F9 (Xq27.1) Hemarthrosis, Intracranical
hemorrhage

pdFIX, rFIX,
EHL-FIX

Autosomal

Fibrinogen 202400 1:1,000,000
FGA (4q31.3) Thrombosis, Umbilical stump bleeding,

Mucocutaneous bleeding
FFP, pd

FibrinogenFGB (4q31.3)
FGG (4q32.1)

Prothrombin† 613679 1:2,000,000 F2 (11p11.2) Mucosal bleeding, Hemarthrosis,
Intracranical hemorrhage FFP, PCC

factor V 227400 1:1,000,000 F5 (1q24.2) Epistaxis, Muscle hematoma FFP

factor VII†§ 227500 1:500,000 F7 (13q24) Intracranical hemorrhage,
Hemarthrosis

FFP, pdFVII,
rFVIIa

factor X† 227600 1:1,000,000 F10 (13q34) Gastrointesinal bleeding, Intracranical
hemorrhage

FFP, PCC,
pdFX/FIX,

pdFX

factor XI 612416 1:1,000,000 F11 (4q35.2) Post-trauma bleed FFP, pdFXI

factor XIII
613225 1:2,000,000 F13A (6q25.1) Delayed wound healing, Intracranical

hemorrhage, Miscarriages
FFP, pdFXIII,

rFXIII-A613235 F13B (1q31.3)

* OMIM, Online Mendelian Inheritance in Man (https://www.omim.org/); ** pd, plasma-derived; r, recombinant;
EHL, enhanced half-life; FFP, fresh frozen plasma; PCC, prothrombin complex concentrate; † Factors whose complete
deficiency is virtually incompatible with life; § Trials for gene therapy (excepting FVII deficiency, in which gene
therapy has been characterized in animal models).

The autosomal recessive deficiencies of fibrinogen, prothrombin, FV, FVII, FX, FXI and FXIII,
also referred to as rare bleeding disorders, display a variable prevalence ranging from 1:500,000 (FVII
deficiency) to 1:2,000,000 (prothrombin and FXIII deficiency). The clinical features of these disorders
range from asymptomatic, as observed for heterozygotes with approximately half-normal levels
of coagulation factors, to severe phenotypes typical of homozygotes or compound heterozygotes.
Causative gene defects can be classified into mutations affecting protein biosynthesis/secretion, thus
resulting in low/very low antigen or activity in plasma, or leading to reduced or near-normal secretion of
a dysfunctional or devoid-of-function protein. Generally, in the mutational pattern of these deficiencies,
missense mutations are the most frequent (50–80%), splicing and nonsense mutations account for 5–15%
and insertions/deletions represent <15% of the total, with the exception of fibrinogen, FV and FXIII
deficiencies (20–30%) [7,8]. Importantly, the complete absence of FVII, FX and prothrombin is virtually
incompatible with life due to their pivotal role in triggering key steps of coagulation, namely the
initiation phase (FVII) or the generation of thrombin as activator (FX) or zymogen (prothrombin) [9–12].
In the deficiencies of fibrinogen, FV and FXIII, symptoms associated with low or very low levels are
heterogeneous and range from severe to life-threatening. Finally, at variance from the other coagulation
disorders, the bleeding phenotype of FXI deficiency, the prevalence of which is higher in Ashkenazi
Jews and French Basques, correlates with the site of injury, with the risk of bleeding being high in sites
with high activity of the fibrinolytic pathway responsible for clot lysis upon healing [13].

The treatment mainstay for coagulation factor disorders is based on replacement therapy, namely
the administration of the defective factor for prophylaxis or “on-demand” interventions, with either
plasma-derived or recombinant disease-specific protein concentrates [14]. In addition, other non-specific
products such as fresh frozen plasma (FFP), a pool of plasma obtained from blood of healthy donors,
or prothrombin complex concentrate (PCC), plasma fractions enriched with prothrombin, FIX and FX
with or without FVII, are still possible options. The potential side-effects of FFP, such as hypervolemia
due to the large volume required to achieve efficacy from the low starting factor concentration [15], or of
PCC, such as thrombotic complications [16], limit their use for bleeding disorders with no alternative.
Otherwise, specific factor concentrates are the treatment of choice. Factor-specific treatments cover
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mainly hemophilia A and B, but also other disorders such as fibrinogen deficiency (plasma-derived
[pd]fibrinogen), FVII deficiency (pdFVII concentrate), FX deficiency (combined FIX/FX concentrate or
a recent high-purity pdFX [17]), and FXI deficiency (pdFXI product) have disease-specific treatments.
Regarding FXIII deficiency, together with a pFXIII concentrate, a new recombinant product (rFXIII-A2)
is now available [18,19]. For prothrombin and FV deficiencies, a specific treatment is not yet available,
even if a FV concentrate has recently been developed and has shown the ability to correct coagulation
parameters in laboratory assays [20]. Particular attention deserves recombinant (r)FVIIa, the advent of
whivh has represented an enormous advancement, together with being the optimal therapy for FVII
deficiency, as by-passing agent in hemophilia A and B patients with inhibitors. Indeed, the development
of inhibitory antibodies to the infused factor represents the most severe complication in replacement
therapy, particularly in hemophilias (A, ~30% of patients; B, 3–5%) [21,22], in which the use of rFVIIa
is pivotal to bypass the deficient FIX/FVIII-dependent pathway and increase thrombin generation by
restoring or boosting the FX-to-FXa conversion [23,24]. On the other hand, one of the main drawbacks
of replacement therapy is the short half-life of coagulation factors once infused, which limits the efficacy
of treatment. Novel agents such as long-acting molecules with improved half-life have been developed
by means of different strategies including the fusion technology [25,26], and pro-coagulant factors
such as FVIIa, FX or FV with enhanced biological properties have been engineered for the treatment of
hemophilia [27]. Finally, for hemophilia patients, gene therapy is a potential new option with growing
evidence of efficacy (excellently reviewed in [27]), even if very interesting data have been obtained in
two animal models of FVII deficiency [28,29].

2. Overview of Correction Approaches at DNA, mRNA and Protein Levels

The quality of life, as well as life expectancy, of patients with inherited coagulation factor disorders
has been tremendously ameliorated by the development of replacement therapy in response to bleeding
episodes or for prophylaxis [30]. These aspects also took advantage of protein modifications and/or
engineering through fusion strategies, which extend the overall half-life of the infused therapeutic
protein, the main drawback of substitutive therapy [25,31]. Fusion strategies such as those exploiting
albumin, in which half-life of the target albumin-fused coagulation factor is prolonged by the albumin
recycling pathway mediated by the neonatal Fc receptor, will not be the focus of this review. However,
three key coagulation factors, namely, factor FVII [32], FIX [33] and FX [34], with different requirements
in terms of fusion strategy, have been produced and tested in different models and trials, with FIX
having approached the market.

However, new therapeutic approaches, and particularly gene therapy, have been developed to
achieve a significantly prolonged, or permanent, production of the missing protein at therapeutic
levels. Knowledge of the molecular genetics of inherited coagulation disorders, in particular X-linked
hemophilia A and B [2], but also the rare autosomal FVII [35] and FX [36] deficiencies, favored their
investigation. Moreover, coagulation factor deficiencies are ideal models to evaluate the efficacy of
gene therapy and other innovative therapeutic approaches, because even tiny increases in coagulation
factor levels would ameliorate the clinical phenotype [37]. Various outstanding reviews have reported
the major advances of substitutive gene therapy at pre-clinical and clinical levels [27,38–40], including
the delivery of the wild-type protein into patients’ cells, with a stable endogenous expression of the
missing coagulation factor. Hemophilia B has been the archetypal coagulation disorder for gene
therapy attempts due to the small size of the cDNA encoding the FIX protein. The coding cassette,
the expression of which is mediated by a small but efficient liver-specific promoter, has been delivered
by adeno-associated viral (AAV) vectors. In particular, the delivery of FIX by a recombinant AAV
serotype 8 vector, ensuring high liver tropism, in severe hemophilia B patients resulted in the stable
and multi-year expression of human FIX, and in a significant reduction in bleeding episodes as well
as of the use of the therapeutic FIX protein [41]. The transient increase in liver enzymes, associated
with AAV8 infection of liver cells triggering immunological response, has been overcome with a short
course of prednisolone. Not surprisingly, advances in hemophilia B gene therapy increased research in
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other coagulation disorders, even in the rare ones transmitted as autosomal recessive traits. This is the
case of FVII deficiency, in which AAV-mediated gene therapy has been evaluated in a natural canine
model through the expression of canine FVII transgene as well as exploiting codon-optimized human
FVII in adult macaques, with very promising data on the longevity and stability of therapeutic levels
of FVII expression in the absence of side-effect complications [28,29,42,43].

Here, this review is focused on the molecular mechanisms and determinants of alternative
approaches and aimed at achieving coagulation factor expression. In the first part, great attention
will be given to interventions at the DNA level, including gene editing. These approaches seem to
represent a sort of “holy grail” for molecular biologists and geneticists, since they promise to correct
all inherited diseases without the common bottleneck of classical gene therapy represented by the
size of the replaced gene. Generally, these gene therapy approaches rely on engineered nucleases that
are able to recognize and cut specific DNA sequences. After DNA damage, the innate cellular DNA
repair pathways occur, and thus the disease-causing variant is removed from cells. Another category
of molecules is represented by trans-activating factors, in which an engineered DNA-binding domain
is fused to a transcriptional activator domain, thus generating a specific transcription factor able to
counteract the silencing effects of promoter mutations.

In the second part, we will focus on the modulation of pre-messenger RNA (pre-mRNA) processing,
also known as splicing. To this aim, variants of small nuclear RNAs (snRNAs) as well as antisense
oligonucleotides (AONs) are commonly used to modulate splicing and represent complementary
strategies to target sequences on pre-mRNA, directly masking splicing regulatory elements or recruiting
additional splicing factors. The exploitation of AONs for therapeutic purposes has been reported in
other excellent reviews [44–46] and variants of snRNAs, particularly U1 and U7 snRNAs, have been
reported in human disease models other than coagulation factor deficiencies [47,48]. Differently, here
we report the exploitation of U1snRNA variants to rescue splicing abnormalities caused by splicing
changes at the donor and acceptor splice sites.

