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Abstract: Reactive oxygen species (ROS) play a dual role in fruit–pathogen interaction, which largely
depends on their different levels in cells. Fruit recognition of a pathogen immediately triggers an
oxidative burst that is considered an integral part of the fruit defense response. ROS are also necessary
for the virulence of pathogenic fungi. However, the accumulation of ROS in cells causes molecular
damage and finally leads to cell death. In this review, on the basis of data regarding ROS production
and the scavenging systems determining ROS homeostasis, we focus on the role of ROS in fruit
defense reactions against pathogens and in fungi pathogenicity during fruit–pathogen interaction.
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1. Introduction

Postharvest diseases induced by fungal pathogens are the principal causes for fruit decay, which
leads to tremendous economic losses annually [1]. In the case of pathogen infection, fleshy fruits rely
on their own innate immune capacity to resist pathogen attack [2]. Excessive reactive oxygen species
(ROS) production in response to unfavorable conditions, also known as oxidative burst, has been
recognized as one of the earliest induced defense responses in plants [3]. This production of ROS
is biphasic: the first phase usually occurs within minutes after pathogen attack but is transient and
weak, whereas the second phase is much more intense and sustained, lasting for several hours [4].
However, overproduction of ROS causes impairments in DNA, lipids, and protein, eventually leading
to cell death and progressive aging of an organism [5–7]. Generally, senescent fruits always display
higher susceptibility to pathogen attack, and, in turn, senescence and decay are accelerated in infected
fruit [8]. For pathogens, ROS also play an important role in their infection processes, and the lack of
ROS-producing systems can affect fungal toxicity and their interaction with plants [9–11]. During
this interaction, pathogens may encounter ROS generated by the host and, as a result, they may be
directly killed. On the other hand, cell death caused by ROS may lead to cellular necrosis in the
hosts, from which quiescent pathogens (hemibiotrophic or necrotrophic) acquire nutrients, switching
into the devastating necrotrophic life mode [1,12]. In order to cope with oxidative stress, both plants
and pathogens have evolved efficient scavenging systems to modulate ROS homeostasis, which
eventually determine the incidence, development, and consequences of diseases in plants [3,13].
Considerable progress has been made in understanding the mechanisms regulating plant–pathogen

Int. J. Mol. Sci. 2019, 20, 2994; doi:10.3390/ijms20122994 www.mdpi.com/journal/ijms

http://www.mdpi.com/journal/ijms
http://www.mdpi.com
https://orcid.org/0000-0002-2456-7170
http://www.mdpi.com/1422-0067/20/12/2994?type=check_update&version=1
http://dx.doi.org/10.3390/ijms20122994
http://www.mdpi.com/journal/ijms


Int. J. Mol. Sci. 2019, 20, 2994 2 of 12

interactions. Here, we mainly focus on the current advances in the study of fruit–pathogen interactions
mediated by ROS, which may broaden our understanding of the role of ROS in fruit defense and
fungal pathogenicity.

2. ROS Production Sites and Scavenging Systems

ROS, such as superoxide anion (O2
·-), hydroxyl radical (·OH), and hydrogen peroxide (H2O2),

are byproducts of normal metabolism in cells [4]. There are several enzymatic systems involved in
apoplastic ROS production following successful recognition of phytopathogenic fungi, including
glucose peroxidase, xanthine oxidase, and different classical plant peroxidases [3]. Among them,
membrane-resident NADPH oxidase is one of the major factors generating ROS during plant–pathogen
interaction [11,14,15]. NADPH oxidases are transmembrane proteins catalyzing superoxide production
by transferring electrons from intracellular NADPH to molecular oxygen in the apoplast [16,17].
Superoxide is further converted to H2O2 either by spontaneous dismutation or by the catalytic activity
of a cell wall superoxide dismutase [18]. Noteworthy, since non-invasive imaging directly applicable
for detecting ROS in fruits is still unavailable, no result has been reported for ROS detection in living
fruit tissues until now. Therefore, the current knowledge of ROS production and scavenging in plants
has been mainly obtained from non-fruit tissues; however, it can nonetheless offer insights about ROS
production in fruits.

Although the oxidative burst in fruit after pathogen recognition mainly occurs in the apoplast,
ROS produced in other cellular compartments may also contribute to defense signals [2]. Mitochondria,
chloroplasts, and peroxisomes are the main potential sources of ROS during biotic responses
(Figure 1) [19,20]. ROS produced in the mitochondria are tightly associated with the electron
transport chain (mETC), which is located in the inner mitochondrial membrane. Thylakoid, harbored
in chloroplast, is the main site of chloroplastic ROS generation, which is closely associated with
light-dependent photosynthetic reactions [21]. Besides chloroplasts and mitochondria, peroxisomes are
also major sources of intracellular ROS [20], serving as monolayer-membrane organelles with multiple
metabolic functions.

