Study on Structural Evolution, Thermochemistry and Electron Affinity of Neutral, Mono- and Di-Anionic Zirconium-Doped Silicon Clusters $\mathrm{ZrSi}^{n}{ }^{0 /-12-}(n=6-16)$

Caixia Dong ${ }^{1,2}$, Limin Han ${ }^{1}$, Jucai Yang ${ }^{1,3, *}$ and Lin Cheng ${ }^{1, *}$

${ }^{1}$ Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, School of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China; Dongcx201011@163.com (C.D.); hanlimin@imut.edu.cn (L.H.)
${ }^{2}$ School of Mining and Technology, Inner Mongolia University of Technology, Hohhot 010051, China
${ }^{3}$ School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

* Correspondence: yangj@@imut.edu.cn (J.Y.); lcheng1983@aliyun.com (L.C.); Tel.: +86-0471-657-6145 (J.Y.)

Figure S1. Low-lying isomers of neutral $\mathrm{ZrSi}_{n}(n=6-16)$ clusters, point group and relative energy (in eV).

Figure S2. Lowenergy (in eV).
(0.20)

$8 \mathrm{~d} 4\left(C_{s}\right)$
(0.26)

9d4 (C_{1}) (0.62)

12d1 ($D_{6 h}$)
(0.00)

$13 \mathrm{~d} 2\left(C_{s}\right)$ (0.28)

$8 \mathrm{~d} 5\left(C_{s}\right)$

11d1 $\left(C_{1}\right)$

(0.84)

$13 \mathrm{~d} 3\left(C_{s}\right)$
(0.39)

$13 \mathrm{~d} 4\left(C_{s}\right)$
(0.50)

$14 \mathrm{~d} 2\left(C_{2 v}\right)$
(0.07)

(1.18)

$14 \mathrm{~d} 4\left(C_{2 h}\right)$ (1.06)

$15 \mathrm{~d} 3\left(C_{2 v}\right)$
(0.86)

Figure S3. Low-lying isomers of di-anionic $\mathrm{ZrSin}^{2-}(n=6-16)$ clusters, point group and relative energy (in eV).

Figure S4. The HOMO-LUMO energy gap ($E_{g a p}$) of $\mathrm{ZrSin}^{0 /-1-2-}(n=6-16)$ clusters. (m) stands for mPW2PLYP calculations and (p) stands for PBEPBE calculations.

Table S1. Conformational population (\%) for low-lying geometries of $\mathrm{ZrSi}_{n} 0-12$ species ($n=6-16$) clusters.

Species	Conformational population					
	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
6 n	46.83%	22.65%	16.16%	14.36%		
7 n	25.94%	23.84%	19.80%	17.00%	13.42%	
8 n	23.06%	20.49%	16.73%	16.45%	11.93%	11.34%
9 n	24.22%	22.64%	21.89%	16.15%	15.10%	
10 n	20.17%	18.54%	17.33%	16.75%	15.66%	11.55%
11n	26.80%	24.22%	19.78%	15.09%	14.11%	
12 n	33.26%	22.18%	21.44%	13.59%	9.53%	
13 n	39.71%	23.92%	19.87%	16.50%		
14 n	33.10%	29.91%	26.13%	10.86%		
15 n	50.93%	26.81%	22.26%			
16 n	67.40%	32.60%				
6 m	48.00%	17.72%	17.43%	16.85%		
7 m	31.01%	24.48%	22.50%	14.50%	7.51%	
8 m	22.97%	21.11%	17.53%	13.16%	12.72%	12.51%
9 m	29.29%	26.92%	15.42%	14.91%	13.47%	
10 m	22.36%	20.55%	16.78%	16.22%	13.47%	10.63%
11 m	27.02%	22.44%	17.42%	16.56%	16.56%	
12 m	26.21%	24.91%	19.34%	15.27%	14.27%	
13 m	32.75%	25.42%	24.58%	17.24%		
14 m	33.83%	27.62%	22.18%	16.37%		
15 m	37.08%	36.46%	26.45%			
16 m	74.67%	25.33%				

6d	44.96%	22.49%	19.00%	13.55%		
7d	42.97%	24.20%	16.41%	12.95%	3.47%	
8d	24.27%	21.20%	20.85%	15.65%	11.74%	6.29%
9d	36.29%	25.45%	14.58%	12.74%	10.94%	
10d	42.15%	20.39%	17.51%	13.14%	6.80%	
11d	35.20%	26.41%	16.18%	12.78%	9.43%	
12d	54.79%	15.18%	13.26%	9.30%	7.47%	
13d	38.90%	24.24%	20.13%	16.72%		
14d	37.77%	33.56%	22.37%	6.30%		
15d	57.66%	28.85%	13.49%			
16d	100.00%					