In the third part, we shall focus on interventions at the translational and post-translational levels.
In particular, we provide details on the molecular determinants of ribosome readthrough targeting
nonsense variants, another mRNA-based approach for the potential treatment of inherited coagulation
factor disorders, and on the use of small compounds with chaperone-like activity to correct protein
folding impaired by amino acid substitutions.

It is worth noting that the second and third sections of this review are aimed at targeting pre-mRNA
and mature mRNA. Indeed, the targeting of RNA instead of DNA provides potential advantages
over substitutive gene therapy. First, it allows the restoration of gene expression without altering
its regulation and occurs only in the physiological cells and tissues. Moreover, the mRNA-directed
approaches have the potential to circumvent a key limitation due to the large size of disease genes,
thus preventing viral delivery, and could also be effective to address dominant negative disease
mechanisms [49].

Overall, the application of these alternative approaches in several cellular models and in selected
mouse models of disease has revealed their therapeutic potential, thus supporting further studies
aimed at demonstrating the clinical translatability of specific molecules for individualized therapies.
A schematic representation summarizing the above-mentioned approaches is depicted in Figure 2.
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Figure 2. Overview of the interventions at the DNA, RNA and protein levels. Schematic representation
of the DNA–RNA–protein flow (left) as well as of the corresponding molecular approaches with the
indicated level at which each strategy works (right). In the pre-mRNA scheme, exons and introns are
indicated in cyan and grey, respectively.

3. Rescue of Coagulation Factor Genes at the DNA Level

Gene editing approaches are based on engineered nucleases able to recognize and cut specific
DNA sequences into the cellular genome. The DNA damage triggers the innate cellular DNA repair
pathways, including the non-homologous end joining (NHEJ) and homology directed repair (HDR),
to introduce a targeted modification in the genome and to achieve the genetic correction of mutations
in chromosomes. To date, four nuclease families have been engineered and applied to create new gene
correction strategies: meganucleases (MGNs), zinc-finger nucleases (ZFNs), transcription activator-like
effector nucleases (TALENs) and clustered regulatory interspaced short palindromic repeats associated
with RNA-guided Cas9 (CRISPR-Cas9) nucleases [50]. Albeit with different efficiencies, these nucleases
can be modified to precisely introduce a double-strand break (DSB) in the target locus, which is
normally repaired by either NHEJ or HDR. Between the two repair mechanisms, the NHEJ is the
prevalent in quiescent cells and involves the introduction of small insertions/deletions due to direct
ligation of DNA ends. For therapeutic purposes, the NHEJ mechanism can be exploited to excise
deleterious mutations, or restore the reading frame of the coding gene [51]. On the other hand, HDR
occurs mostly in dividing cells and, through a donor DNA with homologous sequences to those
adjacent to the DSB, can replace the target mutation. For therapeutic purposes, DSB can be exploited
to achieve a repair of a nucleotide change or to knock-in an entire cDNA [52]. The insertion could be
at the endogenous locus or within a genomic region where the transgene can be integrated without
altering other gene functions.

It is worth noting that gene editing approaches are able to induce the permanent modification
of the target genome, thus being the elective strategies for the creation of cell and animal models.
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With these tools it is possible to design a specific gene deletion (knock-out), insertion (knock-in),
excision and virtual correction of all genetic variants.

3.1. Gene Replacement

For hemophilia B, various efforts have been carried out to demonstrate the feasibility of genome
editing for therapeutic purposes. In particular, two different strategies have been applied, with ZFNs
and CRISPR/Cas9 approaches exploited in mice [53–55], and in induced pluripotent stem cells (iPSCs)
from patients.

In mice, the delivery of AAV8-ZFNs and a corrective cDNA (promoterless F9 exons 2–8 bearing a
splice acceptor and a poly A signal flanked by homology arms, Figure 3A) was able to induce gene
repair through HDR, and the correction resulted in the rescue of clotting times. Moreover, partial
hepatectomy showed stable genome modification, in contrast to episomal AAV-mediated F9 transgene
delivery that decreased to almost background FIX levels after surgery. Analyses in adult mice showed
the sustained expression of human FIX, averaging 23% of normal levels at week 60 [54].

Since the coding cassette of CRISPR/Cas9, the guide (g)RNA and the donor DNA do not fit into
a single AAV particle, initial attempts based on CRISPR/Cas9 to correct hemophilia B exploited the
hydrodynamic injection of linearized DNA [55]. Notably, the delivery of DNA led to the genome
editing of the aberrant allele and the FIX concentration rose to an average of 3.39 times the concentration
in control mice, with a remission of coagulation deficiency.

Other studies [56,57] demonstrated the therapeutic potential of the gene replacement strategy
by exploiting the CRISPR/Cas9 technology in mice, in which the introduction of a human FIX (hFIX)
coding cassette into ex vivo cells followed by their delivery into an immune-deficient mice resulted in
the secretion of hFIX into mouse blood.

3.2. Gene Addition

The need for high expression levels for therapeutic purposes but also for liver-restricted expression
to reduce off-target effects and inhibitor risk requires the development of regulatory sequences
(promoter and enhancer elements) that sometimes exceed the size of packaging vectors like AAV.
Therefore, one strategy to overcome this limitation is offered by the possibility to insert the therapeutic
transgene, without any promoter sequence, downstream of a highly expressed and liver-specific
protein such as albumin. It is worth noting that a tiny reduction in albumin expression does not appear
to be detrimental. In this light, the insertion by AAV8-ZFN into the highly expressed albumin locus
of promoterless F8 and F9 transgenes in hemophilic mice resulted in the therapeutic and long-term
expression of both human FVIII and FIX [58] (Figure 3B). Another study [59], delivering FIX into the
albumin gene in new born and adult mice (Figure 3C), but exploiting normal HDR without inducing
DSB, resulted in gene correction in 0.5% of tested hepatocytes, with FIX expression reaching levels
of up to 20%. Overall, these studies clearly indicate that some genomic loci, like the albumin locus,
are both permissive and amenable for transgene integration. Moreover, they indicated that exploiting
the physiological HDR process (nucleases-free approach) can have therapeutic implications, without
the problematic off-target effects due to the presence of plasmid-coded nucleases.

In another study [60], coagulation FIX-deficient mice were created by the disruption of the F9
coding gene through the AAV8-mediated delivery of the Cas9 nuclease and proper gRNA(s) into
the liver. In this genomic context, different approaches have been exploited to correct the induced
phenotype. In particular, the authors showed that the insertion of the target sequence at the DSB using
NHEJ was more effective in increasing plasma FIX levels compared with HDR, even in mouse neonates.
Interestingly, the portion of F9 coding sequence spanning exon 2 through 8 was inserted into intron 1,
allowing the potential correction of all FIX mutations occurring in F9 gene.
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3.3. New Approaches for Inversions

The genome editing approaches to restore proper FVIII expression have been more challenging
mainly because of the size of F8 cDNA and its inherently inefficient protein biosynthesis. Moreover,
complex mutations as large inversions and duplications worsened this scenario. Among all mutations
identified in hemophilia A patients, the inversions of intron 1 and of intron 22 are the most frequent
genomic rearrangements accounting for 50% of patients [6]. Initially, an approach based on TALEN
nucleases was used to invert a 140-kbp chromosomal segment spanning the portion of the F8 gene in
iPSCs to create a cell line mimicking hemophilia A. Then, the same TALEN pair was used to revert
the inverted segment back to its normal orientation, providing the first proof-of-concept [61]. Later
on, a different study, by exploiting a Cas9-based approach with target sites on either side of the
inversion (Figure 3D), demonstrated the possibility to revert a ~600 kbp inversion in iPSCs derived
from hemophilia A patients. The corrected iPSCs showed the ability to express a functional FVIII
protein after differentiation into epithelial cells, and their injection corrected the hemophilic phenotype
in mice [62].

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 8 of 36 

 

mutations identified in hemophilia A patients, the inversions of intron 1 and of intron 22 are the 282 
most frequent genomic rearrangements accounting for 50% of patients [6]. Initially, an approach 283 
based on TALEN nucleases was used to invert a 140-kbp chromosomal segment spanning the 284 
portion of the F8 gene in iPSCs to create a cell line mimicking hemophilia A. Then, the same TALEN 285 
pair was used to revert the inverted segment back to its normal orientation, providing the first 286 
proof-of-concept [61]. Later on, a different study, by exploiting a Cas9-based approach with target 287 
sites on either side of the inversion (Figure 3D), demonstrated the possibility to revert a ~600 kbp 288 
inversion in iPSCs derived from hemophilia A patients. The corrected iPSCs showed the ability to 289 
express a functional FVIII protein after differentiation into epithelial cells, and their injection 290 
corrected the hemophilic phenotype in mice [62]. 291 

 292 

Figure 3. Gene editing and transcription modulation-based approaches for coagulation factor 293 
deficiencies. Approaches aimed at correcting and/or modulating the expression of coagulation factor 294 
genes through ZFNs (a), cleavage by CRISPR/Cas9 (b), engineering of the albumin locus to drive F9 295 
gene expression (c), correction of intron 22 inversion in F8 gene (d), and TALE-TF or the CRISPRa 296 
systems leading to an increase in luciferase (reporter constructs) or endogenous activity due to F7 297 
promoter transactivation. Asterisks represent the c.-94C>G (*) and c.-61T>G (**) nucleotide changes. 298 

299 

Figure 3. Gene editing and transcription modulation-based approaches for coagulation factor
deficiencies. Approaches aimed at correcting and/or modulating the expression of coagulation
factor genes through ZFNs (A), cleavage by CRISPR/Cas9 (B), engineering of the albumin locus to drive
F9 gene expression (C), correction of intron 22 inversion in F8 gene (D), and TALE-TF or the CRISPRa
systems leading to an increase in luciferase (reporter constructs) or endogenous activity due to F7
promoter transactivation (E). Asterisks represent the c.-94C>G (*) and c.-61T>G (**) nucleotide changes.
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3.4. New Approaches for Point Mutations

Among all the mutations identified in human inherited diseases, point mutations are the
most represented. Therefore, the ability to efficiently correct point mutations has huge therapeutic
implications. In the hemophilia B field, a recent study [63] exploiting a Cas9-based approach
demonstrated the possibility to correct disease-causing point mutations in endogenous F9. Through the
delivery of Cas9 nuclease and donor DNA as naked DNA molecules, to liver tissue by hydrodynamic
injection, single-stranded DNA oligonucleotides (ssODNs) and plasmid donor-mediated HDR efficiency
of 0.56% and 1.55% were respectively attained. Surprisingly, the lower HDR efficiency restored
hemostasis in hemophilic mice. This study is considered as an in vivo genome-editing strategy with a
potential therapeutic implication, although this approach is likely not applicable to human subjects.

