
1 
 

Supporting Materials 

The source code of the computer model can be downloaded from our “e-Heart” website 

(http://www.eheartsim.com). 

 

1. Abbreviations 

Table S1. Abbreviations in model equations 

mV
 

membrane potential (mV) 

celltotI _
 

total current of ion channels and exchangers (pA/pF) 

aXtotI __
 

total current of ion ‘X’ channels and exchangers at space ‘a’ (pA/pF) 

blkappI _
 

current applied through a patch electrode (pA/pF) 

XE
 

reversal potential of ion ‘X’ , determined by the Nernst equation (mV) 

mC
 

Whole cell membrane capacitance (pF) 

IG
 

conductance of current ‘I’ (nS/mV) 

a_XGHK
 

a modified Goldman-Hodgkin-Katz equation of ion ‘X’ at space ‘a’ (mM) 

 ,,,k  rate constants (/ms) 

XdK _ dissociation constant for ion ‘X’ (mM) 

)(_ XIP converting factor of current ‘I’ from GHKX (pA/pF/mM) 

Tcycv _ turnover rate of transporter ‘T’ (/ms) 

)a(_)S(p probability of state ‘S’ in a scheme of state transitions at space ‘a’ 

XV total volume of space ‘X’ (picoL) 

atotalX ][ total concentration of substance ‘X’ at space ‘a’ (mM) 

afreeX ][ free concentration of substance ‘X’ at space ‘a’ (mM) 

aX ][ concentration of ‘X’ at space ‘a’ (mM) 

XJ
 

total flux of ion ‘X’ (attomol/ms) 

Xz valence of ion ‘X’ 

dt

Xd a][

 

rate of change of ‘X’ concentration at space ‘a’ (mM/ms) 

2. Model parameters 

Physical	constants Ion	concentrations 
Table S2 Physical constants Table S3 Ionic composition of external solution 

R 8.3143 C·mV/mmol/K 
T 310 K 
F 96.4867 C/mmol 

 

 

[K+]o 5.4 mM 

[Na+]o 140 mM 

[Ca2+]o 1.8 mM 
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Table S4. Cell Volume, volumes of Ca2+ compartments and cell capacitance 

 

Vcell (pL) Vjnc  Viz  Vblk VSR VSRrl VSRup Cm (pF) 
22373  0.008·Vcell 0.035·Vcell 0.68·Vcell 0.072·Vcell 0.225·VSR 0.775·VSR 113.5514 

 

As the capacitance of PVC model is 113.55, assuming Sc_cell = 0.59 compared to a standard Vcell 

(Vstd = 37.92 pL) and a Cm (Cstd = 192.46 pF) of a human ventricular cell, all Ca2+ fluxes between 

Ca2+ compartments and the cell volume are scaled by using Sc_cell. 

 

3. Ca2+-binding proteins and diffusion 

The same species and concentrations of buffering proteins, and diffusion constants between 

compartments (between jnc-iz, iz-blk, and SRup-SRrl) are assumed as in HuVEC model [1]. 

 

4. GHK equation and Nernst equation 

The same equations in HuVEC model [1] are used for calculating GHK and Nernst equations. 

 

5. Ion channels and transporters 

INa 

INaT model in HuVEC model [1] is used. The rates 2OIk , Isbk and Isfk are multiplied by 0.1, 2 and 2, 

respectively and the voltage dependency of the reaction rate between O and I2 states, and transition 

rate of the Is state are shifted negatively by 15 mV, respectively to fit duration of the action potential 

and activation of rat PVC. PNa is slightly increased to 9.4584. 

 

ICaL 

ICaL model in HuVEC model [1] is used.  

GHKCapOPI CaLCaCaL _
, 9.4780CaLP   S(1)

The gating of ICaL model was largely simplified to adapt to the Hinch model (2004) [13-14] of CaRU 

in the HuVEC model. The gating was determined by a Vm-dependent gate and a Ca-dependent gate. 