Oxidative stress is caused by unfavorable ROS levels in the environment or even by normal
metabolic processes (Figure 1). Therefore, many organisms have evolved ROS scavenging systems,
that can be enzymatic or non-enzymatic, enabling cells to maintain a non-toxic and steady-state
level of ROS. The enzymatic ROS scavenging system is composed of superoxide dismutases (SODs),
peroxidases (PODs), catalases (CATs), ascorbate peroxidase (APX), and glutathione peroxidase (GPX).
SODs act as soon as ROS are generated and dismutate superoxide to H2O2, whereas CAT, APX,
and GPX subsequently convert H2O2 to H2O [3,21]. Non-enzymatic antioxidants, such as ascorbate,
glutathione (GSH), flavonoids, tocopherol, and alkaloids, are also major cellular redox buffers. GSH is
a ubiquitously distributed thiol-containing antioxidant in cells, which may be converted to glutathione
disulfide (GSSG, an oxidized form) by ROS, using NADPH as the electron donor [21]. ROS scavenging
systems are essential for managing ROS levels both in plants and in pathogens. It is worth emphasizing
that the destructive, protective, or signaling role of ROS in cells depends on the complex equilibrium
between ROS production and scavenging at appropriate time and sites.
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Figure 1. Generation sites of reactive oxygen species (ROS) and redox biology. ROS are produced
by respiratory burst oxidase homologs (RBOHs), mitochondria, chloroplasts, peroxisomes, and cell
wall-resident peroxidases (PER). Subsequent H2O2 accumulation may oxidize cysteine residues in
proteins, affect their redox states and functions, and regulate related signaling pathways. Excessive ROS
may lead to oxidative stress, which may cause lipid oxidation, DNA damage, protein carbonylation,
and injuries to other cellular components.

3. Roles of ROS in Regulating Fruit Defense Responses

3.1. Antioxidants Participate in Fruit Defense Responses

During the interactions between plants and pathogens, sequential cellular, biochemical,
and molecular changes occur in plant responses against pathogens [22]. Some studies have shown
that antioxidants play key roles in inhibiting fruit senescence [23,24]. Conversely, the oxidative
damage in mitochondrial proteins caused by ROS accumulation can accelerate fruit senescence [25,26].
Comprehensive studies on antioxidant enzymes in the citrus fruit infected by Penicillium digitatum
showed that the antioxidant activities of CAT, SOD, and APX decreased during orange–P. digitatum
interaction. In non-infected areas of the flavedo, all enzymes displayed higher activities, which may be
related to the high resistance of the flavedo to pathogen infection [27]. Similar to the results mentioned
above, a transcriptomic analysis of apple fruit in response to Penicillium expansum infection indicated
that genes encoding ROS-detoxifying enzymes, such as SOD, APX, and POD, were significantly
upregulated [28]. In an attempt to probe the antimicrobial mechanisms, exogenous substances, such
as oxalic acid [29], trisodium phosphate [30], rhamnolipids [31], methyl thujate [32], chitosan [33],
and biocontrol yeasts [34], were employed to enhance fruit resistance to postharvest fungal pathogens,
which resulted in significantly decreased disease severity. These substances also increased the activity
of antioxidant enzymes (POD, SOD, CAT), activated the expression of related genes, improved the
ROS-scavenging capacity, and further decreased ROS levels in the treated fruit samples. Current
evidence indicates that silencing SlPL, the gene encoding a pectate lyase in tomato, results in increased
activities of CAT, SOD, and POD in SlPL-RNAi-treated fruit and reduces the susceptibility of tomato
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fruit against Botrytis cinerea [35]. In general, these results further confirm the importance of antioxidant
enzymes in balancing cellular ROS and enhancing the ability of fruit to withstand fungal pathogens.