3.5. Approaches for Promoter Transactivation

An alternative approach to rescue gene expression by acting at the DNA level is transcriptional
activation by engineered transcription factors. In particular, TALE DNA-binding domains linked
to a transcriptional activator domain (VP64) to create a TALE-TF have been exploited to efficiently
correct promoter mutations, as demonstrated for coagulation FVII (Figure 3E) [64]. In this study, severe
coagulation FVII deficiency was mimicked in reporter constructs by introducing c.-94C>G or c.-61T>G
mutations, whose detrimental effect on F7 promoter activity is caused by impaired binding of Sp1 or
HNF-4 transcription factors [65,66]. In hepatoma HepG2 cells, expression studies with the luciferase
reporter gene under the control of F7 promoter identified a TALE-TF module able to specifically rescue
the reporter gene expression in the presence of both promoter variants (>100-fold). Interestingly,
the same module also strengthened (20- to 40-fold) the expression of the wild-type F7 promoter. When
translated into hepatic HepG2 cells and AAV-transduced primary hepatocytes, the TALE-TF module
increased endogenous F7 mRNA and protein expression (2- to 3-fold) without detectable off-target
effects, including at the adjacent F10 gene. Overall, these data demonstrated for the first time the ability
of a single TALE-TF module to rescue transcription impaired by promoter mutations.

Very recently, a CRISPR activation (CRISPRa) system based on deactivated Cas9, fused with a
tripartite transcriptional activator (VPR) and driven to the target by a single guide (sg)RNA, has been
described for the transactivation of F7 and F8 promoters [67]. In particular, luciferase-based assays
in hepatoma cells identified sgRNAs able to significantly increase the activity of either wild-type
or severely defective (c.-61T>G mutation) F7 promoter and to act on the endogenous F7 gene by
promoting FVII secretion/activity, as well as to transactivate the F8 promoter in hepatic and endothelial
cell lines, the latter more physiological for FVIII. It is worth noting that, at variance from the typical
CRISPR application, the CRISPRa system does not involve the cleavage of the target sequence but
rather its recognition, which should reduce detrimental off-target effects. Moreover, these specific
features of the CRISPRa system suggest that the targeting of sequences outside those involved in
transcriptional control would be ineffective, which would further restrict the number of potential
off targets.

Overall, genome engineering is generally considered to have various advantages over viral
vector-based gene therapy, including the possibility to precisely edit the target loci, decreased
insertional mutagenesis and maintain the physiological transcription (endogenous promoter) of the
edited locus. However, despite the therapeutic potential of genome editing, its translatability in vivo
still requires viral vectors (i.e, AAV) to deliver the nuclease and donor DNA, falling back to the same
AAV gene therapy limitations, including the constraints of cassette size and immunological concerns.
Although the delivery of mRNA encoding the nucleases can circumvent some of the vector-based gene
therapy limitations, the main limitation of genome engineering relies on the general low efficiency and
the intrinsic risk of off-target effects.
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4. Modulation of Splicing for Therapeutic Purposes

4.1. The Splicing Process

The process called RNA splicing is required to produce mature mRNA encoding proteins. In fact,
small coding segments (exons) scattered across the whole genome carry the information for the
synthesis of proteins and represent no more than 1% of the entire genetic information [68]. Therefore,
the intragenic regions (introns), the segment of DNA that is located between two exons of a gene,
have to be removed. Thus, RNA splicing is similar to an audiotape, where the unwanted pieces are
clipped out and then taped together to produce the desired sound. Because of the triplet nature of the
genetic code, a mistake in cutting the RNA of only one nucleotide will produce an mRNA with an
altered reading frame, thus producing a message that cannot encode the correct protein. Therefore,
the splicing process must be very precise. In introns, the 5’ donor splice site (5’ss), the branch site
(near the 3’ end of the intron) and the 3’ acceptor splice site (3’ss) are required for intron removal and
these elements are respectively recognized in the early step of spliceosome assembly by the U1snRNP,
U2snRNP, and U2-auxiliary factors (U2AF35 and U2AF65) heterodimer. While the chemistry reaction
of splicing is simple, the exact identification of exons in very long introns is a complicated task, not yet
really understood. Therefore, there are additional splicing regulatory elements involved in exon/intron
boundary identification (Figure 4). According to their location and activity, the auxiliary elements are
known to function as exon splicing enhancer and silencers (ESEs and ESEs, respectively) or intron
splicing silencers (ISSs and ISSs, respectively). Typically, serine/arginine-rich (SR) proteins recognize
enhancer elements whereas heterogenous nuclear ribonucleoproteins (hnRNP) interact with silencer
elements, thus promoting or impairing exon definition, respectively [69].

In many cases, the splicing process can create many protein isoforms by varying the exon
composition of the same mRNA. This phenomenon is called alternative splicing and allows the cell to
expand the diversity of proteins from a relatively small number of genes. It has been calculated that
more than 90% of human genes undergo alternative splicing, thus providing extensive opportunities
for gene regulation during development, cell differentiation, and homeostasis [70–72].

An extra layer of complexity is related to the interplay among splicing, transcription and
chromatin remodeling processes. In fact, splicing factors are recruited on nascent pre-mRNA by
the RNA polymerase through its carboxy-terminal domain. Moreover, the elongation speed of
RNA polymerase provides a kinetic window for the assembly of splicing factors as well as for the
remodeling of RNA folding structure, thus influencing the splice site selection and therefore the exon
fate [73–75]. In this view, post-translational modifications of histones, chromatin remodeling factors
and nucleosome position can directly influence the speed of transcription as well as the recruitment of
adapters that interact with splicing regulators. All these aspects have been demonstrated in several
studies, demonstrating their crucial role in modulating the RNA splicing outcome [69,76–79].
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Figure 4. Elements regulating the splicing of pre-messenger RNA (mRNA). Major regulatory elements
of pre-mRNA splicing, namely donor/acceptor splice sites and polypyrimidine tract, are shown with
the corresponding trans-acting factors (U1, U2 snRNPs and U2AF65-35). The Exonic Splicing Enhancer
(ESE), Silencer (ESS), Intron Splicing Enhancer (ISE) or Intron Splicing Silencer (ISS) sequence(s)
positively or negatively contribute to exon recognition through interaction with serine–arginine-rich
(SR) proteins and heterogeneous ribonuclear particles (hnRNPs), respectively.
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4.2. Altered Splicing in Human Diseases

The selection of the proper 5’ and 3’ss is complicated by the presence of multiple cryptic donor and
acceptor splice sites throughout the genome. Moreover, since the splicing process is associated with
RNA transcription, nuclear RNA exportation as well as chromatin remodeling, multiple regulatory
machineries must properly interface to ensure correct splice site selection [80]. Because of all these
players and the number of proteins involved, it is not surprising that point mutations affecting one of
these processes are associated with impaired pre-mRNA splicing and are often associated with human
diseases (inherited or acquired) [81].

Generally, splicing mutations are considered as all those nucleotide variants located within the
common and conserved splicing regulatory elements, more precisely the 5’ss, 3’ss, and the branch
point site. These nucleotide changes generally impair splicing by destroying (or weakening) the
affected splice site or by creating (or strengthening) cryptic splice sites, thus leading to the production
of aberrant mRNAs (exon skipping, partial or full intron inclusion) that undergo nonsense-mediated
decay (NMD) or encoding defective proteins. Moreover, also nucleotides changes impairing the
expression of splicing factors are generally associated with human diseases [82–84]. It is also worth
noting that since the amino acid code within exons overlaps with the splicing code consisting of
ESEs and ESSs, also mutations within exons, either missense, nonsense or synonymous, can exert
their pathogenic role by altering splicing, as it has been demonstrated in hemophilia B [85,86] and
A [87]. Despite the occurring pathogenic aberrant splicing mechanisms, some traces of functional
mRNA might be produced, leading to hardly detectable levels of functional proteins. While this aspect
could not ameliorate the patients’ phenotype, it is crucial for all human diseases in which null protein
function is incompatible with patients’ birth and survival, as demonstrated in the coagulation FVII
deficiency [88].

The pathogenicity of new genomic variants is hardly predictable because of the degenerate nature
of splice site consensus sequences. While nucleotide changes destroying the invariant GT or AG
dinucleotides on 5’ss and 3’ss are always associated with aberrant splicing, the presence of a genetic
variant on other positions is not always indicative of pathogenicity. Various in-silico prediction tools
have been developed with the aim of predicting the effect of nucleotide changes on splicing, but this
goal still seems far away [89].

4.3. U1 snRNP

The binding of the U1snRNP to the 5’ss of an intron is the first step of spliceosome assembly.
The U1snRNP is composed of a 165-bp long small RNA (U1snRNA) complexed with seven Smith
antigen (Sm) proteins, and three U1-specific proteins (U1-A, U1-70K and U1-C). In the U1snRNP, the 5’
tail of the U1snRNA directly interact 5’ss by complementarity [90].