The Vm-dependent gate was described by assuming two state transition scheme. Both of opening and 

closing rates are purely Vm-dependent (a+ and a-).  
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Ca2+-gate 

It was assumed that the Ca2+-binding site of LCC for channel closing might be located very close to 

the exit of the channel pore, and the local Ca2+ concentration in a hypothetical nano-domain was 

assumed ([Ca2+]nd) in the CaRU model.  Under the assumption of a minimum volume of nano-

domain, [Ca2+]nd was successfully approximated by the equation, 
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In this equation, [Ca2+]nd is determined as a weighted average of  [Ca2+] in the three spaces ([Ca2+]df, 

[Ca2+]SRrl), which are directly connected to the nano-domain. [Ca2+]ds is either the [Ca2+]jnc in the 

case of dyadic ICaL, or [Ca2+]iz and [Ca2+]blk in the case of  ICaL located on the cell surface membrane 

of the iz and blk spaces, respectively. [Ca2+]SRrel is connected through the conductance JR of the 

couplon consisting of a cluster of RyRs, and [Ca2+]o  through the conductance (JL) of ICaL.  

Since LCC is not coupled to RyRs outside of dyadic junction, [Ca2+]nd is determined by the 

following equation S(5).  
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 The Ca2+-gate was also described by a two-state transition scheme with closing rate (koc) and 

opening rate (kco). Thus, ICaL gating is described by a four-state transition model. koc is, 

L

nd
oc

KTL

Ca
k




 

 ][ 2

  ,        51.14700154.0  TLKL
 S(6)

 

As appeared in this equation, the opening rate + of the V-gate is used for koc, assuming that the 
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opening of the Vm-gate facilitates the Ca2+-mediated inactivation of ICaL.  

 It is also assumed that the removal rate of the inactivation (kco)  is dependent on Vm, and thereby 

the 'steady-state inactivation' curve could be simulated.   

21 EtaEtakco   S(7)
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Eta2 was used to reconstruct the non-inactivated component of ICaL on larger depolarizations. 

 

IKr 

IKr model in HuVEC model [2] is used. The current amplitude is described with an Ohmic equation.  
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The open probability of the channel is described with three gating parameters, y1, y2 and y3. 
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IK1 

The IK1 model developed by Yan and Ishihara (2005) [61] was used in HuVEC model (1) after 

modifying several parameters. 
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The Mg2+-block in the mode1 

OOOMg fffpo   S(24)
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 S(25)
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The SPM-block in the mode1 

  spmSPMspmMgSPM

spm
PbPb1po

dt

dPb
  S(30)



6 
 

   
   cytKm

cytKm

SPM
MgEV

MgEV

][812.0exp01.00.1

][807.0exp17.0
2

2








  S(31)

   
   cytKm

cytKm

SPM
MgEV

MgEVSPM

][813.0exp01.00.1

][815.0exp][28.0
2

2








  S(32)

 

IKto 

 IKto model in a rat ventricular cell model [3] (Pandit et al.) is used after a few modifications. GIKto is 

increased from 0.035 to 0.135226 (S = pA/mV). The fast s gate is removed and  of slow s gate is 

multiplied by 10. 
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IKur 

IKur model in a mouse ventricular cell model [4] (Bondarenko et al.) is used after reducing GKur to 

0.42 % (0.0672) of its original value. 
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IClh 

IClh model is newly developed based on experimental report by Okamoto et al. [5]. The model is a 3-

state model as Fig. S1A. The current traces calculated by the IClh model using ECl = -20 mV is shown 

in Fig. S1B. IClh is not included in determining the membrane potential in the model. If the IClh was 

included, the membrane potential was slightly depolarized by a few mV. The  automaticity and the 

action potential configuration did not obviously change because the activation range of IClh was 

much more negative compared to the Vm range of our PVC model. 

 

Fig. S1 Model scheme and current traces of IClh.  
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Background currents (Ca2+, Na+ and K+) 

 Background currents of ion ‘X’ {X = Ca2+, Na+ and K+} were calculated by the conventional format 

with a scaling format (scfX,bg).  
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},,{)(,,, CaKNaXEVscfGI KmbgXbgXbgX   S(50)
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  The scfCa,bg was varied to modify the total Ca content within the cell. 

  To examine the effect of depressing IK,bg during the activation of the -NA stimulation, the scfK,bg 

was decreased in several simulation. 

Kb

KbtbgKtbgK

dt
scfscfIscfscf

tbgK 
 )(

)(,inf_)(,)(,  S(51)

A Kb of 8000 (/ms) was used. 

  

INCX, INaK, PMCA and SERCA 

Models for INCX, INaK and SERCA are taken from HuVEC [1] after changing the maximum 

conductances to 36, 144.5 and 140 %, respectively. Conductance of PMCA is not changed from 

HuVEC model [1]. Fractions of NCX in jnc, iz and blk are changed to 0.03, 0.25 and 0.72, 

respectively. 