3.2. ROS–Phytohormone Crosstalk

A subtle interplay between ROS and phytohormones, such as salicylic acid (SA), jasmonic acid
(JA), and ethylene (ET), has been documented in the interactions between fruit and pathogens [36,37].
In a recent transcriptomic analysis identifying genes whose expression correlated either positively
or negatively with L-ascorbic acid content in tomato fruits, cluster analysis using Self-Organizing
Tree Algorithm (SOTA) showed that the genes related to hormone signaling, which are dependent on
the oxidative status of the fruit, were modulated in relation to L-ascorbic acid content in tomato [36]
(Figure 2). Moreover, it has been revealed that SA could protect fruits against pathogenic fungi [38,39].
SA improved the resistance of sweet cherry fruit to P. expansum [40,41] and of pear fruit to Alternaria
alternata [42] by inducing the activity of anti-oxidant enzymes and pathogenesis-related proteins.
Moreover, SA application alleviated disease severity in postharvest citrus fruit by inducing the
accumulation of H2O2, primary metabolites, and lipophilic polymethoxylated flavones [43]. However,
SA may also facilitate H2O2 accumulation during the oxidative burst induced by infection with virulent
pathogens [44]. A recent study pointed out that acibenzolar-S-methyl (ASM) treatment could enhance
the activity of NADPH oxidase and accelerate the production of H2O2 in muskmelon, indicating the
importance of ROS in ASM-induced resistance in muskmelon [45].
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Figure 2. ROS is involved in the responses to salicylic acid (SA) and oxalic acid by modulating
protein carbonylation, ethylene biosynthesis, and alcohol dehydrogenase (ADH) by-pass [29,41].
After inoculation with Penicillum expansum, less carbonylated proteins were accumulated in
SA-treated sweet cherry fruit than in control fruit (A), whereas ROS acted synergistically with
ethylene biosynthesis/signaling and ADH by-pass in the responses to oxalic acid (B). CBS-DCP:
CBS domain-containing protein (J-13); MA: major allergen (J-1); Cu/Zn SOD: Cu/Zn superoxide
dismutase (J-2); HSP70: heat shock protein 70 (J-28); ADH1: alcohol dehydrogenase 1 (J-20); PDH
E2: dihydrolipoamide acetyltransferase (E2) of pyruvate dehydrogenase complex (J-14); AdoMet:
S-adenosylmethionine; ACC: 1-aminocyclopropane-1-carboxylic; SAR: systemic acquired resistance.

JA plays a prominent role in plant defense response through prompt metabolization to methyl
jasmonate (MeJA) [46,47]. Tomato fruit treated with exogenous MeJA display a significantly
decreased diameter of gray mold lesion caused by B. cinerea, which may be attributed to H2O2

accumulation, elicitation of antioxidative reaction, and prevention of protein carbonylation in fruit [48].
MeJA treatment also increases the activities of chitinase, β-1,3-glucanase, and POD in peach fruit,
and further induces high resistance against Monilinia fructicola and P. expansum [49]. Usually,
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MeJA-treated fruits show an H2O2 burst and the accumulation of phenolic compounds, such as
lignin and phytoalexin, which is beneficial for fruit defense responses.

The roles of ET in defense responses of plants are diversified and depend on the crosstalk with
ROS [8,50]. As an inhibitor of ET perception, 1-methylcyclopropene (1-MCP) has been widely used to
maintain fruit quality during postharvest storage via a decrease of ethylene production and induces
the activities of enzymes involved in ROS scavenging such as PPO, CAT, and SOD [50–52]. Kiwifruits
treated with conditioning combined with 1-MCP increased the fruit’s total antioxidant capacity and
reduced the incidence rate of disease caused by B. cinerea [53]. Tomato fruits treated with tran-2-hexenal
showed enhanced activities of antioxidant enzymes and elevated expression levels of genes encoding
the ethylene receptor, which further alleviated the incidence of gray mold [54]. These results suggest
that the controlling effect of trans-2-hexenal on gray mold may be related to ET/ROS-mediated systemic
resistance. In addition, brassinosteroid treatment (BR) of tomato and cucumber at low concentration led
to enhanced resistance against Sphaerotheca fuliginea and B. cinerea [55]. Furthermore, we found that BRs
may alleviate jujube fruit decay by reducing ethylene production and scavenging ROS accumulation.
The activities of several defense-related enzymes and antioxidant enzymes including phenylalanine
ammonia lyase (PAL), CAT, and SOD in jujube fruit were significantly enhanced [56], which indicate
a crosstalk between BRs, ET, and ROS during fruit–pathogen interactions. However, as most of the
current understanding of ROS–phytohormone interactions is derived from non-fruit tissues, further
confirmation is still required to draw parallels with fruits.