The 5’ss motif is represented by the last three exonic and the first six intronic nucleotides, even if
recent findings have demonstrated that even the seventh and eighth nucleotides in the intron (positions
+7 and +8), although not conserved, can contribute to 5’ss selection in mammals [91], thus establishing
up to 11 base pairs with the U1snRNA. Despite the conservation of the 5’ss sequence (consensus
motif CAG/GURAGU, where R is a purine), in the human transcriptome there are reported more than
9000 5’ss variants, including a small proportion (~0.56%) in which a cytosine, instead of thymine,
is located at position +2. The observation that mismatches between 5’ss and U1 tail are allowed poses
the question how a single U1snRNP can mediate the recognition of a wide diversity of sequences.
Recently, it has been demonstrated that the U1snRNA can recognized non-canonical 5’ss through new
registers (alternative complementarity) [92] and indicating that recognition of 5’ss is a process far from
being well understood. Considering the complexity and factors involved in 5’ss selection, the effects of
nucleotide changes within the 5’ss may be difficult to predict without splicing pattern analysis.
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4.4. Compensatory U1 snRNA to Rescue Splicing

In coagulation factor genes, nucleotide changes occurring at the donor splice sequences occur at a
rate (8% in F7; 10% in F9; 3% in F8) (http://www.hgmd.cf.ac.uk/ac/index.php) very close to that (~10%)
reported for other human inherited diseases [84,93]. These variants, by weakening the complementarity
of the U1snRNA tail to the 5’ss, can result in aberrant splicing and reduced protein levels secreted in
plasma, thus leading to hemorrhagic phenotypes.

The finding that compensatory U1snRNA can modulate splicing by promoting exon definition
by 5’ss utilization came from the early attempts to prove that U1snRNA has to base pair to 5’ss to
mediate the splicing of pre-mRNA [94]. Since that time, increasing evidences have showed that splicing
defects caused by splicing mutations can be rescued with variants of U1snRNA, modified to restore
the complementarity to the mutated 5’ss as well as to redirect the spliceosome machinery to proper
exon-intron junction [86,95–102].

In coagulation FVII deficiency, the c.859+5G>A variant occurs at the + 5 position in the 5’ss
of intron 7 (IVS7) (Figure 5A). The mutation is located in the first of a variable number of highly
homologous 37-bp repeats, where an oriented scanning mechanism leads to the utilization of only the
most upstream 5’ss in normal condition [103]. Homozygous patients for the c.859+5G>A nucleotide
change experience life-threatening hemorrhagic symptoms and require replacement therapy. In cellular
models, the c.859+5G>A results in exon skipping and the activation of intronic downstream cryptic 5’ss.
Both transcripts, if translated, do not encode for functional proteins. The observed aberrant splicing
induced by the mutation can be explained by the reduced complementarity, as well as inefficient
recognition, between the mutated IVS7 5’ss and the 5’ tail of the U1-snRNA, thus reducing the overall
exon definition. Interestingly, the co-expression of a compensatory U1 snRNA (U1+5A), designed to
restore complementarity to the defective 5’ss, significantly rescued the splicing defect, leading to the
synthesis of normal transcripts (Figure 5A) [98] and functional FVII molecules, the coagulant activity
levels of which reached 10% of those of the normal construct, an extent that would be theoretically
sufficient to correct the coagulation defect in patients [97]. Based on these encouraging results,
the U1-mediated rescue of FVII biosynthesis was assessed in mice. Here, the U1-mediated rescue
was clear and sustained for up to 8 weeks post-injection [104]. Although the limitations of mouse
model of splicing FVII deficiency, the increase of circulating human FVII levels were modest and they
could improve the coagulation phenotype if translated into patients. Overall, these data provided the
first proof-of-concept that engineered U1snRNAs can efficiently rescue, at RNA and protein levels,
in a mouse model splicing defects caused by splicing variants with increased circulating levels of a
therapeutic protein.

Despite these encouraging results, not all splicing mutations can be efficiently rescued by modified
U1snRNA-approach. In the coagulation FVII context, the F7 c.681+1G>T mutation (IVS6+1) has been
found in two homozygous FVII-deficient patients with life-threatening bleeding symptoms. Due to the
highly conserved consensus sequence at the intronic +1 position of 5’ss, nucleotide changes at this
position, a frequent cause of severe human genetic diseases [81], are also generally considered null
mutations as they are predicted to completely disrupt the splicing process. Regarding the F7 gene,
the fatal perinatal bleeding in F7 knock-out mice and the absence of homozygotes for large F7 gene
deletions indicate that minimal levels of FVII are essential for life, and suggest that trace levels of
functional FVII should be produced even in the presence of the “null” mutation at the 5’ss. In vitro,
it has been demonstrated that the c.681+1G>T, because of the presence of an in-frame cryptic exonic
5’ss, abrogates correct splicing but also induces the synthesis of an in-frame alternative F7 transcript
encoding a protein scarcely secreted but possessing a remarkable catalytic activity (Figure 5B) [88],
thus ensuring a minimal hemostasis and reverting an otherwise perinatally lethal genetic condition.
In this context, a strategy based on compensatory U1 failed to rescue coagulation FVII expression,
highlighting the importance of position +1 for proper exon definition.
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Figure 5. U1-mediated rescue in coagulation FVII deficiency. Coagulation FVII deficiency caused by
c.859+5G>A (A) and c.681+1G>T (B) nucleotide changes in the F7 gene. Schematic representation of
the genomic context (left panel), splicing transcripts (middle panel) and protein isoforms (right panel)
is reported. Sequences of the splice sites and position of mutations are indicated. Frameshift of the
coding sequence and premature stop codons are reported by asterisks and red X letter, respectively.
Percentages of transcripts, antigen and relative coagulation activity are reported. Values in rounded
brackets indicate experiments in mouse model of the disease.

4.5. Exon-Specific U1 snRNAs (ExSpeU1)

The modified U1snRNA approach has the potential to affect the splicing of other genes (off-target
effects), a drawback shared with other strategies targeting the RNA, and can rescue a single nucleotide
change, thus limiting its therapeutic potential. In response to these limitations, new U1snRNA variants,
named Exon-Specific U1 snRNAs (ExSpeU1), thanks to their ability to base pair with intronic and
less-conserved sequences, have been developed. Their ability in rescuing splicing process have already
been demonstrated for various diseases, in both in vitro and in vivo models [85,105–111]. It is worth
nothing that the ExSpeU1snRNA-based approach is able to rescue different splicing mutations with
one single engineered molecule, thus expanding its therapeutic translatability.

In the coagulation field, the ability of ExSpeU1 in restoring proper exon definition has been
initially evaluated in the context of exon 5 of coagulation FIX [112]. In cellular models, variants located
within the 5’ss (c.519A>C/G/T, c.520G>A/T, c.520+1G>A, c.520+2T>C) and the 3’ss (c.392-8T>G,
c.392-9T>G) abrogated correct splicing of exon 5 and led to exon skipping. Here, a U1snRNA modified
to restore complementarity with the mutated 5’ss was able to rescue nucleotide changes c.519A>C/G/T
(Figure 6A). On the other hand, by using the c.519A>C as reference, a screening of ExSpeU1 snRNAs
targeting intronic nucleotides from position 27 to position 63 revealed that all ExSpeU1 promoted
exon definition, as observed by the reduction in exon 5 skipping and the appearance of correct
transcripts. In particular, some of them (fix 1, fix 9 and fix 10) showed the strongest effect with a nearly
complete rescue of aberrant splicing. To evaluate their ability in rescuing FIX expression, a full-length
splicing-competent gene construct, in which the introns surrounding exon 5 were placed into the F9
cDNA, was exploited. In cellular models, co-transfection of ExSpeU1 fix 9 resulted in a complete
rescue of exon 5 inclusion for multiple mutations located in the 5’ss and in the 3’ss of exon 5 [112].
The rescue was clear at both RNA and protein levels, with the appearance of the full-length protein
form showing activity levels comparable to those observed in the normal condition. If translated to
patients, the correction would produce a therapeutic correction of the bleeding defect. Based on these
promising results, the efficacy of ExSpeU1 fix 9 in rescuing splicing has also been demonstrated in
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a mouse model, where the correction was demonstrated at both RNA and protein levels in murine
plasma [113].

The ability of engineered U1snRNAs to rescue splicing has also been proven in several human
disease models [85,105–111,114,115], but nucleotide changes at the conserved GT nucleotide of 5’
splice sites (5’ss), frequent and associated with severe phenotypes, are thought to be not rescuable
due to their conservation within the donor splice site. Recently, the ability of ExSpeU1 in rescuing
nucleotide changes in the 5’ss of exon 3 of coagulation FIX, including some occurring at the highly
conserve nucleotide positions +1 and +2, has been investigated the. In this context, an ExSpeU1snRNA
demonstrated its ability in restoring proper exon definition in the presence of multiple nucleotide
changes and, for the first time, also for a variant (c.277+2T>C) located in the highly conserved position
+2. The rescue was evident at both RNA (~21%) and protein (~4%) levels (Figure 6B) [116].

Changes altering the conserved 5′ss GT dinucleotide have been thought to be essential for the
correct splicing of pre-mRNA [117] and indeed not rescuable. Interestingly, a small proportion (~0.56%)
of introns has a variant of the 5′ss containing a cytosine, instead of thymine, in position +2 [118] that is
efficiently recognized by the U2-type spliceosome through the presence of strong consensus sequences
maximized for base-pair formation with U1 and U5/U6 snRNAs. Overall, these data, together with this
observation, support a mechanism in which nucleotide changes at +2, depending on the specific exon
context, could still be recognized and rescued by U1snRNA, thus expanding the therapeutic potential
of this approach.