 

InsP3R 

The type2 InsP3R model in Sneyd et al. [5] is adopted without any change. Five states are assumed 

in the Sneyd model and the state transition of the receptor is regulated by the cytosolic [Ca2+] in 

addition to the [IP3] in the cytosol (for detail kinetics see the original paper). The Ca2+ flux via the 

whole cell InsP3R (JIP3R) was calculated using a maximum whole cell conductance (Pmax = 80 

attomoles /ms) and the open probability of the InsP3R channel (pO). The Ca2+ concentrations in jnc 

and SRrl were used to calculate the driving force. 
2 2

3 max ([ ] [ ] ])ip R SRrl jncJ P pO Ca Ca      
S(52)

 

CaRU 

RyR and LCC 

The same RyR and LCC models are used as in HuVEC model [1].  

 

[Ca2+]nd_noise 

For the random activation of couplons, a noisy [Ca2+] Ca00_noise is assumed by introducing a random 

function NRND (0 < NRND < 1). The Ca00 at a step of numerical integration (dt = 0.2 ms) was 

multiplied by 2 at a probability of 0.0007 to reproduce the variations in latency of the spontaneous 
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activity after the application of NA. 

00_00 2 CaCa noise   
S(53)

 

 

6. 1-Adrenergic signaling network 

Table S5. Abbreviations for 1-Adrenergic receptor network 

Abbreviations Definitions 

1-Adrenergic receptor 
[L] isoproterenol (ligand) (mM) 
[Ltot] total isoproterenol (total ligand) (mM) 

R] free 1-adrenergic receptor (mM) 

Rtot] total 1-adrenergic receptor, 0.0000132 (mM) 
[LR] 1-adrenergic receptor bound with ligand (mM) 
[LRG] 1-adrenergic receptor bound with ligand and Gs (mM) 
[RG] 1-adrenergic receptor bound with Gs (mM) 
[G] and subunit of Gs (mM) 
[Gtot] total Gs, 0.00383 (mM) 
[G] and subunit of Gs (mM) 
[Ract] active 1-adrenergic receptor (mM) 

ARK 1-adrenergic receptor kinase 
[RS301] 1-adrenergic receptor phosphorylated at S301 by PKA (mM) 
[RS464] 1-adrenergic receptor phosphorylated at S464 by ARK (mM) 
[GGTP] GTP-bound subunit of Gs (mM) 
[GGTPtot] total GTP-bound subunit of Gs (mM) 
[GGDP] GDP-bound subunit of Gs (mM) 
adenylate cyclase 
[AC] adenylate cyclase (mM) 
[ACtot] total adenylate cyclase, 0.0000497 (mM) 
[GGTP_AC] adenylate cyclase-bound with GsGTP (mM) 
[cAMPtot] total cAMP (mM) 
[PDE] phosphodiesterase, 0.000039 (mM) 
protein kinase PKA 
[Cat] catalytic subunit of protein kinase A (mM) 
[PKAtot] total protein kinase A (dimer), 0.001 (mM) 
[Cattot] total of catalytic subunit of PKA, 0.002 (mM) 
[RC] regulatory subunit bound with catalytic subunit (mM) 
[ARC] RC bound with a cAMP (mM) 
[A2RC] RC bound with 2 cAMP (mM) 
[A2R] regulatory subunitc bound with 2 cAMP (mM) 
[Cat123] catalytic subunit in the state Cat1, Cat2 and Cat3 (mM) 
[Cat45] catalytic subunit in the state Cat4 and Cat5 (mM) 
[C_PKI] C bound with PKI (mM) 
[PKItot] total protein kinase inhibitor, 0.00018 (mM) 
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1-adrenergic receptor, activation and desensitization 

[Rtot] =[Ract] + ([RS464] + [RS301])    
S(54)

[Ract] = [R] + [LR] + [LRG] + [RG] 
S(55)

[Gtot] = [G] + [RG] + [LRG] + [G] 
S(56)

 

Instantaneous equilibrium equations S(57)-S(59) are assumed for the binding of L, R and G 

[L] · [R] = KdLR * [LR],             KdLR = 0.001 (mM) 
(modified from  KL = 0.000285 in Saucerman model [6]) S(57)

[G] · [LR] = KdGLR * [LRG],       KdGLR = 0.000062  (mM) 
(modified from KR = 0.062 in Kuzumoto model [7]) S(58)

[G] · [R] = KdGR * [RG], KdGR = 0.033 (mM)    
(as in Saucerman model [6])   S(59)

actR LR LRG RG R     
S(60)

act

LR GLR LR GR

L G L G
R R R R R

Kd Kd Kd Kd
      S(61)

1

act

LR GLR LR GR

R
R

L G L G

Kd Kd Kd Kd



   
 

S(62)

R is determined by Eq. S(62) and LR, LRG and RG are determined by Eqs. S(57)-S(59) when the 

initial values of G and L are given as Gtot and Ltot, respectively.  