3.3. ROS–NO Reactions

Recent evidence suggests that nitric oxide (NO), a gaseous free radical, is an important intracellular
signaling molecule involved in various physiological processes including growth and development,
respiratory metabolism, maturation and senescence, as well as in responses to various stresses [57,58].
Following NO treatment, tomato fruits showed delayed ripening and increased activity of antioxidant
enzymes in the late storage period, resulting in an increased resistance against B. cinerea [59].
An integrated signaling network involving NO and ROS was found in BcPG1-elicited grapevine
defenses [60]. Exogenous NO treatment induced the accumulation of endogenous NO, H2O2, and
O2
·- and increased the activity of NADPH oxidase, which contributed to increased resistance of peach

fruit against M. fructicola [61]. However, H2O2 production was downregulated by NO, indicating
that a feedback regulatory mechanism may exist between ROS and NO [62]. It was demonstrated
that NO application could suppress spore germination of P. expansum and thus reduce its virulence
on apple fruit [63], leading to the hypothesis that ROS may mediate the defense reactions of fruit by
cooperation with NO. Interestingly, almost all major classes of plant hormones (SA, JA, ET, abscisic acid
(ABA), and BRs) may influence, at least to some degree, the endogenous levels of NO [64]. The tomato
mutant sitiens fails to accumulate ABA but exhibits an increase in NO and ROS production and has
increased resistance to B. cinerea [65], suggesting a close relationship between NO and ABA, as well as
the existence of ROS during fruit–pathogen interaction. These data suggest that a complicated network
between ROS, NO, and phytohormones may function during fruit–pathogen interaction.

4. Roles of ROS in Fungal Development and Pathogenicity

4.1. Roles of NADPH Oxidases in Pathogens

It has been clarified that ROS derived from NADPH oxidase (Nox) complex is involved in sexual
differentiation and pathogenicity in many fungal species (Figure 3). Nox is a multi-subunit complex,
and most fungi possess Nox homologs, i.e., NoxA (Nox1), NoxB (Nox2), and NoxC [66]. NoxA and
NoxB are homologs of mammalian gp91phox and are the best-characterized subunits that play key
roles in various processes of fungal life, whereas fungal NoxC is closely related to the mammalian
Nox5 and the plant RBOH enzymes, and its functions in fungi are still unclear [66,67]. In B. cinerea,
both NoxA and NoxB are required for the development of sclerotia and full virulence. However,
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NoxB is needed for host penetration, whereas NoxA is related to post-infection hyphal growth [68].
Similar results have also been reported for other pathogens, such as A. alternata [66] and Sclerotinia
sclerotiorum [69]. NoxR, encoding a homolog of the mammalian regulatory subunit p67phox, was shown
to regulate both NoxA and NoxB in B. cinerea [68]. ∆bcNoxR and ∆bcNoxAB double-deletion mutants
had the same phenotypes. ∆bcNoxR deletion mutant showed reduced growth rate, sporulation, and
impaired virulence in apple, strawberry, and tomato fruits [11]. In Aspergillus nidulans, NoxR deletion
mutant showed a similar phenotype to the NoxA mutant, resulting in loss of the ability to produce
cleistothecia [70]. Moreover, the impairment in any of the NoxA, NoxB, or NoxR genes decreased
the necrotic lesions on citrus cultivars compared to wild-type fruits [71]. NoxD, a homolog of the
adaptor protein p22phox, is required for full function of the Nox complex and is found in B. cinerea,
Magnaporthe oryzae, and Podospora anserine [67,72–74]. In addition, BcNoxD plays a key role in oxidative
stress response [67]. Our study also showed that methyl thujate, an essential oil component derived
from western red cedar, could stimulate ROS accumulation in the cytoplasm of B. cinerea hyphae and
effectively control gray mold in apple fruit by upregulating the expression of genes encoding subunits
of the Nox complex, such as BcNoxB, BcNoxD, and BcNoxR [32].
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Figure 3. Inter-kingdom ROS signaling in the interaction between fungal pathogens and their host
plants. Plant cells generate ROS by RBOHs in the plasma membrane and from several intracellular
organelles upon pathogen recognition. In the meantime, fungal hyphae produce ROS by Nox complexes,
mainly localized at the plasma membrane or endoplasmic reticulums (ER), which stimulate an oxidative
burst response within the pathogen. Scavenging systems composed of enzymatic and non-enzymatic
systems synergistically function to maintain intra- and extracellular redox homoeostasis in both plants
and pathogens. Contents indicated by solid arrows are based on currently available experimental data,
whereas those indicated by dashed arrow are based on hypotheses in literatures.

The small GTPase Rac and the proteins related to polarity establishment, BemA and Cdc24, are also
important components of the fungal Nox complex [75]. Rac belongs to the Rho superfamily, which is
activated by the GDP/GTP exchange factor (GEF) and binds to NoxR [1,76]. Increasing evidence has
revealed that Rac has crucial functions during hyphal growth and development, and homologs of Rac
have been identified in several filamentous fungi [77–79]. It was reported that a monomeric GTPase
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of the Rho superfamily (Rho3) in B. cinerea was involved in various cellular processes [10]. A ∆rho3
deletion mutant showed significant suppression of vegetative growth and conidiation compared to
the wild-type (WT) strain. In addition, compared with the control, lesion development in tomato
leaves and fruits and in apple was prominently repressed upon inoculation with conidia from the
∆rho3 mutant. Moreover, the ∆rho3 deletion mutant led to less ROS accumulation in hyphal tips of
B. cinerea compared to the WT strain [10].