4.6. Combination of Modified U1snRNAs and Antisense Oligonucleotides

The ability of ExSpeU1 in restoring proper exon definition, impaired by splicing variants, has also
been evaluated in the exon 2 context of coagulation FIX. Here, the specific exonic context provided
a new insight about a model in which the interaction of positive and negative regulatory elements
leads to severe hemophilia B (Figure 6C) [86]. An analysis of the splicing pattern of exon 2 in human
liver samples showed that, in physiological condition, a cryptic 5′ss located 104 bp upstream of the
authentic 5′ss is used in ~20% of transcripts, leading to the formation of a deleted and frame-shifted
mRNAs with a premature stop codon at position c.151. In cellular models, the expression of different
variants (c.252+3G>C, c.252 + 5G>A, c.252 + 5G>C, c.252 + 5G>T and c.252+6T>C) located in the exon
2 5’ss showed that all nucleotide changes lead to the virtually exclusive usage of the exonic cryptic
5′ss and synthesis of aberrant transcripts. In normal condition, the presence of an adjacent exonic ESS
conserved among species would limit the impact of the cryptic 5′ss on the expression of functional FIX
protein by reducing the efficiency of unproductive splicing. In this context, an analysis of splicing
revealed that all missense changes occurring within this ESS favor the cryptic 5′ss recognition and
significantly decrease the levels of correct transcripts, suggesting that their detrimental impact on FIX
expression could be attributable to a combination of reduced amounts of correct F9 mRNA (∼40%)
with the alterations produced by amino acid substitutions. In the attempt to rescue the splicing process,
only a tailored approach based on the usage of an AON, designed to mask the cryptic 5′ss, and a
modified U1snRNA, designed to restore proper exon definition, was able to significantly increase
the selection of the authentic 5′ss and rescue splicing (from 0 up to 40% of correct transcripts) in the
presence of all, but one, variants. Overall, these data provide new insights into the combinatorial
activity of antisense oligonucleotides and compensatory U1snRNA in inducing splicing correction.

4.7. Missense Mutations and Altered Splicing

Missense changes are generally thought to elicit their pathogenic effect by altering protein function.
However, since the splicing code overlaps with the amino acid code, particular attention has to be
given to missense variants, with their involvement in splicing alteration being largely underestimated.
It is worth noting that, albeit exonic variants are strong candidates to affect splicing, the relative
contribution of splicing alteration and impaired protein function in the disease pathogenesis is largely
unknown. The dissection of these splicing regulatory elements, as well as the understanding of the
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mechanisms underlying proper exon definition, is crucial to improve knowledge of splicing process,
but it provides also new opportunities for splicing correction.

In a coagulation F9 exon 5 context, the ability of engineered U1snRNA in rescuing splicing has also
been tested for missense changes altering the pre-mRNA processing (Figure 6D) [105]. In this context,
the splicing analysis of exonic changes (two synonymous, 11 missense and three nonsense mutations)
occurring within various exonic regulatory elements mediating proper exon 5 inclusion revealed
that nine out 16 exonic variants induced significant exon 5 skipping, while all of them impaired FIX
activity at variable extents. Notably, an ExSpeU1, targeting intronic regions downstream the exon 5
5’ss, completely rescued all exon skipping events. Taken together, considering the previously reported
five variants (Figure 6A) [112], a unique ExSpeU1 demonstrated its ability in rescuing 14 different
changes that, with different mechanisms involved, share the exon skipping event of exon 5, increasing
therefore the number of affected individuals that would benefit from this therapeutic strategy.
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Figure 6. U1-mediated rescue in hemophilia B. Hemophilia B models caused by multiple nucleotide
changes at the 3’ss (exon 5, A), at the 5’ss (exons 2, 3 and 5, B, C and D) or within exon (exon 5, panel
D) of various exons of the F9 gene. Schematic representation of the genomic context (left panel),
splicing transcripts (middle panel) and protein isoforms (right panel) is reported. Sequences of the
splice sites and position of mutations (black arrows) are indicated. Frameshift of the coding sequence
and premature stop codons are reported by asterisks and red X letter, respectively. Percentages of
transcripts, antigen and relative coagulation activity are reported. Values in rounded brackets indicate
experiments in mouse model of the disease.

The impact of missense changes on splicing has also been investigated in hemophilia A, particularly
for some nucleotide variants affecting the exon 19 context of coagulation FVIII (Figure 7) [87]. Here,
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by evaluating the splicing pattern in vitro and in ectopic mRNA from patients’ blood samples as
well as the cofactor activity, it has been clearly demonstrated the interplay between differentially
altered mRNA and protein patterns that, only in combination, account for moderate/severe hemophilia
A phenotypes observed in patients.
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4.8. Antisense Approaches for Splicing Modulation

Generally, the loss of one single exon has a tremendous impact on protein structure/function, and
thus on patients’ phenotype. However, particularly for large genes, the modularity of protein, in which
each exon generally encodes for a particular protein domain, offers the possibility to have shorter
isoforms with reduced, but still active proteins. In this context, a strategy able to induce exon skipping
through masking of splicing elements (5 and 3’ss) required to define the target exon would represent a
valid therapeutic option. On the other hand, the presence of nucleotide changes, both intronic and
exonic, leading to the activation of a cryptic splice site, or favoring the recruitment of splicing factors
impairing the physiological splicing outcome opens the possibility to exploit antisense molecules
with therapeutic purposes. Among different strategies, the usage of antisense oligonucleotides and
engineered U7snRNA represents two valuable option to splicing modulation for therapeutic purposes.

In general, the usage of strategies based on antisense molecules for splicing correction and
demonstrating their therapeutic potential in inherited diseases other than coagulation disorders has
been illustrated in previous excellent reviews [45,46,48] and will not be described here.

In the coagulation F9 exon 2 context, a cryptic 5′ss located 104 bp upstream of the authentic 5′ss is
exclusively used in the presence of nucleotide changes are locate within the 5’ss and the identified ESS,
respectively. In the attempt to rescue splicing, an engineered U1snRNA designed to restore proper
exon definition, or an AON able to mask the cryptic 5’ss failed in rescue splicing. Only the co-delivery
of both molecules resulted in partial correction of splicing [86] (Figure 6C).

The ability of AON in restoring proper mRNA processing has also been provided in the model of
coagulation FV deficiency. In this context, the research of causative mutations in patients revealed
the presence of a synonymous variant in exon 8 (c.1281C>G) or of a deep-intronic mutation
(F5 c.1296+268A>G), both of them activating a cryptic 5’ss and leading to the formation of a
pseudo-exon [119,120]. In both contexts, the delivery of AON, morpholino oligonucleotide or
of an engineered U7 small nuclear RNA, all of them designed to mask the cryptic 5’ss, demonstrated
their efficacy in restoring proper mRNA processing in a dose-dependent manner. Significantly,
the therapeutic approach has been demonstrated in vitro and, for the F5 c.1296+268A>G variant, also
in the patient’s megakaryocytes ex vivo.

Another interesting example on how antisense molecules can represent a valid option in rescuing
splicing in pathological condition is represented by the model of afibrinogenemia caused by a
homozygote deep intronic mutation (FGB c.115–600A>G) [121]. In this context, the mutation is
associated with the inclusion of a cryptic exon through the creation of a new ESE motif recognized
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by splicing factors. A morpholino oligonucleotide able to impair recognition of the cryptic ESE
demonstrated its ability in rescuing correct splicing which efficacy accounted for >50%.

4.9. Intervention at the RNA Level by siRNAs

The outcome of alternative splicing in pathological conditions can generate disease-specific
transcripts that represent the ideal target for gene silencing tools. This is particularly true when the
new messenger encodes for a protein with a dominant negative activity. In this context, allele-specific
silencing can represent a valid therapeutic option, as demonstrated by the commercialization of various
drugs exploiting the RNA interference (RNAi) mechanism. RNAi can be achieved by different strategies,
and exploitation of short interference RNA molecules (siRNA) is by far the most commonly used
approach to induce it. In coagulation disorders, the von Willebrand disease represents a paradigmatic
example of dominant negative manifestation of a disease, where in some heterozygous patients the new
protein is able to impair the VWF dimerization and multimerization, thus providing the rationale for
the dominant inheritance. In this context, exploitation of siRNA approach demonstrated its ability in
inducing the allele-specific silencing, thus improving VWF function. This approach has been evaluated
for single-nucleotide polymorphisms (SNPs), a missense (p.Cys2773Ser) and an in-frame deletion
(p.P1127_C1948delinsR) changes [49,122].

Outstanding results exploiting the siRNA have been reported for antithrombin, a potent inhibitor
of thrombin generation. Here, in the attempt to promote hemostasis in hemophilic patients by
favoring the pro-thrombotic pathway of coagulation, the researchers developed a siRNA (Fitusiran)
able to significantly (<50%) reduce antithrombin levels. The therapeutic potential, as demonstrated
by increased thrombin generation, has been demonstrated in both animal models and patients with
hemophilia A and B [123,124].

Among therapeutic strategies tailored on molecular mechanisms, intervention at the RNA level
has different strengths. In fact, RNA targeting would allow the restoration of gene expression while
maintaining the physiologic gene regulation. Since the presence of the transcribed RNA, both mature
(mRNA) or its precursor (pre-mRNA), is essential, it is clear that therapeutics acting at the RNA level
can exert their effect only in physiological tissue of gene expression, thus limiting the off-target effect
due to expression in other tissues. Moreover, since the coding cassette of RNA targeting molecules is
generally limited, virtually any virus-mediated delivery approach can be exploited, thus expanding the
available options. However, as any therapeutic approach, intervention at the RNA level could induce
off-target effects by intervening on other RNA substrates and any effort has to be made to reduce them.
Moreover, strategies to deliver RNA targeting molecules relies in the category of approaches for gene
therapy, thus sharing the same immunological concerns (presence of neutralizing antibodies toward
the viral capsid) and vector dilution effect (loss of expression in infants).

5. Rescue of Coagulation Factor Expression by Translational and Post-Translational Modulation

Protein synthesis is a high-fidelity process involving different effectors and the interplay of which
leads to the synthesis of new polypeptides through the ribosome-mediated translation of mRNA
transcripts [125,126].

Nonsense and missense mutations, which overall represent the most frequent gene alterations
arising from point mutations, may affect protein synthesis at translational or post-translational levels
or both. In general, nonsense mutations may result in the production of potentially unstable truncated
proteins with loss-of-function features, whereas missense mutations may exert pleiotropic effects on
protein biosynthesis/processing and/or secretion/function as well as affect pre-mRNA splicing when
falling into exonic sequences, as exemplified by the several variants characterized in the coagulation
field [105,110,127–130].