 

Concentrations of -ARs phosphorylated at S464 & S301 (Eqs. S(63) and S(64)) and concentrations 

of G protein subunit (total GTP-bound G, G and GDP-bound G, Eqs. S(65) – (67)) are calculated 

by the numerical equations. 

d[RS464] / dt = 0.0000011 · ([LR] + [LRG]) – 0.0000022 · [RS464]   
S(63)

d[RS301] / dt = 0.0036 · [Cat] · [Ract] – 0.0000002232 · [RS301]    
S(64)

d[GGTPtot] / dt = 0.016 · ([RG] + [LRG]) – 0.001 · [GGTPtot]     
S(65)

d[G] / dt = 0.016 · ([RG] + [LRG]) – 1200 · [GGDP] · [G]   
S(66)

d[GGDP] / dt = 0.001 · [GGTPtot] – 1200 · [GGDP] · [G] 
S(67)

 

Activation of AC and cAMP synthesis 

The activation of AC is mediated by the binding of AC with GGTP.  

 This binding reaction is calculated by assuming an instantaneous equilibrium (Eq. S(68)) between 

GGTP and AC. 
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[GGTP_AC] = [GGTP] · [AC] / KdACG ,        KdACG = 0.315 
S(68)

 

The mass conservation equations are 

[ACtot] = [AC] + [GGTP_AC]         
S(69)

[GGTPtot] = [GGTP] + [GGTP_AC]   
S(70)

 

Solution of the Eqs. S(68)-S(70) 

From Eqs. S(68) and S(69),  

[ACtot] - [GGTPtot] = [AC] - [GGTP]   S(71) 

From Eqs. S(69) and S(70),  

[GGTPtot] = [GGTP] + [GGTP] · [AC] / KdACG S(72) 

From Eqs. S(71) and S(72),  

[GGTPtot] = [GGTP] + [GGTP] · ([ACtot] - [GGTPtot] + [GGTP]) / KdACG 
[GGTPtot] = [GGTP] + [GGTP] · ([ACtot] - [GGTPtot]) / KdACG + [GGTP]2 / KdACG 
[GGTP]2 / KdACG + (1 + ([ACtot]- [GGTPtot]) / KdACG) * [GGTP] - [GGTPtot] = 0    

S(73)

Eq. S(73) is an equation of the 2nd degree for GGTP (X). 

GGTP = X = (-b + math.sqr (b^2 - 4ac)) / 2a 
a = 1/KdACG, 
b = 1 + ([ACtot] - [GGTPtot]) / KdACG, 
c = - [GGTPtot] 
 

S(74)

 

When GGTP is obtained, [AC] and [GGTP_AC] are determined by Eqs. (18) and (19). 

From Eq. S(71),  

[AC] = [ACtot] - [GGTPtot] + [GGTP]    S(75) 

From Eq. S(72), 

[GGTP_AC] = [GGTPtot] - [GGTP] S(76) 

 

The evolution of total cAMP concentration is calculated by a kinetic equation S(77). 

d[cAMPtot] / dt = 0.0001307 · [AC] · [ATPtot]i / (1.03 + [ATPtot]i) 
+ 3.4 · [GGTP_AC] · [ATPtot]i / (0.315 + [ATPtot]i) - 0.005 · [PDE] · [cAMP] / (0.0013 + 
[cAMP]) 

          
S(77) 

 

PKA activation by cAMP 

The schematic presentation of reaction (a half of the dimer) is shown in the following figure, in 

which the half of the dimer PKA is shown.  Cat123 represents the instantaneous equilibrium of 

sequential cAMP (A) bindings to the regulatory subunit (R), and the dissociation of the regulatory 
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unit from the catalytic subunit (C in this scheme) and Cat45 represents the binding of protein kinase 

inhibitor (pki) to C. 