4.2. Effects of Antioxidants on Fungal Pathogenicity

The intracellular ROS level is crucial for developmental differentiation and virulence of many
pathogenic fungi [80–82]. Fungal pathogens have developed robust antioxidation systems, including
SODs, CAT, POD, glutathione, and thioredoxin, to eliminate ROS, are produced by the hosts during
infection or as byproducts of the pathogens’ own aerobic respiration (Figure 3) [83,84]. In Aspergillus
niger, sodC deletion led to excessive production of superoxide anion and increased content of H2O2.
Moreover, a ∆sodC mutant had reduced virulence in Chinese white pear, indicating that sodC was
crucial for the full virulence of A. niger during fruit infection [85]. Fungal CATs are also important
antioxidant enzymes which catalyze the conversion of H2O2 to water and oxygen and are involved in
fungal pathogenicity in plants [86,87]. Deletion of cpeB, a catalase-peroxidase encoding gene, resulted
in a lower spore germination rate and slower lesion development in apple fruit, which contributed to
increased sensitivity to H2O2 stress and suggested an essential role of cpeB for full virulence of A. niger
during interactions with apples [88].

4.3. ROS Transport Affects Fungal Pathogenicity

Much progress has been made in the study of the production and scavenging systems of ROS in
recent years, but it is still enigmatic how ROS are transported from their site of origin to their place
of action or detoxification. As signaling molecules, the transport of ROS is closely related to their
function [89]. Aquaporins (AQPs) are integral membrane proteins from the large water channel family
functioning in water and/or glycerol transport. It has been previously documented that H2O2 transport
is mediated by AQP isoforms in plants and mammals [90–94]. AQPs of plants are subdivided into seven
groups, some of which have been proven to play an important role in plant disease processes [95–97].
In fungi, AQPs are classified into five groups, including two groups of classical AQPs and three
groups of aquaglyceroporins [98]. It was demonstrated that, among the eight AQPs, only AQP8
was involved in ROS production, distribution, and transport across membranes in B. cinerea [99].
An AQP8 deletion completely inhibited the formation of conidia and infection structures in B. cinerea
and impaired its ability to cause disease in tomato leaves and fruits. Interestingly, the expression
of NoxR was significantly reduced in a ∆AQP8 deletion mutant, suggesting that AQP8-based H2O2

transport may control the function of the Nox complex through influencing the expression of NoxR
gene. Moreover, both AQP8 and NoxR affect ROS distribution in the hyphal tips of B. cinerea [99],
indicating the important role of AQP8 in ROS transport and pathogenicity.

5. Conclusions

In the light of recent advances, the importance of ROS in both hosts and pathogens during
fruit–pathogen interactions has been fully addressed, and considerable progress has been made in the
understanding of the complex metabolic machinery of ROS. In the present study, we reviewed the
currently available information on the roles of ROS in the interaction between fruits and postharvest
pathogens. Deducing from the fundamental results reported in non-fruit tissues, the oxidative burst,
which occurs at the initial stage of the interaction, serves as one of the first defense lines in plants.
The specific ROS levels in fruit or pathogen define their roles as signaling or harmful molecules.
In the host plant, ROS act as a direct antimicrobial agent and contribute to host defense, whereas for
pathogens, controlled production of ROS is essential for their development and full virulence. ROS also
play a role in different signaling pathways as local or systemic diffusible second messengers. These
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results imply that the existence of ROS scavenging systems is necessary to maintain ROS homeostasis,
which determines if ROS will act against pathogen or promote successful infection. However, it should
be emphasized that fruits are highly specialized and unique to flowering plants, and their defense
systems could behave quite differently from those of non-fruit tissues. Moreover, the developmental
origins of fruit tissues in different fruiting plant families are also distinct, which may cause further
differences in fruit tissues of distinct families. Therefore, the comparison of ROS signaling in fruit and
other tissues may help answer several questions: are ROS signaling pathways are more specialized in
fruit compared to non-fruit tissues? Do they involve different mechanisms or different sets of genes?
What are the specific sensors of ROS and the immediate downstream pathways during fruit–pathogen
interactions? The answers to these questions will be beneficial for understanding the sophisticated
regulation of ROS and effectively controlling pathogen-induced fruit decay.
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