Noticeably, knowledge of the effects of these mutation types on protein synthesis has led to the
exploration of approaches aimed to overcome premature termination or to correct protein folding
defects with the potential rescue of protein synthesis/function as the final goal.
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5.1. Translation Termination, Nonsense Mutations and Ribosome Readthrough

An essential determinant for translation, together with the start codon AUG (coding for
methionine), is represented by termination signals (UGA, UAG, UAA stop codons), which are
normally located at the end of coding regions. When the A-site of translating ribosomes is occupied
by one of the three stop codons, the recruitment of the releasing factor eRF1 elicits the termination of
protein synthesis and the release of the nascent polypeptide [131] (Figure 8A). However, translation
termination may become a pathological event when a nucleotide change causes the modification of
a sense codon to a premature termination codon (PTC), abnormally located upstream of the natural
termination signal, resulting in the so-called nonsense mutations. A meta-analysis has revealed that
this mutation type represents ~11% of all gene lesions causing human inherited diseases [132].

The outcome of genetic disorders caused by nonsense mutations is modulated by a series of
molecular events strongly impairing gene expression, particularly in homozygous or hemizygous
conditions, and contributing to shape the so-called “null” phenotypes. In particular, a PTC would
result in (i) the down-regulation of aberrant mRNAs through the mRNA NMD surveillance mechanism,
the efficiency of which depends on the position of PTCs [133,134] and/or (ii) the degradation of
misfolded/unfolded truncated proteins arising from premature translation termination (Figure 8B).

Despite the high fidelity of protein synthesis, translation termination elicited by a PTC is not 100%
efficient. Indeed, at very low rates in normal conditions (~10-4), a process called ribosome readthrough
may lead to the synthesis of full-length proteins through mis-recognition of the PTC and incorporation
of an amino acid at the nonsense position [135]. This particular event is driven by near-cognate tRNAs
that, having anticodons complementary to two out of three positions of a PTC, outcompetes eRF1 at
the ribosome A-site (Figure 8C). Interestingly, a recent study has indicated that mispairing at stop
codon position 1 or 3 mediates the interaction between PTC and a near-cognate tRNA anticodon [136].
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Figure 8. Translation termination and readthrough-mediated PTC suppression. (A) Normal translation
termination involving eRF1 and eRF3-GTP at 3’ natural stop codons. (B) Aberrant translation
termination at PTCs and possible outputs resulting from nonsense changes. (C) Mechanism of ribosome
readthrough resulting in PTC suppression, either spontaneous or induced by compounds, and synthesis
of the full-length protein.

The efficiency of readthrough is influenced by the PTC sequence context, namely the type of
stop codon and the downstream nucleotide (referred also as tetranucleotide [137]). Manuvakhova
and co-workers evaluated the occurrence of readthrough by in vitro studies with constructs bearing
all possible combinations of tetranucleotides, and demonstrated a differential degree of suppression
depending on the stop codon type (UGA≥UAG>UAA) and downstream nucleotides (C>A>G,U),
with UGAC being the most readthrough-prone sequence context [138].

Ribosome readthrough, which belongs to the so-called “recoding” processes [139], is not only a
mechanism that may overcome aberrant translation termination, but also plays a role in modulating
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gene expression through selective suppression of stop codons. Indeed, readthrough is essential for
the expansion of small genomes, such as those of viruses, by producing different effector proteins
through targeted suppression of PTCs in overlapping coding sequences [140]. On the other hand,
it has been described as the process underlying the production of selenoproteins through insertion of
selenocysteine, also called as the 21st amino acid [141], over natural UGA stop codons characterized
by a downstream hairpin structure called selenocysteine inserting sequence [142]. Finally, regulated
suppression of UAG stop codons leads to the insertion of pirrolysine (the 22nd amino acid) [143,144].
Overall, sequence determinants represent hallmarks for PTCs susceptibility to suppression, thus
indicating that the occurrence of readthrough is related to the “leakiness” of termination signals.

The evidence that some drugs are able to alter translation fidelity by acting on ribosome function
has revealed the potential implications of this side-effect in terms of therapeutic approaches for genetic
disorders caused by nonsense mutations [145]. In particular, antibiotic drugs such as aminoglycosides
alter the proof-reading capacity of ribosomes by binding to the decoding center located in the small
subunit [146]. The direct consequence at a nonsense codon is the mis-incorporation of amino acids
rather than of releasing factors. This results in a frequency of translational readthrough higher than
that of polypeptide chain termination, thus leading to the synthesis of full-length proteins (Figure 8C).
Since the first description of drug-induced readthrough as a potential therapy for nonsense mutations
in the CFTR gene [147], several studies have investigated the effectiveness of PTC suppression in vitro
and in vivo for genetic disorders, thus opening the consideration of this therapeutic approach as a
form of personalized medicine. Several disease models have been successfully challenged with the
drug-induced readthrough approach, including Duchenne/Becker muscular dystrophies, cystic fibrosis,
spinal muscular atrophy, and lysosomal storage disorders [148,149].

The amino acid inserted at the PTC position could be different than that encoded by the wild-type
codon, an event that might counteract or mitigate the beneficial impact of readthrough in terms of protein
structure/function. Interestingly, recent studies have identified differential incorporation rates as well
as types of amino acids inserted over a PTC (Figure 9, left panel), namely tryptophan/cysteine/arginine
at UGA and glutamine/tyrosine/lysine at UAG/UAA [150,151]. These data may help interpreting the
impact of readthrough from the protein point of view, with potential implications for the identification
of eligible nonsense mutations, which is particularly relevant for proteins with enzymatic activity.
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In this scenario, the occurrence of spontaneous as well as drug-induced readthrough appears
relevant, in particular in homozygous (autosomal) and hemizygous (X-linked) disease conditions,
with the important implication of partially restoring a protein product encoded by a unique copy of
the affected gene.

5.2. Nonsense Mutations in Coagulation Factor Genes

Nonsense mutations are relatively frequent in coagulation factor disorders. In particular, in the
mutational pattern of the X-linked hemophilia A and B, nucleotide changes resulting in nonsense
mutations are approximately 10–14% (http://www.factorviii-db.org; http://www.factorix.org) [3,5].
This mutation type has also been found, albeit with different frequencies, in severe disease forms in
almost all other bleeding disorders causing defects in serine proteases, cofactors and inhibitors as well
as proteins involved in primary hemostasis and clot formation/stabilization (http://www.hgmd.cf.ac.
uk/ac/index.php).

In this scenario, noticeable exceptions exist, namely (i) the p.R462X nonsense mutation in the
F7 gene, found in unrelated homozygous patients, which produces very low levels of a 5-residue
truncated gain-of-function FVII molecule associated with an asymptomatic phenotype [152,153], and
(ii) the F10 gene, in which nonsense mutations are extremely rare [154,155], with those occurring
at the carboxyl-terminal region being predicted to be asymptomatic due to the slight impact on FX
secretion/function [156].

5.3. Pioneer Studies on Readthrough in Bleeding Disorders

Although our focus here is on in vitro and in vivo studies on drug-induced readthrough and on
the molecular determinants underlying responsiveness of nonsense mutations, it is worth to note that
a study conducted in 2012 has provided the intriguing evidence on the occurrence of spontaneous
readthrough in hemophilia B patients with frequent F9 mutations [157]. Importantly, at variance
from the majority of human diseases, in coagulation factor deficiencies very low levels of functional
protein (in the range of 2–5%) have relevant pathophysiological implications. Indeed, even tiny
increase in functional protein levels in plasma would significantly ameliorate the clinical phenotype of
patients [37]. For this reason, the extent of functional rescue promoted by readthrough is compatible
with the low therapeutic threshold of bleeding disorders. The main findings obtained in the studies
described below are summarized in Table 2.

A pioneer attempt of aminoglycoside treatment in hemophilia was conducted by James and
co-workers in 2005 [158]. In this setting, gentamycin (7 mg/kg once a day) was administered to severe
hemophilia A and B patients with PTCs in F8 (p.R446X, p.S1414X, p.R2135X) and F9 (p.R252X and
p.R379X) genes. Treatment resulted in a transient shortening of coagulation times, namely the time
needed to form a clot, and an increase in FVIII (1.6%) and FIX (2%) activity for the F8 (p.S1414X) and
F9 (p.R379X) nonsense variants, respectively. However, in the remaining three patients (hemophilia
A, p.R446X, p.R2135X; hemophilia B, p.R252X) the effect on functional parameters was not detected.
The readthrough approach with aminoglycosides was also tried in vivo in a hemophilia B mouse model
expressing the human FIX p.R75X and p.R384X nonsense variants [159]. Treatment with geneticin
induced the increase (~5%) in FIX protein and activity levels in mice expressing the p.R384X variant
but not in those harboring the p.R75X.
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http://www.factorix.org
http://www.hgmd.cf.ac.uk/ac/index.php
http://www.hgmd.cf.ac.uk/ac/index.php


Int. J. Mol. Sci. 2019, 20, 3036 21 of 37

Table 2. Evaluation of drug-induced readthrough over nonsense mutations in FVIII, FIX and FVII deficiencies.