 

The mass conservation of the catalytic subunit of pKA is indicated by Eq. S(78), while Eq. S(79) 

indicates the composition of total cAMP in the Akinase system.  

[Ctot] = [PKAtot] · 2 = [RC] + [ARC] + [A2RC] + [Cat] + [C_PKI]      [PKAtot] = 0.001 S(78) 

[cAMPtot] = [cAMP] + ([ARC] + 2 · [A2RC] + 2 · [A2R]) S(79) 

 

 In the original Saucerman model, the following instantaneous binding reactions are assumed. 

[RC] = Kd12 · [ARC] / [cAMP]                   Kd12 = 0.008 (mM)    S(80) 

[ARC] = Kd12 · [A2RC] / [cAMP]           S(81) 

[A2RC] = [Cat] · [A2R] / Kd3                       Kd3 = 0.009 (mM)    S(82) 

[C_PKI] = [PKItot] · [Cat] / (Kd4+ [Cat])     Kd4 = 0.0000002  (mM) S(83) 

 

In the present study, the instantaneous dissociation of A2RC into C (Cat) and A2R described in Eq. 

S(82) is calculated using forward and backward rates,  and , where, 

)(20 1
3

 msKd   S(84) 



New Lumped Model of PKA 

Catalytic subunit 

                                 45123 CatCat








 

Simplifications of the model 

In the present study, a time-dependent step is introduced between Cat123 and Cat45 The time-

dependent step is only assumed on a technical reason; to simplify the computation to solve 6 first-

degree simultaneous equations (2 mass conservation equations; Eqs. S(78) - (79) and 4 quasi-
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equilibrium equations; Eqs. S(80) - S(83)) with 6 variables ([Cat], [RC], [ARC], [A2RC], [A2R] and 

[C_PKI]). Biophysically, the model is also simplified by neglecting additional state transitions, 

which might occur in reality. For example, cyclic AMP might dissociate from regulatory subunits 

within the conformation of Cat45.  

 

Cat123 

From Eqs. S(81) - (83), the instantaneous equilibrium in Cat123 = RC + ARC + A2RC is determined. 

Firstly, [A2RC] fraction is determined by Eq. S(82). 

[A2RC] = Cat123 / ((Kd12 / [cAMP])2 + (Kd12 / [cAMP]) + 1) S(85) 

Here, Kd12 is 0.008 (mM) and [cAMP] value at the previous time step is used in Eq. S(85) for the 

determination of [A2RC]. (Only [cAMPtot] but not [cAMP] is given by the numerical integration.  

[cAMP] needs to be calculated from Eq. S(79) using ARC A2RC and ARC at the previous time 

step.) 

Secondly, RC and ARC are determined by Eqs. S(81) and S(82) using [A2RC] for calculation of 

Cat123 in Eq. S(88). 

[RC] = (Kd12 / [cAMP]) · [ARC] S(86) 

[ARC] = (Kd12 / [cAMP]) · [A2RC] S(87) 

[Cat123] = [Cat1 + Cat2 + Cat3] = [RC] + [ARC] + [A2RC] S(88) 

[Cat123] = (Kd12 / [cAMP])2 [A2RC] + Kd12 / [cAMP] · [A2RC] + [A2RC] S(89) 

[Cat123]= ((Kd12 / [cAMP])2 + (Kd12 / [cAMP]) + 1) · [A2RC] S(90) 

 

Cat45   Inhibition of catalytic subunit by PKI 

In the formulation of Kuzumoto model, the quasi-equilibrium is assumed using a dissociation 

constant Kd4 = 0.000002.  

Cat PKI C _ PKI   

[Cat45] = [Cat4 + Cat5] = [Cat] + [C_PKI]   S(91) 

[C_PKI] = [Cat45] - [Cat] S(92) 

[C_PKI] = [PKItot] · [Cat] / (Kd4+ [Cat])     Kd4 = 0.0000002  (mM)    S(93) 

 

From Eq. S(92) and S(93), 

([Cat45] - [Cat]) · ([Cat] + Kd4)  
= [PKItot] · [Cat] - [Cat]2 + Kd4 ·[Cat] + [Cat45] · [Cat] + Kd4 ·[Cat45] =  [PKItot] · [Cat] 
 

 

[Cat]2 - [Cat45] ·[Cat] + [Cat] · [PKItot] + [Cat] ·Kd4 - [Cat45] ·Kd4 = 0 
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[Cat]2 + ([PKItot] - [Cat45] + Kd4) · [Cat] - Kd4 ·[Cat45] = 0   S(94) 

 

Solution of the 2nd-degree equation  

[Cat] = {-b + math.sqr(b^2 - 4ac)} / 2a 
a = 1 
b = ([PKItot] - [Cat45] + Kd4) 
c = - Kd4 ·[Cat45] 

S(95)

 

The time-dependent state transition between Cat123  Cat45  

The model is now simplified into a lumped two state model.  