Mutation
(HGVS)*

Mutation
(Legacy)**

Sense
Codon

PTC Sequence
Context

Predicted Amino
Acid Insertion†

Cellular Model Mouse Model Patients Ref

Drug Response Drug Response Drug Response

F8
p.R446X R427X CGA UGA-U W / C / R - - - - Gentamycin No [158]
p.S1414X S1395X TCA UAA-U Y / Q / K - - - - Gentamycin 1.6% [158]
p.R2135X R2116X CGA UGA-G W / C / R - - - - Gentamycin No [158]

F9

p.G21X G(-26)X GGA UGA-U W / C / R Geneticin 4% - - - - [160]

p.R75X R29X CGA UGA-G W / C / R Geneticin No Geneticin /
Gentamycin No - - [159,161]

p.L103X L57X UUA UAA-A Y / Q / K Geneticin No - - - - [161]
p.R162X R116X CGA UGA-C W / C / R Geneticin ~1% - - - - [161]
p.W240X R194X UGG UGA-C W / C / R Geneticin 5–6% - - - - [161]
p.R294X R248X CGA UGA-A W / C / R Geneticin 0.5–1% - - - - [161]
p.R298X R252X CGA UGA-A W / C / R Geneticin No - - Gentamycin No [158,161]
p.R379X R333X CGA UGA-G W / C / R Geneticin 1% - - Gentamycin 2% / No [158,162]
p.Q370X R324X CAG UAG-U Y / Q / K Geneticin ~1% - - - - [161]

p.R384X R338X CGA UGA-U W / C / R Geneticin 7-8% Geneticin /
Gentamycin - - - [159,161]

F7

p.S112X S52X UCA UGA-A W / C / R Geneticin 2–3% - - - - [163]
p.C132X C72X UGC UGA-C W / C / R Geneticin 12–13% - - - - [163]

p.K376X K316X AAG UAG-G Y / Q / K Geneticin /
Gentamycin

>3% /
>2% - - Gentamycin sub-therapeutic [164,165]

p.W424X W364X UGG UGA-G W / C / R Geneticin /
Gentamycin

>3% /
>2% - - Gentamycin sub-therapeutic [164,165]

* Based on Human Genome Variation Society (HGVS) nomenclature numbering initiation methionine as +1 residue; ** Based on amino acid numbering of the secreted mature protein; †
Predicted amino acid insertions as a function of the stop codon type.
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In rare bleeding disorders, such as FVII deficiency, nonsense mutations are very rare, particularly
in the homozygous state (six reported, with the noticeable exception of the gain-of-function p.R462X
variant [152]), and are mostly associated with severe phenotypes due to the pivotal role of FVII,
the complete absence of which is virtually incompatible with life [9]. A first attempt on readthrough-
mediated correction was explored on the p.K376X and p.W424X nonsense variants in cellular
models [164] and patients [165]. Expression studies in mammalian cells revealed a dose-dependent
rescue after treatment with geneticin and gentamycin, which however produced partially functional
proteins with activity compatible with the low therapeutic threshold. The partial restoration of
full-length FVII was also detected inside cells through fluorescence studies with FVII-GFP chimeric
constructs bearing the two nonsense mutations [164]. Based on these results obtained in vitro, a pilot
clinical study with gentamycin (3 mg/kg once a day) was conducted on severe FVII-deficient patients
bearing the p.K376X and p.W424X nonsense variants. However, despite a slight shortening of
coagulation times and the detection, through very sensitive fluorogenic assays, of a FVII activity above
the baseline, treatment resulted in protein/activity levels on average undetectable [165]. Indeed, only
sub-therapeutic FVII levels were observed in patients, probably due to minimal effects of gentamycin
on FVII plasma levels, low suppression efficiency and/or amino acid insertions incompatible with a
significant functional rescue.

5.4. Investigation of Readthrough Determinants in Bleeding Disorders

The interplay between favorable sequence and protein features to achieve a functional rescue
by induced readthrough have been investigated in two different models of bleeding disorders (FVII
deficiency and hemophilia B) by evaluating qualitative and quantitative readthrough components.
Investigation of the molecular determinants underlying the interplay between nucleotide (mRNA) and
protein (amino acid insertions) contexts contribute to shape the responsiveness of PTCs as well as the
impact of readthrough on the resulting protein output.

A hypothesis-driven attempt was made for the homozygous p.S112X (UGA-A, <1% activity) [166]
and p.C132X (UGA-C, ≥1% activity) [167] F7 nonsense variants [163]. These mutations are associated
with severe or unexpectedly moderate FVII deficiency, respectively, and are predicted to produce
severely truncated FVII polypeptides devoid of the catalytic triad and thus inactive. As expected,
in expression studies the induction of readthrough by geneticin increased protein and functional
levels up to 3% (112X) and 13% (132X) of wild-type protein, which was compatible with the synthesis
of full-length functional FVII proteins. Noticeably, low or very low FVII protein and activity levels
were detected in basal conditions without the addition of geneticin, thus indicating the occurrence
of spontaneous, albeit differential, functional suppression of the two nonsense mutations. In this
view, the different phenotypes of patients might underlie the presence of traces of functional FVII
arising from readthrough as a function of leakiness of PTC (UGA-C>>UGA-A) sequence contexts.
Although re-introduction of the original residue might be hampered by the type of amino acid
encoded by the wild-type triplet, tolerated amino acid changes due to permissive protein positions
may result in functional full-length proteins. The protein output was further investigated by the
expression of missense variants predicted to arise from readthrough over the UGA PTC [150],
which (i) produced a moderate parallel decrease in secreted/functional FVII levels, thus indicating
a less favorable sequence context in terms of suppression but a protein context tolerating missense
changes (position 112), or (ii) completely abolished secretion and function, thus pointing toward that
only the readthrough-driven incorporation of the wild-type cysteine is compatible with the observed
functional readthrough (position 132). Overall, the degree of PTC suppression may shape the minimal
functional threshold associated with spontaneous readthrough events, with important implications on
phenotype severity.

The influence of molecular determinants have been deeply investigated in the model disease
hemophilia B. Expression studies were conducted on an ample panel of PTCs (n = 11) representing
the most frequent F9 nonsense mutations, including all recurrent UGA PTCs at CpG sites, reported
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in ~70% (324 out of 469) patients with severe hemophilia B [161]. Among the UGA variants (n = 7),
all predicted to be permissive in terms of readthrough [138], only the W240X (UGA-C) and R384X
(UGA-U) were remarkably rescued in terms of FIX protein (W240X, ∼9% of wild-type; R384X, ∼2%)
and activity (W240X, 5%; R384X, ∼8%). The specific features of the two nonsense variants help
understanding the interplay between the two different components (nucleotide and protein contexts)
driving responsiveness to readthrough. Noticeably, the relevant functional suppression observed for
the W240X (UGA-C) is explained in light of the fact that re-insertion of the wild-type tryptophan is
expected at this position [150]. The association with severe hemophilia B of the naturally-occurring
missense changes at the 240 position (p.W240C [168] and p.W240R [169]), overlapping those introduced
by readthrough other than tryptophan, confirmed that only re-introduction of the original residue
was compatible with the observed functional output. Strikingly, activity of the R384X (UGA-U) after
geneticin treatment was unexpectedly higher than the predicted susceptibility of its sequence context
and, most importantly, of the observed protein levels, thus indicating that functional suppression at this
position resulted in gain-of-function features. This finding was confirmed by the expression of the most
frequent missense change (R384W) predicted for UGA PTCs, which revealed a similar hyperactive
output. It is worth to note that the R384X PTC overlaps with the so-called “FIX Padua” position,
in which the R384L substitution has been associated with a hyperactive FIX variant [162]. Overall,
these observations indicated that nucleotide and protein constraints may limit the responsiveness
of PTCs to readthrough, with a significant functional rescue requiring the combination of favorable
mRNA sequence and protein features.

The impact of favorable features of PTCs was further detailed by investigation of three
paradigmatic examples of nonsense variants (p.G21X, p.C28X and p.K45X) affecting the FIX signal
and pro-peptide [160], two crucial regions for targeting to the endoplasmic reticulum [170] and for
the major post-translational modification (γ-carboxylation) [171,172]. Geneticin treatment of cells
expressing the G21X led to a significant parallel increase (∼4% of wild-type) in both secreted protein and
coagulant activity levels over the baseline (∼0.4%). Strikingly, the specific coagulant activity, referred
to as the activity/antigen ratio, of the G21X after treatment was compatible with normal FIX function,
thus indicating a FIX protein with wild-type features. These observations were supported by expression
studies with the predicted readthrough-deriving missense variants (G21W/R/C), which showed a
preserved specific activity, thus demonstrating the production of FIX proteins with wild-type features
upon readthrough and removal of the pre-peptide. On the other hand, response of the C28X and K45X
variants to geneticin treatment was prevented by sequence constraints of adjacent (C28, between pre-
and pro-peptide; K45, between pro-peptide and mature FIX) cleavage sites essential for FIX processing,
a finding in line with the severe/moderate hemophilia B associated with missense mutations at these
positions [173–175]. All these elements suggest that, for secreted proteins, the localization of PTCs in
pre-peptide regions, which are intracellularly removed, would favor the synthesis and secretion of
full-length wild-type proteins upon readthrough.

Finally, in a very recent study with reporter constructs, Liu and co-workers for the first
time investigated the responsiveness of a panel of F8 nonsense mutations with different sequence
contexts. By combining expression studies with variants bearing PTCs as well as the predicted
readthrough-deriving amino acid substitutions, mimicking the impact of missense changes on
secretion/function of the resulting full-length proteins, a restricted number of potential candidates for
therapy based on readthrough have been identified [176].

5.5. Molecular Determinants Underlying Productive Readthrough over PTCs

The data stemming from the works described above provide evidence that a successful functional
suppression of nonsense mutations through drug-induced readthrough (Figure 9, right panel) can be
achieved by the combination of:
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(i) the degree of the susceptibility of sequence contexts to suppression, also promoted by the presence
of readthrough-inducing compounds;

(ii) the insertion of the original residue permitting the synthesis of a wild-type full-length protein;
(iii) the insertion of amino acids tolerated for protein synthesis and function, or originating rare

gain-of-function features providing advantageous protein outputs;
(iv) the favorable localization of nonsense mutations in protein sequences (i.e., signal peptides) that

are removed during processing.

Overall, these findings indicate that, for proteins with enzymatic activity, the nucleotide context
and protein features substantially restrict the number of PTCs compatible with functional rescue.
This evidence provides the experimental bases to interpret the highly variable responsiveness of
PTCs and could help (i) evaluating the features of PTCs in terms of nucleotide and protein sequence
contexts/determinants, and (ii) predicting PTCs responsiveness in terms of suppression efficiency and
protein output, the latter representing the driving force for the functional impact of the readthrough
correction approach. The occurrence of NMD would introduce a further element of complexity to
be considered due to its surveillance role and involvement in lowering the PTC-bearing transcripts
potentially available for undergoing the readthrough process.

5.6. Protein Folding Defects and Chaperone-Like Compounds

Missense mutations are the main cause of human genetic diseases and the most detrimental
effect is exerted by changes impairing protein folding. As a consequence, the altered protein is
retained intracellularly or undergoes preferential degradation. The folding process is mediated by
specialized molecules called molecular chaperones, which bind and stabilize nascent polypeptides,
discriminating between folded and misfolded proteins and thus representing a key quality control
mechanism [177,178]. On the other hand, polypeptides that fail to fold properly are degraded by
proteasomes (Figure 10A,B) [179]. The accumulation of unfolded proteins may eventually lead to
endoplasmic reticulum (ER) stress and the activation of the unfolded protein response [180].

Extensive investigations have revealed that several small molecules, named chemical/
pharmacological chaperones, are able to modulate folding and rescue protein biosynthesis, with
intriguing therapeutic implications (Figure 10C) [181].
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Figure 10. Impact of missense changes on protein folding and correction approaches through
chaperone-like compounds. (A) Protein folding in normal conditions assisted by molecular chaperones,
with a final production of the native protein conformation. (B) Aberrant folding and the consequent
aggregation/degradation of misfolded proteins, unable to reach the native conformation, due to amino
acid substitutions caused by missense changes. (C) Rescue of folding of misfolded proteins mediated
by chaperone-like compounds.
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Chemical chaperones are non-selective in their ability to stabilize mutant proteins and facilitate
folding by supporting escape from ER quality control systems [182,183]. These molecules can
be classified into hydrophobic compounds, such as dimethyl sulfoxide or sodium phenylbutyrate
(Na-PBA), osmolytes such as polyols (glycerol, sorbitol), amino acids and derivatives (glycine, taurine),
methylamines (betaine, trimethylamine N-oxide -TMAO-) and bile acids such as tauroursodeoxycholic
(TUDCA) or ursodeoxycholic (UDCA) acids [182,184]. For hydrophobic chaperones such as Na-PBA,
the interaction of hydrophobic regions of the compound with exposed hydrophobic regions of the
target protein has been proposed as the possible mechanism of action [184]. On the other hand,
osmolytes stabilize proteins by shifting the balance of native/denatured states towards the native state
through minimization of the water-protein interface area [185]. In vitro studies have indicated that
DMSO, glycerol, 4-PBA, TMAO sorbitol and myo-inositol are capable of restoring the expression of
the cystic fibrosis transmembrane conductance regulator (CFTR) impaired by the frequent p.F508del
mutation [186–190]. In addition, 4-PBA and glycerol have also been proven to efficiently rescue the
secretion of α1-antitrypsin impaired by the common α1-AT Z variant, both in cellular and mouse
models [191]. In addition, other molecules with unexpected chaperone-like effects have shown their
potential as candidates for Gaucher (ambroxol hydrochloride, a commercially-available expectorant
drug) or Pompe (N-acetylcysteine) diseases [192–194].

Pharmacological chaperones are low molecular weight compounds acting as folding correctors
on a particular target to prevent faulty or to recover misfolded conformers, thus resulting effective
drugs for protein rescue and/or protection from degradation [195]. Their action is mediated by the
binding of proteins and the induction of refolding/stabilization, with the potential restoration of protein
function [196]. These compounds have been successfully applied to enhance proteostasis of different
protein types including transporters [197], aggregation-prone proteins [184,198] as well as lysosomal
enzymes, G protein-coupled receptors, CFTR, with particular reference to the new VX-809 compound
that has also entered clinical trials, as well as a wide range of human diseases [199–201].

With this as background, chemical/pharmacological chaperones are intriguing molecules for the
development of innovative therapies for human genetic diseases, including bleeding disorders, caused
by mutations impairing intracellular protein processing.

5.7. Intervention on Defective Protein Folding in Bleeding Disorders through Chaperone-Like Compounds

Coagulation factor deficiencies represent ideal models to evaluate the potential of alternative
therapeutic approaches based on chaperone-like compounds. Indeed, missense mutations, and
particularly those forms with a marked reduction in secreted protein levels, are a main cause of
disease forms. To date, very few examples exist on the rescue of protein expression by chaperone-like
compounds in coagulation factor deficiencies.

Two paradigmatic examples have been provided for in vivo models on the biosynthesis of FVIII
and the associated deficiency hemophilia A. Malhotra and co-workers provided the first evidence
on the use of a compound acting by alleviating ER stress, which represents a key event related to
protein misfolding [180]. They showed that the lipid-soluble antioxidant butylated hydroxyanisole
(BHA), a compound often added to foods to preserve fats, improved folding of FVIII, a molecule
with a complex biosynthesis [90], and reduced ER stress as well as increased its secretion both in vitro
and in vivo. In particular, BHA feeding reduced intracellular FVIII accumulation in mouse liver,
with a consequent increased secretion of FVIII in plasma [202]. Interestingly, BHA also improved the
secretion of the R593C variant, known to associated with hemophilia A due to a folding defect [203].
Interestingly, another mouse model of hemophilia A was challenged with the chemical chaperone
betaine, frequently used as food supplement, which showed the ability to rescue FVIII folding and
ameliorate the associated bleeding phenotype after oral administration [204]. In the same setting with
BHA, the folding-defective mutant Q305P [205] was also rescued both in vitro and in vivo. Of notice,
a BHA-specific output was observed as increased FVIII and FIX plasma levels in knockout mice
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after gene transfer, a finding that was further confirmed by the decrease in FVIII/FIX levels upon
discontinuation of BHA treatment.

The approach with chaperone-like compounds such as Na-PBA was successfully tempted also to
correct the folding/secretion of protein variants of coagulation vitamin K-dependent serine proteases
such as protein C (PC) and FIX. In the first model, cells expressing the A267T PC variant with defective
intracellular transport [206] were treated with several compounds, but only Na-PBA resulted in a
dose-dependent (up to ~3 fold) and significant increase in PC antigen levels [207]. In the second
model, Na-PBA appreciably improved, in a dose-dependent manner, the intracellular trafficking
and secretion of the most frequent FIX missense variant p.R294Q associated with proportionally
low FIX activity and antigen levels [130]. In particular, secreted protein levels of the R294Q variant
significantly increased (up to ~6 fold) upon treatment of stably-expressing cells with Na-PBA, a finding
that was further confirmed at the intracellular level by the observation of improved trafficking to
the Golgi compartment. Noticeably, a parallel increase in coagulant activity was also observed,
with a dose-dependent shortening of coagulation times (up to ~18 s), which corresponded to an
increase in coagulant activity levels from 0.5% (untreated) to ~3% upon treatment with Na-PBA. Taking
into account the low therapeutic threshold, these levels, if cautiously translated to patients, would be
sufficient to favor the transition from a severe/moderate to a moderate/mild phenotype, with potential
alleviation of the bleeding tendency.

Overall, interventions at the translational and post-translational levels have the advantage
that these approaches would modulate and/or rescue protein biosynthesis while maintaining the
gene expression regulation in the physiological tissues only. However, major concerns limiting
the therapeutic use of readthrough-inducing drugs such as gentamycin, or aminoglycosides in
general, are the severe complications, such as kidney damage and hearing loss, related to their
administration [208]. Interestingly, a delivery system based on encapsulated gentamycin reduced
ototoxicity and increased dystrophin-positive fibers in mouse skeletal muscle cells in the mdx model
of Duchenne muscular dystrophy [209]. Nevertheless, the development of aminoglycoside derivatives
and non-aminoglycoside compounds was boosted by the need for less toxicity as well as improved
selectivity and efficacy [210,211]. The unique example of a readthrough-inducing compound that has
entered a clinical trial is PTC124 (Ataluren), orally administered in patients with hemophilia A and B,
whose potential in treating bleeding disorders was precluded to be established due to suspension at
phase 2a (Identifier NCT00947193) without data reports.

On the other hand, findings on chaperone-like compounds suggest that these molecules might
represent an alternative approach to correct, with different degrees of responsiveness, a fraction
of protein variants with defects in folding or intracellular processing. It is worth noting that the
orally-administered NaPBA, albeit for different purposes [212], is approved for use in humans,
which makes this compound a candidate as a potentially alternative therapeutic strategy.

Overall, these encouraging results for interventions at translational (ribosome readthrough) or
post-translational (chaperone-like compounds) levels might be considered in light of the limits of
non-standard molecules, which act only on responsive (nonsense or missense) mutations, and thus
being mutation-specific, with benefits for diseases with a low therapeutic threshold.

6. Conclusions

Knowledge of the molecular bases of diseases such as coagulation factor disorders allowed the
researchers to design new tailored therapeutic approaches at transcriptional, post-transcriptional
(modulation of splicing), translational (induction of ribosome readthrough) or post-translational
(folding correction) levels. These strategies are essentially based on specific gene features or molecular
defects caused by splicing and nonsense/missense variants as well as nucleotide changes within the
promoter sequence, which are collectively responsible for ~25% of severe coagulation factor deficiencies.
Experimental evidences in both cellular and mouse models of disease showed the ability of these
new strategies to produce a moderate to mild rescue of the expression levels of coagulation factors,
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which would result in a significant amelioration of the clinical phenotype if translated into patients.
While a direct comparison of the correction efficacy of the different approaches is very difficult, the use
of readthrough-inducing or of chaperone-like drugs appears to guarantee the lowest effect on protein
expression that, for several disorders other than coagulopathies, might not achieve the therapeutic
threshold. On the other hand, approaches at the RNA levels (splicing/AONs/siRNA), in the most
favorable contexts, might completely rescue gene expression. An intermediate rescue extent has been
obtained with genome editing techniques.

Collectively, the noticeable progresses in the design of tailored therapeutic strategies acting at
multiple levels of gene expression (from DNA to RNA and protein), as well as in the production of
viral vectors able to deliver them in a tissue-specific manner, generate an intriguing future in which
further studies will be aimed at demonstrating their clinical translatability.
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