45

'

'

123 CatCat








  

 = 1 / (' + ') 
S(96)

 

Using rate constants,  and , assumed for the reactions between Cat3 and Cat4, the forward and 

backward fluxes between Cat123 and Cat45 are calculated as follows; 

Forward Flux = · [A2RC]     
S(97)

From Eq. S(84) 

· [A2RC] = · Cat123 / ((Kd12 / [cAMP])2 + (Kd12 / [cAMP]) + 1) 

Forward rate constant ’= { / ((Kd12 / [cAMP])2 + (Kd12 / [cAMP]) + 1)}   (ms-1) (34) 
S(98)

 

Backward Flux = ·[Cat][A2R]  
S(99)

Since [A2R] = [Cat45],  

Backward rate constant ’ = ·[Cat]    (ms-1) 
S(100)

From Eq. S(84),  can be determined when  is provided, and subsequently, ' and ' are 

determined. 

 

Initial values for the Euler integration 

Parameter Value Parameter Value 

Vm -66.447116401342214 I1NCX_blk 0.171664945867262 

TnChCa 0.10447717129344221 I2NCX_blk 0.68159262452779745 

CaMCa 0.0003075838194616453 c1 0.28621564970090407 

bufferSRCa 0.0022493020872266464 c2 0.6618729884176402 
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Catot_jnc 0.27887964039384816 pr 0.0074631215577577181 

Catot_iz 0.11543731073765753 s 0.95571772650734277 

Catot_blk 0.10713873825176626 s_slow 0.95571772657751919 

Nai 5.7835890034878989 O_TM 0.000025812378966131479 

Ki 117.55390194536011 I2_TM 0.039145817711564689 

Ca_SRup 0.903023147511798 Is_TM 0.64483536379864259 

Catot_SRrl 2.3938173987628852 a_Kur 0.0033102437586842066  

Yooo 0.000040613205495200059 i_Kur 0.97651353426156917 

Yooc 0.00004098083266229187 TSCa3 0.0044381619418831396 

Ycoo 0.000093395229562045015 TSCa3W 0.0001130611639904043 

Ycoc 0.99978802625560148 TSCa3S 0.000050253626145520288 

Ycco 0.0000000083592508382794764 TSS 0.000134045303367519 

Yoco 0.0000000017708845117738384 TSW 0.000069880364775602439 

Yocc 0.0000000071297350978473211 crsBrLnXw 0.9699 

Yco_iz 0.99989743973372536 crsBrLnXp 0.96459 

Yoc_iz 0.0000000054033757677464432 R_ip3 0.46617993859032436 

Yoo_iz 0.0000815975354013338 O_ip3 0.0081974458936357464 

Yco_blk 0.99991079283327222 I_1_ip3 0.16267555056316188 

Yoc_blk 0.0000000043136867481938156 I_2_ip3 0.22732673455466326 

Yoo_blk 0.00008159862509035334 A_ip3 0.13559032296878337 

y1_IKr 0.0011330794896614053 IP3_m 0.015   

y2_IKr 0.0011332895929810937 hIP3R_t 0.99999999999167333 

y3_IKr 0.98562965758986421 ARS464 0.0000000000054552197286606261 

Pbspm 0.88798165746058544 ARS301 0.00000033958594680314912 

E1NCX_jnc 0.44878015194210857 GsaGTPtot 0.000021287282946520791 

I1NCX_jnc 0.11630535096826131 Gsbg 0.000022090314190328611 

I2NCX_jnc 0.43086843058119384 GsaGDP 0.00000080303984373160733 

E1NCX_iz 0.32718383921221383 cAMPtot 0.00014833521997096224 

I1NCX_iz 0.13787993637331128 Cat45 0.00008089376821908432 

I2NCX_iz 0.53284422579114621 y_PKA 0.11693851726524969 

E1NCX_blk 0.14617284203483963 hIP3R_t 0.99999999999167333 
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